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Abstract: A silicon dioxide/polytetrafluoroethylene/polyethyleneimine/polyphenylene sulfide
(SiO2/PTFE/PEI/PPS) composite filter medium with three-dimensional network structures was
fabricated by using PPS nonwoven as the substrate which was widely employed as a cleanable filter
medium. The PTFE/PEI bilayers were firstly coated on the surfaces of the PPS fibers through the
layer-by-layer self-assembly technique ten times, followed by the deposition of SiO2 nanoparticles,
yielding the SiO2/(PTFE/PEI)10/PPS composite material. The contents of the PTFE component
were easily controlled by adjusting the number of self-assembled PTFE/PEI bilayers. As compared
with the pure PPS nonwoven, the obtained SiO2/(PTFE/PEI)10/PPS composite material exhibits
better mechanical properties and enhanced wear, oxidation and heat resistance. When employed as a
filter material, the SiO2/(PTFE/PEI)10/PPS composite filter medium exhibited excellent filtration
performance for fine particulate. The PM2.5 (particulate matter less than 2.5 µm) filtration efficiency
reached up to 99.55%. The superior filtration efficiency possessed by the SiO2/(PTFE/PEI)10/PPS
composite filter medium was due to the uniformly modified PTFE layers, which played a dual role in
fine particulate filtration. On the one hand, the PTFE layers not only increase the specific surface area
and pore volume of the composite filter material but also narrow the spaces between the fibers, which
were conducive to forming the dust cake quickly, resulting in intercepting the fine particles more
efficiently than the pure PPS filter medium. On the other hand, the PTFE layers have low surface
energy, which is in favor of the detachment of dust cake during pulse-jet cleaning, showing superior
reusability. Thanks to the three-dimensional network structures of the SiO2/(PTFE/PEI)10/PPS
composite filter medium, the pressure drop during filtration was low.

Keywords: polytetrafluoroethylene; polyphenylene sulfide; filter medium; PM2.5; layer-by-layer
self-assembly

1. Introduction

With the rapid development of the social economy, the industrialization processes
have not only brought a lot of materials that are of value to human beings, but also brought
many negative effects to the natural environment. Air pollution, as a major environmental
problem, has been arousing widespread concern. In particular, one of the primary air
pollutants is fine particulate matter (PM2.5), which can enter the respiratory system, causing
serious health problems and even death [1–3]. Air filters have been widely considered
as an effective way to prevent PM2.5 emissions in the past few years, especially for the
recyclable or cleanable air filter media due to their low cost and low energy consumption.
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Recently, various materials and technologies have been made to develop different kinds
of new air filter materials, such as electrospinning [4–6]; electrostatic precipitation [7–9];
corona charging [10,11]; metal–organic framework (MOF)-based filter media [12–14]; self-
assembled nanofibers based recyclable air filters [15]; and spun-bond [16–18], needle-
punching [19–21] and melt-blown [22–24] nonwovens. Among these, the electrospinning
fibers with small diameter and dense packing exhibit excellent filtration efficiency for
fine particulate matter, but the undesirable high pressure-drop and low dust holding
capacity restrict their application [25]. Electrostatic precipitators not only suffer from
high energy consumption but also release some toxic gases such as ozone which are
harmful to our health. For corona charging filter materials, the long-term maintenance of
the electret charges under high temperature and wet conditions is still challenging [26].
The nonwoven materials with three-dimensional structures are widely used as cleanable
filter media for particulate matter filtration due to their good mechanical properties, high
surface-to-volume ratio and dust holding capacity, low air pressure-drop and high filtration
efficiency [27].

Polytetrafluoroethylene (PTFE), para-aramid (PA), polyester fibers (PET), polypheny-
lene sulfide (PPS) and polyimide (P84) [28–32] are commonly used nonwoven materials
for particulate matter filtration. Among them, the PPS nonwoven has been widely applied
to waste gas filtration, especially in some industrial waste gases with high humidity due to
its excellent properties such as high temperature resistance, chemical corrosion resistance
and hydrolysis resistance [33]. However, there are still some disadvantages of the PPS
nonwoven, such as poor wear resistance, weak oxidation resistance and low specific surface
area, which lead to serious limitations in practical engineering applications [34,35]. As a
filter material, the PPS possesses a desirable low pressure-drop; however, the dust filtration
efficiency, especially for fine particulate, is relatively low. With the introduction of ultralow
emission environmental protection policy, the emission limits for fine particulate have
become stricter, which has contributed to the urgent need for high filtration efficiency, long
service life and low energy cost filter media. Therefore, considerable efforts have been
made by researchers in order to overcome the above-mentioned drawbacks of the PPS filter
media [36–38].

