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Abstract: In this study, the two key factors affecting the thermal performance of the insert rubber and
stress distribution on the tire sidewall were analyzed extensively through various performance tests
and simulations to promote the development of run-flat tires. Four compounds and two structures of
insert rubber were designed to investigate the effects of heat accumulation and stress distribution
on durability testing at zero pressure. It was concluded that the rigidity and tensile strength of the
compound were negatively correlated with temperature. The deformation was a key factor that affects
energy loss, which could not be judged solely by the loss factor. The stress distribution, however,
should be considered in order to avoid early damage of the tire caused by stress concentration. On the
whole, the careful balance of mechanical strength, energy loss, and structural rigidity was the key to
the optimal development of run-flat tires. More importantly, the successful implementation of the
simulations in the study provided important and useful guidance for run-flat tire development.

Keywords: insert rubber; simulation; heat accumulation; stress distribution; run-flat tire

1. Introduction

Deflated tires on vehicles can potentially have serious safety implications to both
the occupants in the vehicle as well to other road users. Statistically, approximately 70%
of traffic accidents on highways were caused by deflated tires, and the mortality rate of
riding on a flat tire was close to 100% at speeds of more than 160 km/h [1,2]. Tire blowout
causes the instantaneous loss of tire pressure, leading to sidewall collapse and support
to the tire. Subsequently, the center of gravity of the vehicle changes abruptly and the
vehicle veers out of control. The designing of run-flat tires had undergone many different
iterations of new designs since Chrysler and US Royal introduced a concept of run-flat
tire in 1958. As early as 1976, several types of run-flat tires have been developed by tire
makers in the world since its concept was introduced and the representative ones are the
banded tire introduced [3]. Nowadays, the typical run-flat tires adopt a specially designed
sidewall support structure, which was able to support the weight of the vehicle even
in the event of lost pressure that the run-flat tire is able to run at zero internal pressure,
fully loaded, for a maximum 80 km at 80 km/h. Contrary to the sidewall of conventional
pneumatic tire, the insert rubbers of the sidewall reinforced run-flat tire makes the major
driving performances such as the riding comfort and the rolling resistance worse than
the conventional pneumatic tire. However, in consideration of safety, the advantages of
running flat tire are gradually accepted by the market. In 2001, the 4th generation of the
BMW 7 Series launched the market, and was the first model of mass-produced vehicles to
be equipped with run-flat tires [4–8], which represents that the run-flat tire has officially
entered the original market.

Compared to the traditional tire structure, the additional insert rubber and reinforce-
ment of a run-flat tire inevitably changes the stress state of tire sidewalls during its running
process. Many attempts have been made to investigate and optimize the properties of
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the tire self-supporting reinforced sidewall, based on the structure of the tire and insert
rubber, including shape, thickness, compound, and flexion heat-generating properties of
the insert rubber. Unlike traditional sidewall rubber, the properties of the insert rubber
required not only higher rigidity for structural support, but also a higher degree of flexural
resistance [9,10]. Nevertheless, these two properties were usually contradictory to each
other and must be carefully balanced to achieve the optimum characteristics.

Generally, harder materials offer greater supporting capacity, but sacrifice flexural per-
formance and were prone to higher levels of heat generation. However, these comparisons
were usually based on the same types of deformation. If a softer rubber was to bear the
same force, the result may be quite the opposite [11–14]. Therefore, the compound of the
insert rubber must balance hardness and the flexibility in order to achieve optimum perfor-
mance. Moreover, the sidewall of traditional tire was composed of several components,
including beads, carcass piles, and sidewall chaffer. It had taken over a hundred years to
develop a mature technical system.

Therefore, the rigidity of the insert rubber must match the rigidity of other structures
of the tire sidewall to prevent the delamination of the internal components caused by
driving with a deflated tire and early damage [15–17]. The development of a run-flat tire
often requires significant amounts of resources to be invested for testing the tires in order to
achieve the best performance. As such, this work employs mechanical analysis software to
simulate and evaluate the stress state of the sidewall, in order to provide theoretical support
for designing the structure and compound of the run-flat tire insert rubber. In addition,
mechanical tests were carried out for two structures and four insert rubber compounds to
further verify the correlation between the simulation results and tire performance.

