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Abstract: Microwave heating of asphalt pavement is a promising technique to reduce the maintenance
and increase the service life of materials through self-healing of cracks. Previous studies have shown
that microwave heating technology at high temperatures could damage the bitumen of asphalt
mixture, which is an unwanted effect of the crack-healing technique. In this study, the effects of
microwave heating and long-term aging on the rheological and chemical properties of recovered
bitumen were quantified using a frequency sweep test and Fourier Transform Infrared Spectrometry
analysis, respectively. The main results indicate that microwave heating has no significant effect on
the aging performance of G* and δ for aged asphalt mixtures. However, for newer bitumens, the
rheological properties G* and δ show minor changes after microwave heating was applied. Overall,
this study confirms that microwave heating is a potential alternative for maintenance of asphalt
pavements, without severely affecting the rheological and chemical properties of bitumen.

Keywords: asphalt pavements; stone mastic asphalt; aged bitumen; self-healing asphalt; microwave
heating technology; rheological and chemical properties

1. Introduction

Asphalt mixture is the most widely used material for pavement road construction be-
cause it provides good mechanical performance, economy, and construction advantages [1].
Despite its good properties as a road material, asphalt mixture deteriorates over time, with
cracking and bitumen aging being the most common forms of damage [2]. Cracking is
mainly caused by repetitive traffic loading and environmental factors that trigger bitumen
aging [3]. The phenomenon of bitumen aging mainly consists of an oxidation process and
polymeric degradation, which modifies the microstructure of bitumen [4]. The irreversible
oxidation process is controlled by thermal reaction between oxygen molecules and the
bitumen components, which alters its chemical features [4,5]. This type of aging occurs
during the production, transportation, and laying of the mixture (short-term aging) at
a very fast rate, and it continues during the service life of the pavement (long-term ag-
ing) [4,5]. During the oxidation process, the functional chemical groups of the bitumen,
such as the carbonyl (C=O) and sulfoxide (S=O) groups, increase the overall polarity of the
bitumen, which causes agglomeration among molecules due to increased physicochemical
association [6]. As a result, the chemical changes reduce the viscoelastic properties of the
bitumen, making bitumen stiffer until it becomes a brittle material and reduces its adhesion
to aggregates [7]. The stiff and brittle bitumen causes the asphalt mixture to crack, which
in turn reduces the pavement capability to withstand repeated traffic loads and shortens
the pavement life [8].
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In recent studies, microwave heating has been proposed as a promising technique
to reduce the traditional maintenance and increase the service life of materials through
self-healing of cracks [9–11]. During the heating process, microwave radiation applies alter-
nating electromagnetic fields with a higher frequency, causing a change in the orientation of
polar molecules, which result in internal friction and increase the material temperature [12].
In this way, at 30–70 ◦C, the bitumen in asphalt mixtures reduces its viscosity and begins to
flow through microcracks [13]. When pavements cools to lower temperatures, the bitumen
fills and seals the crack increases its viscosity, and the damage get healed [14]. This novel
technique has proved that after one cycle of microwave heating of conventional asphalt,
pavement achieves a 20% fatigue life extension [15]. To improve the electrical conductivity
and thermal distribution of the asphalt mixtures with self-healing properties, metallic waste
or steel wool fibers must be added to the asphalt matrix [11,16–20]. However, Gonzalez
et al. [1] found that asphalt mixtures without metallic additives are also capable of healing
their cracks by microwave heating; therefore, existing asphalt pavements could also be
crack-healed through microwave heating.

The self-healing of asphalt mixture is a temperature-dependent phenomenon, and it is
necessary to heat the bitumen for a sufficient time to reach an adequate viscosity change
for healing [21]. Previous research has reported that the self-healing of asphalt mixtures
by microwave heating can be achieved with a heating time of 40 s [22]. Norambuena-
Contreras and Garcia [23] evaluated the surface temperature of dense asphalt mixtures
with different percentages of metallic fibers for various heating times, observing that
samples with 8% fibers reached 135 ◦C after 120 s of heating. In addition, Flores et al. [24]
conducted a thermographic analysis to measure the temperature of Marshall specimens
during microwave radiation heating. The results showed that, after 300 s of microwave
heating, the specimens reached an average temperature of 120 ◦C. However, when the
temperature is too high, it may decrease the healing level due to drainage of the bitumen
under gravity.