PTFE is well known for its excellent thermal stability, oxidation resistance, low sur-
face energy, chemical resistance and good electrical insulation [39–41], and it has been
widely used in high-temperature filters [28,42]. The PPS nonwoven modified with PTFE
component is a simple and effective way to remedy the lack of low filtration efficiency
and weak oxidation resistance of the PPS filter medium. For example, hydroentangled
PTFE/PPS fabric filters were prepared which showed superior filtration properties com-
pared to a single PPS filter medium [43]. There are some techniques reported to prepare the
PTFE/PPS composites, such as dip-coating [44], dip-covering [45] and spray-coating [46]
methods. However, the air permeability of the filter medium prepared by the dip-covering
method is quite low, which means that high filtration efficiency is always accompanied
by high filtration resistance [47]. The PTFE/PPS composite filter medium prepared by
the dip-coating method always generates the aggregation of PTFE particles, which is not
beneficial for dust holding capacity. Moreover, the negatively charged PTFE is not easily
immobilized on the surface of a PPS fiber that is negatively charged as well, leading to
the desquamation of the PTFE layer in the PTFE/PPS composite filter medium after a
period of application. For an excellent functionalization of the filter material, there are two
exceptionally critical concepts, namely the hierarchical structures and the roughness at
nanoscale on the surfaces of the substrates [48,49]. The layer-by-layer (LbL) self-assembly
technique is considered an effective and environmentally friendly technique for the fab-
rication of composite materials with designed structures and functionalities [50], and it
provides a pathway for the preparation of the above-mentioned PTFE/PPS composite filter
medium. Moreover, the repeated pulse-jet cleaning for the detachment of the dust will
lead to rapid abrasion of the filter medium and decrease its service life. It is known that
the introduction of hard nanoparticles, such as silicon dioxide, could improve the wear
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performance of polymers. For instance, a PPS-PTFE/SiO2 composite was prepared by a
simple spray process and exhibited excellent wear and corrosion resistance properties [51].

In the present study, a SiO2/(PTFE/PEI)n/PPS composite material was prepared
through the layer-by-layer (LbL) self-assembly approach, where the positively charged
polyethyleneimine (PEI) layer was firstly deposited on the surface of the PPS fiber, and then
the negatively charged PTFE layer was absorbed on the surface of the PEI layer through
electrostatic interaction, which was followed by the deposition of SiO2 nanoparticles. The
SiO2/(PTFE/PEI)n/PPS composite filter medium obtained perfectly maintained the hi-
erarchical network structure of the initial PPS nonwoven, and the contents of the PTFE
component were easily controlled by adjusting the number of the self-assembled PTFE/PEI
bilayers. The obtained SiO2/(PTFE/PEI)10/PPS composite material exhibits better mechan-
ical properties and enhanced wear, oxidation and heat resistance in comparison with the
pure PPS nonwoven. When employed as a filter material, the SiO2/(PTFE/PEI)10/PPS
composite filter medium exhibited excellent filtration performance for fine particulate
owing to its three-dimensional structures with high specific surface area and pore volume.

2. Materials and Methods
2.1. Materials

Silicon dioxide (SiO2) nanoparticles and polytetrafluoroethylene (PTFE, 60 wt.% dis-
persion) were purchased from Aladdin (Shanghai, China). Polyethyleneimine (PEI, typical
MW = 70,000, 50 wt.% aqueous solution) was bought from Shanghai Macklin Biochemical
Co. Ltd. (Shanghai, China). Triethanolamine, sodium dodecylbenzene sulfonate, silane
coupling agent (KH-550) and ethanol were purchased from Sinopharm Chemical Reagent
Co. Ltd. (Shanghai, China). Polyphenylene sulfide (PPS, grammage: 550 g m−2) and
PTFE membrane-coated PPS filter medium (grammage: 550 g m−2) were purchased from
Liaoning Xinhongyuan Environmental Protection Material Co. Ltd. (Yingkou, Liaoning,
China). All the chemicals were guaranteed reagents and used without further purification.
The water used was purified by a Milli-Q Advantage A10 system (Millipore, Bedford, MA,
USA) with a resistivity higher than 18.2 MΩ cm−1.

2.2. Preparation of the SiO2 Nanoparticle Dispersion

Firstly, 5.0 g SiO2 nanoparticles were mixed with 50.0 mL water and ultrasonically
dispersed for 30 min. Then, 2.0 mL KH-550 was added into the SiO2 nanoparticle dis-
persion, followed by stirring for 30 min and ultrasonic dispersion for 30 min. At last,
1.0 mL triethanolamine and 1.0 mL sodium dodecylbenzene sulfonate were added into the
dispersion, followed by stirring for 30 min and dispersing for 30 min, resulting in the SiO2
nanoparticle dispersion.