2. Materials and Methods
2.1. Preparation of the Tire and Simulation Model

The two-dimensional (2D) model used in this simulation was the 245/45R18 96W
model, and the structural designing of insert rubber was shown in Figure 1.
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Figure 1. The structural designing of insert rubber (unit: mm). (a) Run-flat tire model; (b) B-1; (c) B-2.
(unit: mm)

Figure 1 shows two structures of insert rubber which were designated as B-1 and
B-2. B-1 ladder type had a large thickness transition range, while B-2 was a half-moon
shape with a small thickness transition range. Compared with B-1, the total length of B-2
insert rubber was 10 mm smaller, the thickness of 11 mm at the middle points 5 and 6
was smaller, and the thickness at both ends was larger, which makes it more rigid and
stress concentrated under flexural motion. In order to better research content of this paper,
four groups of experimental formulae were designed with significant differences in heat
generation and hardness which were used for simulation analysis and tire manufacturing
with the combination of the two structures of insert rubber in Figure 1, and the simulation
model scheme is shown in Table 1.

Table 1. Simulation model scheme.

List Compound Structure

Model-1 A-1 B-2
Model-2 A-2 B-2
Model-3 A-3 B-2
Model-4 A-4 B-2
Model-5 A-1 B-1
Model-6 A-2 B-1

(The compounds of A-1/A-2/A-3/A-4 will presented later on).

According to the Smithers FNF report of 225/45 R17 HP run-flat tire, the hardness
of the support rubber of the run flat tire produced by the world-famous tire enterprises
was generally between 71–78, and the rubber material in the formula was mainly cis-
polybutadiene (BR) with natural rubber (NR), such as the support rubber of Bridgestone
was NR/BR = 30/70, which was mainly considerate the high flexibility of BR. At the
same time, other companies also selected natural rubber as the main raw material with
cis-polybutadiene, such as Michelin insert rubber used NR/BR = 70/30 design, mainly
considering the high physical and mechanical properties of nature rubber. Therefore,
based on the two different rigid structures, we designed four groups of different hardness
insert rubber formulations, the hardness gradients were 78/75/72/68, in which NR/BR
= 70/30 was selected for A-2, and NR/BR = 30/70 was selected for the remaining three
groups. Based on the previous development experience, too low hardness of insert rubber
was not conducive to the tire’s durability under zero air pressure. Therefore, in this
experiment, A-3 and A-4 were new combination designed and developed by us, which will
be compared with the previous design. Under the structure of B-1, we only studied A-1
and A-2 system with higher hardness while the raw rubber design was just the opposite,
so as to study the balance between raw rubber selection and hardness design.

Other elements of structural designing based on the tire simulation model were shown
in Table 2.
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Table 2. Other structural designing elements of tires corresponding to structural analysis.

Structural Features Model

Structural Designing Features 1 2 3 4 5 6
Insert Rubber compounds A-1 A-2 A-3 A-4 A-1 A-2

Belt
materials 2 + 2*0.30HT-60EPD

Angle 29◦

Carcass
materials 1300D/2-110EPD

Carcass turn-up low

Apex Shore A 79
height/mm 40

Bead materials Φ1.295
arrange 4-5-6-5-4(ϕ466.8)

Charfer hardness 73
Note: EPD, Ends per DM.

Simulation Mathematical Models and Parameters

The description methods of mechanical properties of rubber materials can be roughly
divided into two categories: One is the phenomenological description of rubber as a
continuous medium, the other is the method based on thermodynamic statistics. At present,
the polynomial models based on the theory of continuum mechanics are widely used in
engineering such as Mooney- Rivlin model and Yeoh model. Because the stress-strain
curve of rubber material had strong nonlinear characteristics, when the strain of rubber
exceeds 20%, the material would show "hardening" characteristics, while the strain rate
of insert rubber of run-flat tire was close to 25% at zero pressure. Therefore, in this case,
the insert rubber appeared hardening. It was necessary to use the material constitutive
model which can accurately described this characteristic to get the accurate simulation
results. Mooney-Rivlin model could not reflect the "hardening" characteristics of rubber
under large deformation, while the Yeoh model with a good fitting of rubber under large
deformation could accurately reflect the state of the running tire at zero pressure.