Bitumen also tends to suffer more serious aging damage at higher temperatures [25],
and the oxidation process of its components can be significantly accelerated, which could
potentially decrease the durability of the mixtures. Additionally, temperature significantly
influences the kinetics of aging, with those effects related to the bitumen. In general terms,
the rate of oxidation doubles with each 10 ◦C rise in temperature above 100 ◦C [6]. Thus,
microwave heating can age the bitumen in the asphalt mixture, which is an unwanted effect
of the crack-healing technique, the healing capability of asphalt mix decrease as the aging
level increases [26]. The influence of temperature on bitumen by effect of the microwave
heating was investigated for the first time by Norambuena-Contreras and Garcia [23]. To
do this, the authors carried out thermogravimetric analysis on virgin bitumen combined
with microwave heating tests on asphalt mixture samples in a range of fibers amounts
before and after several heating cycles. The main results proved that the temperature of
the binder under microwave heating can be higher than the flash point temperature of
bitumen [27]; consequently, microwave heating may damage the chemical structure of
the binder used into the self-healing asphalt mixtures. However, this result has not been
tested on mixtures without fibers, although González et al. [12] recently found promising
crack-healing results on mixtures without fibers. Moreover, rheological and chemical tests
have not been performed to evaluate bitumen aging on this type of mixtures.

Additionally, Wu et al. [28] investigated the effect of microwave heating on the physi-
cal properties of a bitumen 60/70 pen. The bitumen was heated to a target temperature of
150 ◦C and cooled to room temperature near 25 ◦C. The researchers measured the pene-
tration, ductility, and softening point of the bitumen after one, three, and five microwave-
heating cycles to evaluate the bitumen aging. The results showed, after five cycles of
microwave heating, a reduction of 3.87% in penetration value, a 9.19% increase in soft-
ening point, and a 25.93% decrease in ductility. They found no clearly negative effect
of microwave heating and concluded that the microwave heating causes slight aging in
the bitumen. Nonetheless, these physical properties are an empirical measurement that
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cannot effectively describe the viscoelastic characteristics of bitumen and additionally fail
to correlate well with asphalt mixture performance [29]. Likewise, Wu et al. [28] did not
analyze the chemical variation of the functional groups of the bitumen, which is a useful
indicator for evaluating the aging effect [30]. Therefore, a further analysis of rheological and
chemical parameters is required for the evaluation of microwave heating on aging bitumen.

Rheological characterization of bitumen is adopted in most studies about bitumen
aging. However, chemical characterization is key to complement the rheological properties
of bitumen, which provides the most effective method to confirm the aging oxidation of
bitumen. The current research aims to evaluate the effect of microwave heating on the
rheological and chemical properties of recovered bitumen. To achieve this objective, a
comprehensive laboratory study was conducted using a conventional microwave oven
to evaluate the microwave heating effects and a conventional heating oven to simulate
the long-term aging. Rheological characterization was carried out with a Dynamic Shear
Rheometer (DSR) by the values of the complex shear modulus (G*) and the phase angle (δ)
based on the frequency sweep test. Fourier Transform Infrared Spectrometry (FTIR) tests
were conducted to analyze the change in the molecular composition of the aged bitumen
analyzing different bitumen samples exposed to microwave heating and long-term aging
cycles. In brief, this study further details the mechanism of bitumen aging caused by the
effects of microwave heating applied on asphalt mixture with crack self-healing purposes.
The methodology followed to fulfill research objectives of this study is shown in Figure 1.
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Figure 1. Schematic diagram of the experimental plan used in this research work.

2. Materials and Methods
2.1. Materials and Manufacturing of Specimens

Stone mastic asphalt (SMA) with a maximum grain size of 11 mm (SMA 11S) was
used. The SMA was composed of a strong coarse aggregate skeleton made of crushed
diabase stones with a limestone mineral filler (grain size distribution shown in Figure 2).
The used virgin bitumen was classified as 50/70 (1/10 mm) penetration grade, which is
widely used in pavement engineering applications in Germany.