2.3. Preparation of the SiO2/(PTFE/PEI)n/PPS Composite Filter Medium

Scheme 1 presents the fabrication processes of the nano-SiO2/(PTFE/PEI)n/PPS
composite material. A piece of PPS nonwoven placed in the suction filtration was washed
by ethanol firstly and dried with air flow for 15 min (Scheme 1a). Then, 30.0 mL of PEI
aqueous solution (5.0 g L−1) was added to the filter funnel, and half of it was slowly
suction-filtered off, while the rest was kept for 5 min so that the PEI was adequately
adsorbed on the PPS fibers. Subsequently, 30.0 mL of water was added and filtered to
remove the unabsorbed PEI, resulting in the PEI/PPS composite (Scheme 1b). Then,
30.0 mL of PTFE dispersion (100 g L−1) was added and kept for another 5 min to make
it thoroughly absorbed on the surface of the PEI layer through electrostatic interaction.
Afterward, 30.0 mL of water was filtered to wash away the unassembled reagent, followed
by drying in a flow of air for 15 min, yielding the PTFE/PEI/PPS composite (Scheme 1c).
The deposition of the PTFE/PEI double layers was repeated 5 and 10 times, and the
corresponding products produced were named (PTFE/PEI)5/PPS and (PTFE/PEI)10/PPS.
For the synthesis of the SiO2/(PTFE/PEI)n/PPS composite (Scheme 1d), SiO2 nanoparticles
were deposited onto the surfaces of the PTFE layers by adding 30.0 mL of the pre-prepared
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SiO2 nanoparticle dispersion to the filter funnel and keeping for 15 min. At last, the
as-deposited composites were baked in the dryer (Shenzhen Huaboxing Technology Co.
Ltd., Shenzhen, China) at 180 ◦C for 5 min, resulting in SiO2/(PTFE/PEI)5/PPS and
SiO2/(PTFE/PEI)10/PPS composite filter media, respectively.
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Scheme 1. Schematic illustration of the synthetic processes for the SiO2/(PTFE/PEI)n/PPS composite. (a) The PPS
nonwoven substrate. (b) The PEI/PPS composite was obtained by depositing the PEI layer onto the surface of the PPS fiber.
(c) The PTFE/PEI/PPS composite was prepared by depositing the PTFE layer onto the surface of the PEI/PPS composite
fiber through electrostatic interaction. (d) The SiO2/(PTFE/PEI)n/PPS composite was prepared by repeating the deposition
of the PTFE/PEI double-layer several times, followed by the deposition of the SiO2 nanoparticles.

2.4. Characterizations

The mechanical property assessment was carried out on an INSTRON3365 instrument
(INSTRON, Boston, MA, USA) with a speed of 100 mm min−1. The air permeability
test was performed by using a YG461G instrument (NBFY, Ningbo, Zhejiang, China)
operating at the pressure drop of 200 Pa, the area of 20.0 cm2 and the nozzle diameter of
4 mm. The wear resistance analysis was done according to ISO 12947-2:1998 (standard of
International Organization for Standardization) by using the YG(B)401E Martindale pilling
tester (DARONG, Wenzhou, Zhejiang, China) working with a load of 700 g. The number
of rubs at which specimen breakdown occurs was recorded to evaluate the wear resistance.
The field emission scanning electron microscope (FE-SEM) micrographs and EDX data were
acquired on a Hitachi SU-8010 instrument (acceleration voltage: 5.0 kV, HITACHI, Tokyo,
Japan) or 20.0 kV with an IXRF energy-dispersive spectrometer. The specimens for FE-SEM
observation were cut into 1.50 × 1.50 cm2 rectangular sheets and sputtered with platinum
to reduce charging. The energy-dispersive X-ray spectroscopy (EDS) mapping images were
obtained on an OXFORD X-MaxN50 instrument (acceleration voltage: 15.0 kV, OXFORD,
Oxford, UK). The Fourier transform infrared (FT-IR) spectra were obtained on a Nicolet
iS20 apparatus (Thermo Scientific, Waltham, MA, USA) in the attenuated total reflection
(ATR) mode. The differential scanning calorimeter (DSC) analyses were performed on
a Mettler Toledo STARe System DSC3 instrument (Mettler Toledo, Zurich, Switzerland)
in the range of 40–450 ◦C with a heating rate of 10 ◦C min−1 under N2 atmosphere. The
thermogravimetric (TG) analyses were conducted on a Mettler Toledo STARe System TGA2
(Mettler Toledo, Zurich, Switzerland) in the range of 40–1100 ◦C with a heating rate of
10 ◦C min−1 under N2 atmosphere. The nitrogen adsorption−desorption isotherms were
measured on an Autosorb iQ instrument (bath temperature: 77 ◦C, Quantachrome, New
York, NY, USA).
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2.5. Dynamic Filtration Properties