The Yeoh model was used in ABAQUS simulation software to simulate run-flat
tires. The Yeoh model was suitable for the large deformation behavior of filler-filled
rubber. This model can predict the mechanical behavior of other deformation by fitting the
parameters of deformation experimental data, and can reflect the s-shaped stress-strain
curve under different deformation modes. The deformation range was also relatively wide,
and the strain energy density function model was as follows:

W =
N

∑
i=1

Ci0(I1 − 3)i +
N

∑
k=1

1
dk

(J− 1)2k (1)

J was the volume ratio of after deformation and before deformation. When N = 3,
the reduced polynomial is Yeoh model, which is a special form of reduced polynomial.

The typical binomial parameter form can be rewritten as:

W = C10(I1 − 3) + C20(I1 − 3)2 (2)

where N, Cij, and dk were material constants, which were determined by material experi-
ments, and the initial shear modulus was set as,

µ = 2C10 (3)

Rebar embedded unit was used to simulate the composite parts such as the crown
layer, the band layer, and the body, and the rubber part was simulated by the incompressible
C3D8H unit.

The Yeoh model construction equation in origin 8 was as follows:



Materials 2021, 14, 474 5 of 14

y =
(
((1 + x)− (1 + x)̂(−2))x(2xc10 + 4xc20

x((1 + x)̂2 + 2x(1 + x)̂(−1)− 3) + 6xc30
x((1 + x)̂2

+ 2x(1 + x)̂(−1)− 3) 2̂)) + N
(4)

where x and y were the stress and strain values obtained based on the experimental
data of rubber compound. The experimental data were imported into the data analysis
software and fitted to obtain C10, C20, C30, and n. In the database of ABAQUS simulation
analysis, the rubber material model was established by these four parameters, and finally
used in the simulation analysis.

The mesh of tire model was shown in Figure 2.
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Figure 2. The mesh of tire model.

In the process of tire and rim assembly, the global boundary condition X/Y axis was
set immobility in the global coordinates, and only Z-axis motion was allowed to achieve
contact between the bead and rim under inflation pressure. In the process of simulation.
In the simulation process, the X-axis constraint was removed and the tire stress analysis
under specific load and inflation pressure was started. Therefore, in order to simulate the
stress of tire under zero pressure, the load is designed to be 80% of the tire load.

2.2. Materials

Natural rubber (NR): TSR20, Thailand 20# Standard Rubber; cis-polybutadiene (short for
BR): BR9000, products of Beijing Yanshan Petrochemical Industry Co., Ltd.(Beijing, China);
carbon black: N330.N550, products of Cabot, America (Cabot, Shanghai, China); zinc oxide
(ZnO, white seal) were supplied by Hebei Hongtu Zinc Industry Co., Ltd.(Xingtai, China);
stearic acid: Fengyi Oil Technology Co., Ltd. (Suzhou, China); N-(1,3-dimethylbutyl)-
N0-phenyl-p-phenylenediamine (6PPD), 2,2,4-trimethyl-1,2-dihydroquinoline(TMQ), N-
tert-butyl-2-benzothiazyl sulfenamide (TBBS), tetra(isobutyl) thioperoxydicarbamicacid
(TIBTD), and insoluble sulfur (HSOT-20) were purchased from SAN’O Chemical Technol-
ogy Co., Ltd. (Shanghai, China); paraffin wax was supplied by Shandong Yanggu Huatai
Chemical Co., Ltd. (Liaocheng, China); treated distillate aromatic extract (TDAE) oil was
obtained from H&R Group from Hamburg, Germany.

Preparation of the Insert Rubber Compounds

Table 3 was the compound compounds for experimental.
Four samples of insert rubber were prepared with the compounds shown in Table 3.