Several SMA test specimens were manufactured at a mixing temperature of 165 ◦C
through two methods: (1) conventional SUPERPAVE preparation under laboratory condi-
tions, and (2) preparation in asphalt plant. For the latter, SMA was industrially produced
in a batch-type plant in Geilenkirchen (Germany). Afterward, SMA was transported to
the test track of the institute of highway engineering at RWTH Aachen University (25 km
distance) where it was laid down and compacted. Finally, several cores were drilled out
from the track and delivered to TU Dresden for testing. The mixture’s bitumen content
was 6.9% (per volume), the bulk density was 2436 kg/m3, and the void ratio was 2.1%.
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Figure 2. Sieving curve of the Stone Mastic Asphalt (SMA-11S) mixture used.

2.2. Aging Modes of the Bitumen Samples

In this study, the bitumen material used was treated under two different aging modes:

• Mode I: bitumen used for the SMA manufacturing under method (1) was aged using
hot air and UV light to simulate a long-term aging of 6 years of service life. In total,
using this aged bitumen, eight SMA test specimens were prepared and tested.

• Mode II: bitumen within SMA cores only reproduced the short-term aging conditions
during pavement construction. In total, eight SMA test specimens were evaluated
under this mode.

In both modes, the aged bitumen was separated from the aggregates using a dissolu-
tion of trichloroethylene according to the standard EN12697-4 [31]. Furthermore, to contrast
the rheological and chemical results of the samples exposed to microwave and long-term
aging, the base bitumen was aged using the pressure aging vessel (PAV) method [32].

2.3. Microwave Heating and Long-Term Aging Cycles

To study the aging effect on the bitumen under two different methods, the specimens
were exposed to various cycles of microwave heating and long-term aging. The microwave
heating was applied on the test specimens using a 900 W microwave oven with a working
frequency of 2.45 GHz. The room temperature during the test was approximately 20 ◦C,
and the initial temperature of the specimens was measured at five points of the surface
with a laser thermometer, resulting in an average temperature of 22 ◦C. The test specimens
were placed in the center of the microwave oven on an insulator material base and were
heated for 40 s following the recommendations given by Norambuena-Contreras and
Gonzalez-Torre [22], see test plan in Figure 3. The microwave heating was repeated four
times with a 40 s rest period (i.e., without heating) to improve the heating distribution
through the test specimens. The heating time was found suitable for microwave healing,
because the measured surface temperature distribution was found similar to that obtained
in previous research [1,23]. After microwave heating, the average surface temperature of
the test specimens reached over 70 ◦C.

After aging by microwave heating, the long-term aging procedure was conducted
according to the standard modified AASHTO R30 [33] for compacted asphalt mixtures.
In this study, long-term aging was modified following the recommendations given by
Elwardany et al. [34] in order to simulate a period of time related to the application of
microwave heating in the field, which is expected to be applied every 3–5 years during
maintenance activities. Hence, the test specimens were conditioned in a conventional oven
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at 85 ◦C ± 3 ◦C for 72 ± 0.5 h to simulate the long-term aging of a mixture in the field for a
period over 3–5 years.
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Figure 3. Test plan for microwave heating plus long-term aging cycle.

The test specimens were exposed to eight different stages of microwave heating plus
long-term aging (S1–S8 in Figure 3) to compare the potential degree of aging that bitumen
could have on its rheological and chemical properties. Figure 3 summarizes the experimen-
tal procedures for the microwave heating plus the long-term aging in conventional oven.
In this figure, specimen S1 represents the control sample which was not exposed to any
microwave heating or long-term aging cycle, whereas specimen S8 went through all cycles,
i.e., it was exposed to four microwave heating and three long-term aging cycles. Once the
experimental plan was completed, bitumen samples were recovered from the SMA test
specimens to then perform the rheological and chemical tests.

2.4. Rheological Properties of Bitumen by DSR Tests

It is known that researchers have developed master curves to evaluated the influence
of aging on the rheological properties of bitumen [35–38]. In this study, a dynamic shear
rheometer (DSR) (Anton Paar MCR 502 Modular Compact Rheometer) was employed to
perform frequency sweep tests at frequency ranging from 50 Hz to 0.5 Hz and at 10 different
temperatures (−20, −10, 0, 10, 20, 30, 40, 50, 60, and 70 ◦C). The plates used in the DSR were
8 mm in diameter with a parallel plate geometry for low and intermediate temperatures in
a range from −20 ◦C to 30 ◦C and 25 mm in diameter with a parallel geometry for higher
temperatures in a range from 30 ◦C to 70 ◦C.