The dynamic filtration properties of the filter media were evaluated on a FEMA
1 instrument (Fil T Eq, Karlsruhe, Germany), which was made according to VDI 3926:2004
(standard of Germany). Scheme 2 shows the schematic diagram of the test apparatus. At
the beginning of the filtration process, the dust particles generated from the dust feeder
pass through the vertical dirty-gas duct at a constant velocity of 2.0 m min−1, followed by
being captured on the surface of the filter test sample and forming the dust cake, which
could intercept the fine particulate matter efficiently. With the formation of the dust cake,
the pressure drop gradually increases. When the predetermined maximum pressure-drop
(1000 Pa) is reached, a cleaning pulse is activated to detach the dust cake towards the
dirty-gas (upstream) side in order to regenerate the filter material. The test dust in the
study was Pural NF, which contains 35% PM2.5, and the raw dust concentration was
about 5.1 g m−3, which was monitored in real time through the photometric concentration
monitor. The pulse-jet cleaning was performed at a compressed air pressure of 0.5 MPa
and an electrical valve opening time of 60 ms. The whole test procedure was divided into
four phases: conditioning, aging, stabilizing and measuring. In the conditioning phase,
30 loading cycles with pressure-drop controlled pulse-jet cleaning were performed with
a cleaning set point of 1000 Pa. The first test phase was followed by the aging phase.
The filter was exposed to 10,000 cleaning pulses at intervals of 5 s. Between the aging
phase and the measuring phase, the stabilization phase (recovery of 10 loading cycles
with pressure-drop controlled cleaning) was executed in order to stabilize the operating
conditions and the test filter sample behavior. In the last measuring phase, several loading
cycles with pressure-drop controlled pulse-jet cleaning were performed with a cleaning
set point of 1000 Pa for 5 h. The PM2.5 was separated from clean gas through the PM2.5
cyclone separator. The flow rate of PM2.5 in the work was 0.85 m3 h−1. During the last
phase of the test, a gravimetric evaluation of PM2.5 was performed for the calculation of
the emission concentration of the PM2.5. Going through the entire test phase, the residual
pressure-drop, cleaning cycle time and residual dust mass were analyzed to evaluate the
relevant long-term operational properties (filtration and cleaning behavior) and emission
of filter media.
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3. Results and Discussion
3.1. Physical Properties of the Filter Media

The mechanical properties, air permeability and wear resistance are the main physical
properties of the filter medium and directly influence its service life and filtration perfor-
mance. As shown in Table 1, the meridional and latitudinal strength of the SiO2/(PTFE/
PEI)10/PPS composite filter medium are 1425.6 N and 1753.4 N, respectively, and are higher
than those of the PPS filter medium and (PTFE/PEI)10/PPS composite medium. The wear
resistance of the SiO2/(PTFE/PEI)10/PPS filter medium is 125 times, which increased by
66.7% as compared with that of the PPS filter medium. The improvement in the mechanical
properties and wear resistance of the SiO2/(PTFE/PEI)10/PPS composite filter medium in-
dicates its service life will be prolonged. However, as compared with the PPS filter medium,
the air permeability of the SiO2/(PTFE/PEI)10/PPS composite filter medium decreased
due to the deposition of SiO2/PTFE/PEI multilayers on the surfaces of the PPS fibers,
which led to a narrower space between the fibers. Thanks to the three-dimensional network
structures, the air permeability of the SiO2/(PTFE/PEI)10/PPS composite filter medium
was much better than that of the commercial PTFE membrane-coated PPS filter material.

Table 1. The physical properties of the filter media.