Measured amounts of the components were mixed as a master batch in an industrial
internal mixer (KOBELCO, BB430, Kobe, Japan). A three-stage mixing process for each
compound was utilized to ensure the uniform dispersion of carbon black. At the first
stage, the mixer was filled with rubber to a fill factor of 72%, during which the rubber was
initially masticated for 15 s. Then, 75% of the carbon black was added into the mixture
and mixed for 20 s or until the temperature of the master batch reached 115 ◦C. Next,
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oil was added (just for A-1) and mixed while the temperature of the master batch was
below 145 ◦C. The dump temperature of the master batch compound was approximately
165 ◦C. In the second stage, the rest of the carbon black was added to the master batch 2
in the industrial internal mixer and mixed for 20 s. The master batch 2 compounds were
discharged from the internal mixer at 155 ◦C. Finally, in stage three, the curatives TBBS,
TIBTD, and sulfur, were mixed into the master batch 2 in an industrial internal mixer
(Dalian Rubber & Plastics Machinery Co. Ltd., XM270, Dalian, China). The mixing was
carried out at a rotor speed of 25 rpm and the mixer was filled to 67%. By controlling the
time and temperature, the uniformity of rubber mixing can be ensured.

Table 3. The compound compounds (unit: parts per hundred rubber; phr).

Ingredient A-1 A-2 A-3 A-4

TSR20 30 80 30 30
BR9000 70 20 70 70
N330 70 - - -
N550 - 65 60 50
ZnO 8 4 4 4

Stearic acid 2 1 1 1
TDAE 2 - - -
6PPD 1.5 3 3 3
TMQ 1 1 1 1
TBBS 2 2.3 2 2

TIBTD 0.8 - - -
HSOT-20 2.8 3 3 3

The detailed mixing procedures are specified in Table 4.

Table 4. Mixing procedure.

Stage Mixer Operation Time/s Ram
Press/bar

Mix
Temp/◦C

Rotor
Speed/rpm

MB1

+Rubber and add. 15 4 - 55
+CB 20 4 115 50
+Oil 15 4 145 45
Mix 30 4 165 40

Drop 10 4 - 45

MB2
+MB1 and CB 20 4 125 40

Mix 60 4 155 35
Drop 15 4 - 40

FB

+MB2 and add 30 4 - 25
Mix 30 4 - 25
Mix 60 4 102 25

Drop 15 4 - 25
MB = master batch; FM = final mixing; CB = carbon black; add = additives.

2.3. Characterization

The vulcanization of the rubber compounds was carried out in a hydraulic hot press
at 150 ◦C based on the optimum cure time measured from the MDR (rotorless curemeter).
The hardness was determined by using a Shore A durometer (Wallace H17A, UK) according
to ISO 7619 Part 1. A universal testing machine (Instron 3366 series, Norfolk County, MA,
USA) following (die type) was used to measure the tensile properties, while the dynamic
properties were evaluated in tension mode using a dynamic mechanical thermal analyzer
(DMTA: GABO Qualimeter Eplexor 25N, GABO, Germany). For the temperature sweep
test, the test conditions were as follows: 7% static strain, 0.25% dynamic strain, frequency
of 10 Hz, and 2 ◦C/min heating rate. The temperature was scanned from 40 ◦C to 160 ◦C.
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3. Results and Discussion
Vulcanization Properties

The effects of temperature on the mechanical properties of the vulcanizates were
illustrated in Figure 3, and the mechanical properties including tensile strength and elonga-
tion at break were summarized in Table 5. Generally, the higher the testing temperature,
the lower the tensile strength and stress at certain elongation. This causes the damage
resistance of the compound decrease with temperature increasing, revealing that both the
thermal accumulation and the actual temperature directly affect the strength of the com-
pound, and thus the tire performance. The results in Figure 3 also indicate that although
the stress of formulation A-2 at a certain strain was lower than that of formulation A-1,
its tensile strength and elongation at break were greater than those of A-1. Compared with
A-3 and A-4, formulation A-2 had greater tensile strength and greater elongation at break.
The reason for these differences may be the high content of NR in A-2, as the tensile
crystallization property of NR made it have stronger mechanical strength than BR.

Table 5. Hardness, tensile strength, and elongation at break at varying temperatures.

A-1 A-2 A-3 A-4 A-1 A-2 A-3 A-4

Hardness 78 75 72 68 - - - -
Temperature/◦C Tensile strength/MPa Elongation at break/%

23 13.08 18.85 13.59 10.69 131 230 222 225
30 13.67 18.74 14.12 12.49 151 231 240 237
40 12.55 18.7 12.66 10.95 134 247 216 230
60 10.25 11.17 10.51 10.38 121 164 177 220
80 9.65 10.88 8.99 8.30 118 174 152 175

100 8.46 11.71 7.86 7.85 102 179 139 175
120 8.25 7.32 6.77 6.72 102 115 122 140
140 7.05 8.12 6.49 6.24 91 134 112 136
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Figure 3. Temperature-dependent tensile properties of the vulcanizates. (a) tensile stress–strain plot
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can be viewed in the online issue).

The loss factor (tan δ) and the dynamic modulus (E’Mpa) of A-1 and A-4 in dynamic
mechanical analysis temperature scanning were presented in Table 5. An analysis of
the results indicates that the dynamic modulus tends to decrease with increasing test
temperature. From Figure 4, the reduction in dynamic modulus can be seen to vary greatly
at the two key temperature points of 100 ◦C and 160 ◦C, while only small variations were
observed between those temperatures. In contrast, the loss factor was found to decrease
with increasing temperature, and the rate of change was relatively consistent. As expected,
the dynamic modulus and loss factor of formulation A-1, A-2, A-3, and A-4 decreased in
turn, due to the inclusion N550 carbon black offering low heat generation and a lower filler
content in formulation A-2, A-3, A-4.
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Due to the varying loads across different tire applications, the performance of the
four compounds cannot be accurately evaluated in practical conditions. The tests were
performed based on ideal conditions of the same deformation and frequency. This was
understandable as the tire was tested with the same loading. In other words, the tire
compound was subjected to the same force.

To evaluate the performance of the compound under real-world conditions, the loss
factor of the vulcanizates must take the actual deformation of the compound into con-
sideration. Thus, energy dissipation 4E was used to evaluate a strain period, and was
expressed in Equation (5).

∆E =πσ0 γ0sin δ ≈ πσ0γ0 tan δ (5)

where σ0 was the maximum amplitude of stress and γ0 was the maximum amplitude
of strain.

Subsequently, four compounds of insert rubber with different modulus and heat-
generation were designed to investigate the roles and impacts of deformation and loss
factor of a tire which was shown in Figure 4.

Table 6 was the summarize of dynamic modulus (E’) and loss factor (tan δ) of the
vulcanizates at various temperatures.

Table 6. Dynamic modulus (E’) and loss factor (tan δ) of the vulcanizates at various temperatures.

Screening
Temperature (◦C)

A-1 A-2 A-3 A-4 A-1 A-2 A-3 A-4
Loss Factor (tan δ) E’(MPa)

40 0.102 0.090 0.033 0.026 27.0 16.2 11.1 8.7
60 0.103 0.078 0.029 0.025 23.4 14.8 11.0 8.7
80 0.093 0.064 0.027 0.016 20.3 13.8 11.0 8.8

100 0.080 0.053 0.019 0.015 18.5 13.2 11.1 8.8
120 0.067 0.051 0.020 0.016 17.5 12.9 11.2 9.0
140 0.058 0.043 0.020 0.014 17.1 12.9 11.5 9.3

Strictly speaking, the fatigue failure of rubber is a kind of mechanical process. The stress
relaxation process produced in the material was often too late to complete in the defor-
mation cycle under the repeated cyclic deformation of rubber. As a result, the internal
generated stress could not be dispersed in time, and it might be concentrated in some
defects (such as cracks, weak bonds, etc.), which caused fracture failure.