Filter Media Meridional Strength
(N)

Latitudinal Strength
(N)

Air Permeability
(L dm−2 min−1)

Wear Resistance
(Times)

PPS 1318.9 1681.5 289.6 75
(PTFE/PEI)10PPS 1413.4 1704.7 264.2 101

SiO2/(PTFE/PEI)10/PPS 1425.6 1753.4 259.7 125
PTFE membrane-coated PPS 1434.7 1765.3 179.7 99

3.2. Structural Characterizations of the Filter Media

As illustrated in Scheme 1, the PTFE/PEI double layers were deposited on the surfaces
of the PPS fibers through the LbL self-assembly technique, and then the SiO2 nanoparticles
were immobilized thereon to give the SiO2/(PTFE/PEI)n/PPS composite filter medium.
The FE-SEM images of the PPS filter medium are shown in Figure 1. Figure 1a exhibits
the low-magnification FE-SEM image of the sample, showing the three-dimensional net-
work structure which consisted of microfibers with a diameter of ca. 15 µm. The high-
magnification FE-SEM image shown in Figure 1b exhibits that the surface of the PPS filter
medium was smooth.
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magnification FE-SEM images of the PPS filter medium.

Figure 2 shows the morphologies of the SiO2/(PTFE/PEI)n/PPS composite filter
medium with varied numbers of the PTFE/PEI bilayers produced by the self-assembly
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processes. The low-magnification FE-SEM images of the SiO2/(PTFE/PEI)5/PPS and
SiO2/(PTFE/PEI)10/PPS composite filter media shown in Figure 2a,c indicate that the
original three-dimensional network structures of the PPS filter medium were faithfully
maintained. The high-magnification FE-SEM images of the SiO2/(PTFE/PEI)5/PPS and
SiO2/(PTFE/PEI)10/PPS composite filter media are shown in Figure 2b,d. It was found that
a part of the surface of the PPS filter fiber was naked when the number of the PTFE/PEI
bilayers was five. By increasing the number of the PTFE/PEI bilayers to 10, the PPS mi-
crofibers were found to be almost completely coated with the SiO2/PTFE/PEI multilayers.
It is noted that the SiO2/PTFE/PEI coating loaded on the surface of the PPS microfiber did
not agglomerate, and there was no nanoparticle agglomerate between the spaces of the
microfibers. The EDX analyses shown in Figure S1 (in Supplementary Materials) demon-
strate that the composite filter media were composed of C, O, F, S and Si elements, and the
amount of F element increased with the increase in the number of the PTFE/PEI bilayers;
that is, the amount of PTFE component in the SiO2/(PTFE/PEI)n/PPS composite filter
medium could be easily controlled by adjusting the number of the PTFE/PEI bilayers.
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Figure 2. FE-SEM images of the SiO2/(PTFE/PEI)n/PPS composite filter media with varied magnifications: (a,b)
SiO2/(PTFE/PEI)5/PPS; (c,d) SiO2/(PTFE/PEI)10/PPS.

The elemental distributions of the SiO2/(PTFE/PEI)10/PPS composite filter medium
shown in the EDS mapping micrographs (Figure 3a–f) demonstrate the presence of C, O,
F, S and Si elements in the composite filter medium. They reveal that the S element was
mainly centered in the core region of the microfibers, while the F and Si elements were
mostly distributed in the outer edges.
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Figure 3. The EDS elemental mapping of the SiO2/(PTFE/PEI)10/PPS composite filter medium: (a) FE-SEM image before
mapping; (b) S, (c) C, (d) F, (e) O and (f) Si elements.

Figure 4a exhibits the FT-IR spectra of the pure PPS filter medium before and after
oxidation treatment for 400 h. The bands located at 1570 and 1469 cm−1 are attributed to
the nonsymmetric phenyl ring stretching modes (C6H6–S). The bands at 1383, 1089 and
1007 cm−1 are assigned to the C–S stretching and bending vibration. The strong absorption
band centered at 807 cm−1 is ascribed to the bending vibration of para-disubstituted aro-
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matic rings [52]. Moreover, the peaks at 1178 and 1070 cm−1 are assigned to the stretching
vibration of –SO2– and –SO–, respectively. The existence of –SO– and –SO2– is because
of the low bond energy of the C–S bond, which was easily oxidized during synthesis,
drying and storage [53]. After the oxidation treatment for 400 h, a new band located at
1230 cm−1 appeared, which is attributed to the sulfite linkage (–O–SO–O–), indicating the
oxidation of the PPS filter medium [54]. The spectra of the (PTFE/PEI)10/PPS composite
filter medium before and after oxidation treatment for 400 h are shown in Figure 4b. The
bands located at 1571, 1470, 1384, 1090, 1008 and 808 cm−1 are attributed to the charac-
teristic absorption of PPS, which is consistent with the pure PPS filter medium shown in
Figure 4a. After the modification of PTFE, new bands located at 1207, 1152 and 639 cm−1

appeared, which are attributed to the –CF2– stretching and rocking vibrations [55,56].
This demonstrated that the PTFE was successfully self-assembled on the surfaces of the
PPS fibers. It is worth noting that there is no apparent change of the absorption peak of
the SiO2/(PTFE/PEI)10/PPS composite filter medium after the oxidation treatment for
400 h, indicating that the deposition of PTFE/PEI bilayers inhibits the oxidation of the PPS
filter medium.
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Figure 4. The FT-IR spectra of (a) PPS filter medium and (b) (PTFE/PEI)10/PPS composite filter medium before and after
oxidation treatment for 400 h.