Figure 5 shows the simulation results of six tire models (size = 245/45/R18 96W)
based on Table 1. The results of stress distribution of tire sidewall show that the stress
was mainly concentrated in the insert compound in both the B-1 and B-2 structures which
was shown in Figure 2. Surprisingly, using the A-1 compounds with the B-1 structure
resulted in a more uniform stress distribution of the tire sidewall. This was because in
the flexure test of the tire side adhesive, the stress was mainly concentrated on the insert
support with high hardness, as shown in model 5. At the same time, compared with B-2,
B-1 structure had a longer supporting compound, a larger amount of padding between
the tread and the bead apex, and a better rigid transition with the tire sidewall, that was
why the deformation of model 5 and model 6 on tire sidewall was greater than that of
model 1, model 2, and model 3. Model 3 and model 4 used similar insert compound
with soft hardness under the structure of B-2, the rigidity of the tire sidewall was weak,
and the stress was concentrated on the weakest point of rigidity during flexion, which can
be clearly seen from Figure 5a,b. The results of Table 6 also indicated that the actual
stresses of the different compounds at the same part of the tire were different during the
actual movement of the tire. This demonstrates why the loss factor cannot be directly used
under the same deformation in the dynamic mechanical analysis test to evaluate the tire’s
thermal performance.
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Strain energy density of bead apex and insert rubber of tire were also shown in
Figure 5c. Compared to model 5 and model 6, the strain energy density distribution of
other models were more concentrated, suggesting a greater likelihood for the formation of
a failure point.

Table 7 shows the summary of the analytical and quantitative results of the groups
of analysis models. It is generally considered that the maximum stress and strain energy
density at the bead apex rubber and support compound are the most important indexes
related to the zero pressure durability of tire. The maximum stress and strain energy
density of model 5 and model 6 under structure B-1 were smaller than those of other
schemes, which indicates that the influence of structural rigidity is greater than that of
the hardness of insert rubber. At the same time, under the same structure, the higher the
hardness of the insert rubber, the smaller the stress and strain energy density, which can be
found from the comparison of the previous four models.

Table 7. Summary of the analytical and quantitative results of the groups of analysis models.

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Maximum stress distribution of
tire section/MPa 4.405 5.777 3.893 3.617 4.065 4.063

Maximum stress of bead apex and
insert rubber of tire section/MPa 1.924 3.179 2.822 3.322 1.662 1.744

Maximum strain energy density of
bead apex and insert rubber of tire

section J/m3
3.420 4.944 4.965 5.577 3.000 3.060

Figure 6 shows the shear stress distribution of the six models. There were no obvious
benefits of reducing the length of the insert compound with respect to the direction of the
shear force on each part of the tire sidewall, particularly between the insert rubber and bead
apex. Delamination was easily induced by applying different directions of shear stress,
causing damage points and premature damage. Compared with the first four models,
model 5 and model 6 use B-1 structure, which had a longer contact surface with bead
apex rubber, which effectively avoids the shear stress of relative slip between the two
interfaces due to uneven stress. In model 3 and model 4, due to the use of insert rubber
with lower hardness, the shear stress between the various parts of sidewall was small,
mainly concentrated in the inner side of the tire at the center of sidewall.
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Based on the six simulation models, six actual tires under the structure of Table 2 were
produced for testing, named as T-1, T-2, T-3, T-4, T-5, and T-6. Tables 8 and 9 show the basic
characteristics of the tires under a conventional static load and a zero-pressure static load.
The static radius was most heavily influenced by the subsidence and subsidence rate under
static load, and the structure of the insert rubber which provide structural rigidity to the
tire. Further, it can be seen that under the same structure, the static load radius and sinkage
of the tire were directly proportional to the rigidity of the insert rubber. Especially under
the condition of zero pressure load, the stiffness of the insert rubber directly affects the
static load radius and sinkage representing the tire deformation. Therefore, in comparison
with T-5 and T-6, the greater deformation of T-1, T-2, T-3, and T-4 may lead to increases in
heat generation.

Table 8. Conventional static load test.