Figure 5a exhibits the DSC curves of the PPS filter medium and SiO2/(PTFE/PEI)10/
PPS composite filter medium upon heating treatment at 450 ◦C. The endothermic peak lo-
cated at 278.9 ◦C is assigned to the melting temperature of the PPS filter medium [33]. For
the SiO2/(PTFE/PEI)10/PPS composite filter medium, two endothermic peaks located
at 281.1 ◦C and 335.1 ◦C appeared, which are corresponding to the melting temperatures
of PPS and PTFE, respectively. It is noted that the PPS melting temperature of the
SiO2/(PTFE/PEI)10/PPS composite filter medium is higher than that of the pure PPS fil-
ter medium due to the modification of SiO2/PTFE/PEI multilayers on the surfaces of the
PPS fibers. In addition, the PTFE melting temperature of the SiO2/(PTFE/PEI)10/PPS
composite filter medium is also higher than its general melting point (327 ◦C) [57],
indicating the PPS and PTFE had a synergy for heat resistance. The TG curves of the
PPS filter medium and SiO2/(PTFE/PEI)10/PPS composite filter medium shown in
Figure 5b indicate two weight loss stages. It is observed that both filter media have good
thermal stabilities, and the weight losses were less than 5% at 500 ◦C. The PPS filter
medium begins decomposition at 508.1 ◦C. For the SiO2/(PTFE/PEI)10/PPS composite
filter medium, the initial decomposition temperature is 526.9 ◦C, which is much higher



Materials 2021, 14, 7853 10 of 17

than that of the PPS filter medium, demonstrating the improved heat resistance of the
SiO2/(PTFE/PEI)10/PPS composite filter medium.
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Figure 5. (a) DSC and (b) TG curves of the PPS filter medium and SiO2/(PTFE/PEI)10/PPS composite filter medium.

The nitrogen adsorption–desorption isotherm of the SiO2/(PTFE/PEI)10/PPS com-
posite filter medium is shown in Figure 6a, which is corresponding to the type IV curves
with typical hysteresis loops based on the International Union of Pure and Applied Chem-
istry (IUPAC) classification. It was observed that the nitrogen adsorption capacity of the
SiO2/(PTFE/PEI)10/PPS composite filter medium was much higher than that of the pure
PPS filter medium, indicating that there are more pores in the SiO2/(PTFE/PEI)10/PPS
composite filter medium. When P/P0 > 0.9, the amount of nitrogen adsorption of the
SiO2/(PTFE/PEI)10/PPS composite filter medium increased sharply because of the capil-
lary condensation. The existence of the H3 hysteresis loop in the SiO2/(PTFE/PEI)10/PPS
composite filter medium indicates that there were a large number of slit-like and open
pores [26]. The Brunauer−Emmett−Teller (BET) surface area of the SiO2/(PTFE/PEI)10/PPS
composite filter medium was 24.419 m2 g−1 (Table S1), which was greatly improved as
compared with that of the pure PPS filter medium due to the rougher surface and the large
specific surface area of the SiO2/(PTFE/PEI) multilayers deposited on the surfaces of the
PPS fibers. Figure 6b exhibits that the SiO2/(PTFE/PEI)10/PPS composite filter medium
has a hierarchical pore structure. The Barrett–Joyner–Halenda (BJH) adsorption summary
pore volumes of the pure PPS filter medium and SiO2/(PTFE/PEI)10/PPS composite filter
medium were 0.004 and 0.034 cm3 g−1, respectively, indicating an enhancement of almost
9 times compared to the SiO2/(PTFE/PEI)10/PPS composite filter medium.
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Figure 6. (a) Nitrogen adsorption−desorption isotherms and (b) pore size distributions of the PPS filter medium and
SiO2/(PTFE/PEI)10/PPS composite filter medium.

3.3. Dynamic Filtration Characterization of the SiO2/(PTFE/PEI)10/PPS Composite Filter Medium

The dynamic filtration characterization of the SiO2/(PTFE/PEI)10/PPS composite
filter medium was investigated in a filter test apparatus mentioned in Section 2.5 by using
the Pural NF as the test dust. At the beginning of the filtration process, the dust particles are
captured on the surface of the filter and form the dust cake which prevents the dust emis-
sion [58]. Figure 7 shows the superimposed representation of the pressure-drop curves ver-
sus time of selected loading cycles of the PPS filter medium and SiO2/(PTFE/PEI)10/PPS
composite filter medium. It indicates that the pressure drop of both filter media increases
gradually with time due to the formation of the dust cake. Because of the smooth surface of
the PPS filter medium, the dusts direct penetrate through the filter material more easily than
through the SiO2/(PTFE/PEI)10/PPS composite filter medium during the periods when
the medium surface was not protected by the dust cake, resulting in low pressure-drop.
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In order to regenerate the filter medium, the dust cake was frequently detached
through the reverse-flow pulse-jet cleaning. However, the particles which had penetrated
into the porous medium and the occurrence of patchy cleaning would lead to the existence
of the residual dust layer; as a consequence, a pressure drop happened after cleaning. The
pressure drop recorded across the filter medium shortly after the pulse-jet cleaning is called
residual pressure-drop. It is desirable to have a low and stable residual pressure-drop
during the filtration process. Figure 8a exhibits the development of residual pressure-drop
versus time before and after aging of the PPS filter medium and SiO2/(PTFE/PEI)10/PPS
composite filter medium. The initial residual pressure-drop of the SiO2/(PTFE/PEI)10/PPS
composite filter medium was higher than that of the PPS filter medium due to the depo-
sition of SiO2/PTFE/PEI multilayers, which led to the decrease in air permeability [59].
It was reported that the cleaning efficiency decreased with the increase in the number of
cleaning cycles [60]. The residual pressure-drop of the two filter materials increases with
the cycle in the conditioning phase (prior to aging). Therein, the residual pressure-drop of
the SiO2/(PTFE/PEI)10/PPS composite filter medium was higher than that of the PPS filter
medium. This is because the SiO2/PTFE/PEI multilayers immobilized on the surfaces
of the PPS fibers increase the specific surface area and pore volume, resulting in more
dust being absorbed on the surfaces of the fibers, which led to the increase in the residual
pressure-drop of the SiO2/(PTFE/PEI)10/PPS composite filter medium. It is noted that the
residual pressure-drop of the SiO2/(PTFE/PEI)10/PPS composite filter medium prepared
in this work was much lower than that of the reported PTFE/PPS composite filter medium
due to the three-dimensional network structure inherited from the PPS [43]. After aging,
the residual pressure-drop of the SiO2/(PTFE/PEI)10/PPS composite filter medium rises
much slower as compared with that of the PPS filter medium, and the residual pressure-
drops of both are close to each other. This is because the PTFE layers coated on the surfaces
of the PPS fibers possess low surface energy, which reduces the adhesion between the dust
cake and filter material fiber and makes it easier for the dust to peel off [61].
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Cleaning cycle time refers to the time interval between two reverse-flow pulse-jet
cleanings of the filter material. The cleaning cycle time has an important influence on
the lifetime of the filter material. The short cleaning cycle time means frequent cleaning,
making the filter bag more vulnerable to being damaged. Figure 8b reveals that the cleaning
cycle time of the PPS filter medium decreases rapidly, especially prior to aging. For the
SiO2/(PTFE/PEI)10/PPS composite filter medium, the cleaning cycle time decreases more
slowly. After aging, the cleaning cycle time of the SiO2/(PTFE/PEI)10/PPS composite filter
medium almost remains unchanged and is close to that of the PPS filter medium. This
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result indicates that the modification of PPS fibers with the SiO2/PTFE/PEI multilayers
improves the stability of the modified PPS filter medium.

The filtration performances of different filter media were evaluated after aging. The
PM2.5 emission concentration (CPM2.5) was calculated using the following Equation (1):

CPM2.5 =
m − m0

Q × t
, (1)

where the m0, m, Q and t correspond to the mass of the absolute filter before measuring,
the mass of the absolute filter after measuring, the flow rate of PM2.5 and the measuring
time, respectively. The filtration efficiency of PM2.5 (η) was calculated using the following
Equation (2):