List T-1 T-2 T-3 T-4 T-5 T-6

Static radius under load/mm 319 316 315 316 318 317
Sinkage/mm 18.9 20.9 20.6 20.9 18.6 20.0
Sinkage/% 17.4 19.3 19.2 19.4 17.2 18.5

Imprint long axis/mm 200 200 201 203 199 200
Imprint minor axis/mm 133 135 151 145 141 144

Table 9. Zero pressure static load test.

List T-1 T-2 T-3 T-4 T-5 T-6

Static radius under load/mm 311 309 307 307 314 310
Sinkage/mm 23.2 25.0 27 27 21.5 24.4
Sinkage/% 21.9 23.7 25.6 25.6 20.0 23.0

Imprint long axis/mm 222 231 250 247 219 232
Imprint minor axis/mm 215 217 218 219 215 216

The curves of temperature rise of the tire sidewall and bead during the zero-pressure
durability test were shown in Figure 7. The sidewall and bead temperatures of T-1, T-2, T-3,
and T-4 increase to a higher value over time, compared to T-5 and T-6. This was mainly
due to the weaker structural rigidity of B-2 and the larger sinkage of the tire, in addition to
higher energy loss according to the energy loss formula. Moreover, the results in Figure 7
reveal that although the loss factor of A-2 was lower than that of A-1, the difference in heat
generation at the sidewalls of T-1 and T-2 was minimal, mainly due to the larger sinkage
and the greater deformation of T-2, which led to higher energy loss. The comparison data
of T-5 and T-6 with stronger tire structure can also prove this conclusion. The results further
prove that the loss factor and deformation should be considered comprehensively in the
energy loss of the rubber compound.
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Table 10 summarizes the zero-pressure durability test results of the tires. It was evident
that under the same rubber conditions, the results of the zero-pressure durability test were
directly related to the rate of temperature rise of the tire sidewall. As the temperature
increases, the resistance to damage of the compound decreases, which was clearly proven
by the test results. At the same time, the stress distribution of tire sidewall was also found
to directly affect results of the zero-pressure durability test. Although the difference of
heat generated at the sidewall between T-1 and T-2 was minimal, an analysis of the strain
energy density of bead apex and insert rubber of tire shown in Figure 5 suggested that the
stress concentration in T-2 may lead to early tire failure. The test results of T-5 and T-6 can
also prove this point. In addition, the zero pressure durability of T-5 and T-6 was better
than that of T-1 and T-2 under the strong structural rigidity of B-1, which can also prove
the effect of strain energy density. Compared with A-1 and A-2, the rigidity of A-3 and A-4
was lower. Although it can be seen from Table 6 that the loss factor of A-3 and A-4 was
lower, the sidewall shape of the tire changed greatly, and the temperature rise in Figure 7
was faster, which led to the faster damage of the insert rubber.

Table 10. Durability test results at zero pressure.

Tyre Compound Structure Durability at Zero Pressure

T-1 A-1 B-2 57 min
T-2 A-2 B-2 54 min
T-3 A-3 B-2 44 min
T-4 A-4 B-2 39 min
T-5 A-1 B-1 3 h
T-6 A-2 B-1 1 h 50 min

4. Conclusions

According to the study, a successful attempt was made to employ simulation methods
to study the key factors to be considered in the development of run-flat tires. The effects
of heat and stress concentration on the zero-pressure durability of tires were studied by
designing different components with different stiffness, heat generation and shape to
change the stiffness of tire sidewall. The results revealed that the tensile strength and
modulus of the insert compound decreased with the increase of temperature. The heat
generation of the insert rubber was not only dependent on the loss factor, but also related
to the deformation. By using the insert rubber with higher hardness or improving the
structural stiffness of the tire, the deformation of the support rubber could be reduced and
the heat storage of the support rubber could be reduced, which can significantly improve
the sinking rate of the tire under zero pressure. In addition, the maximum strain energy
density at the top of the bead and the maximum strain energy density of the cross-section
insert rubber were significantly related to the durability of the zero pressure run flat tire
and the initial failure point of the insert rubber. In conclusion, the balanced design of
formula and structure was the key to tire development. At the same time, the potential of
numerical simulation technology in tire development is verified. The application of these
technologies could shorten the tire development process and improved the success rate of
tire development.
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