η =
Cdust × 0.35 − CPM2.5

Cdust × 0.35
× 100% (2)

where Cdust corresponds to the raw dust concentration. The results are listed in Table 2 and
reveal that the PPS filter medium and SiO2/(PTFE/PEI)10/PPS composite filter medium
have PM2.5 emission concentrations of 0.096 and 0.008 g m−3 and PM2.5 filtration efficien-
cies of 94.62% and 99.55%, respectively. This suggests that the filtration performance of
the SiO2/(PTFE/PEI)10/PPS composite filter medium is much better than that of the PPS
filter medium. It was reported that the dust cake plays a predominant role in the filtration
effect of fine particles. The dust emission concentrations of the pulse-jet cleaned filter
materials were measured only during the periods following every cleaning pulse due to
the absence of the dust cake, indicating an inconsecutive emission pattern [62]. It has been
demonstrated that the SiO2/PTFE/PEI multilayers self-assembled on the surfaces of the
PPS fibers increase the specific surface area and pore volume of the filter material, which is
beneficial to the capture of the dust particles. Hence, the formation of the dust cake on the
surface of the SiO2/(PTFE/PEI)10/PPS composite filter medium occurs more easily than
that of the PPS filter medium, resulting in intercepting the PM2.5 more efficiently, which
led to lower PM2.5 emission concentration and enhanced filtration efficiency. In addition,
the SiO2/PTFE/PEI multilayers deposited on the surfaces of the PPS fibers reduce the
spaces between the fibers, which is in favor of the entrapment of the fine particulate mat-
ter. Moreover, the SiO2/(PTFE/PEI)10/PPS composite filter medium possesses excellent
reusability owing to the low surface energy of the PTFE layers, which makes the dust cake
easier to clean.

Table 2. Filtration performance of different filter media after aging.

Filter Media
The Mass of the

Absolute Filter before
Measuring (g)

The Mass of the
Absolute Filter after

Measuring (g)

PM2.5 Emission
Concentration

(g m−3)

Filtration
Efficiency (%)

PPS 0.14435 0.55235 0.096 94.62
SiO2/(PTFE/PEI)10/PPS 0.14804 0.18204 0.008 99.55

The results of wear resistance of the PPS filter medium and SiO2/(PTFE/PEI)10/PPS
composite filter medium after measuring are shown in Table S2, revealing that the wear
resistance of SiO2/(PTFE/PEI)10/PPS composite filter medium before and after measuring
was almost unchanged, while that for the PPS filter medium decreases obviously. In addi-
tion, the TG curves of the filter media after measuring shown in Figure S2 exhibit that the
initial decomposition temperatures of the PPS filter medium and SiO2/(PTFE/PEI)10/PPS
composite filter medium are 504.9 and 526.5 ◦C, respectively. The initial decomposi-
tion temperature of the SiO2/(PTFE/PEI)10/PPS composite filter medium after measur-
ing was almost unchanged as compared with that of before measuring, while that for
the PPS filter medium decreases slightly, indicating excellent thermal stability of the
SiO2/(PTFE/PEI)10/PPS composite filter medium. The enhancement of the wear resistance
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and heat resistance of the SiO2/(PTFE/PEI)10/PPS composite filter medium can prolong
the service life of the filter material.

4. Conclusions

In summary, a cleanable SiO2/(PTFE/PEI)n/PPS composite filter medium was pre-
pared using the commercial PPS filter medium as the substrate via a layer-by-layer self-
assembly approach. The SiO2/(PTFE/PEI)n/PPS composite filter medium maintained
the three-dimensional network structures of the original PPS filter medium, and the
SiO2/PTFE/PEI multilayers were uniformly deposited on the surfaces of the PPS fibers.
The contents of the PTFE component can be conveniently regulated by altering the number
of the PTFE/PEI bilayers. The obtained SiO2/(PTFE/PEI)10/PPS composite filter medium
exhibits better mechanical properties and enhanced wear, oxidation and heat resistance as
compared with the pure PPS filter medium. When used as the filter material, the composite
filter medium showed outstanding filtration performance for fine particulate owing to the
PTFE layers being beneficial not only to the formation of the dust cake, but also to the
detachment of the dust cake during pulse-jet cleaning, resulting in high efficiency of fine
particulate filtration and superior reusability. This strategy gives insight into the fabrication
of functional filter materials with high efficiency and low resistance, which can be applied
in the field of ultralow dust emission.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14247853/s1, Figure S1: EDX analyses of (a) SiO2/(PTFE/PEI)5/PPS and (b) SiO2/(PTFE/
PEI)10/PPS composite filter media, Figure S2: TG curves of the PPS filter medium and SiO2/(PTFE/
PEI)10/PPS composite filter medium after measuring, Table S1: BET surface areas and BJH adsorption
summary pore volumes of the PPS filter medium and SiO2/(PTFE/PEI)10/PPS composite filter
medium, Table S2: Wear resistance of the filter media after measuring.
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