Dynamic oscillatory testing was performed under small strain-controlled conditions
to ensure response within linear viscoelastic range (LVE). The LVE range was denoted by
the strain value in which the dynamic shear modulus equates to 95% of the initial value [39].
The time–temperature superposition principle (TTPS) is used to construct master curves
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from LVE data by shifting measurement at different temperatures in order to obtain a
continuous curve at the reference temperature [40].

On the basis of the time–temperature superposition principle and frequency sweep test
results, G* and δ master curves were constructed. To create the master curve, an arbitrary
reference temperature of 30 ◦C was used, and the data collected from frequency sweeps at
all other temperatures were shifted to the reference temperature by shift factors. The shift
factors were calculated using a Williams–Landel–Ferry (WLF) equation [41] as follows:

logα(T) = − C1(T − TR)

C2 + (T − TR)
, (1)

where α(T) is the shifting factor relative to the reference temperature, T is the initial
temperature (◦C), TR is the arbitrarily chosen reference temperature (◦C), and C1, C2 are
fitting constants.

Master curves for G* and δ were plotted as a function of reduced frequency ( fr)
at the defining temperature on a log30-log and semi-log scale, respectively. The fr is a
function of the shift factor log α(T) and the frequency ( f ) and is calculated using the
following equation [42]:

fr = f ·10log α(T). (2)

2.5. Quantification of the Rheological Aging Indexes

A common methodology for assessing the aging performance of bitumen is primarily
through the measurement of specific parameters before and after aging. These parameters
are normally related to the physical, chemical, and rheological properties [38]. In the
present study, the changes in the rheological properties after microwave heating and long-
term aging were evaluated by rheological aging indices. The rheological aging indices
adopted for this research were obtained from the measurement of rheological properties in
the frequency sweep test, which were the complex modulus index (AIG∗ ) and phase angle
index (AIδ). The following equations show the aging indices used in this research:

AIG∗ =
G∗

Aged

G∗
Unaged

, (3)

AIδ =
δAged

δUnaged
, (4)

where G∗
Unaged, δUnaged are the complex modulus and phase angle of the unaged bitumen,

which are represented by the control bitumen sample, i.e., bitumen 1, and G∗
Aged, δAged are

the complex modulus and phase angle of the aged recovered bitumen samples, which were
exposed to different microwave heating and long-term aging cycles (see Figure 3).

2.6. Chemical Properties of Bitumen by FTIR Tests

As previously mentioned, during the oxidation process, chemical variations that occur
refer to the formation of carbonyl groups (C=O) and sulfoxide groups (S=O), which increase
the overall polarity of the bitumen [6], affecting its physical and rheological properties [5].
Fourier-transform infrared spectroscopy (FTIR) is a successful experimental technique to
analyze the changes in the chemical composition of bitumen due to oxidative aging [43].

A Nicolet iS5 FTIR spectrometer was used in this study to identify the chemical
functional groups of the recovered bitumen after the microwave heating and long-term
aging cycles. Each spectrum was scanned 100 times at a resolution of 4 cm−1 and recorded
in a wavenumber range from 4000 to 600 cm−1. The changes caused by aging can be found
between 2000 and 600 cm−1. These wavenumbers correspond to functional groups related
to the oxidation process [44]. The peaks of the carbonyl and sulfoxide groups can be found
at wavenumbers 1700 and 1030 cm−1, respectively [44].



Materials 2021, 14, 7787 7 of 18

To evaluate the aging of bitumen, both a carbonyl index (IC=O) and a sulfoxide index
(IS=O) were determined [38]. The indices of these groups can be calculated from the peak
area of their bands and divided by the sum of all bands in wavenumbers ranging from
2000–600 cm−1 [45]. The relative ratios of the areas of C=O and S=O were calculated using
the following equations [37,43,46]:

IC=O =
A1700

∑ A
, (5)

IS=O =
A1030

∑ A
, (6)

∑ A = A1700 + A1600 + A1460 + A1376 + A1030 + A864 + A814 + A743 + A724, (7)

where A1030 represents the area of sulfoxide peaks, A1700 represents the area of carbonyl
peaks, and ∑ A is the sum of areas of all bands in wavenumber range of 2000–600 cm−1. The
peak areas were evaluated using numerical integration provided by OriginPro software.

2.7. Summary Description of the Tested Bitumen Samples

Table 1 summarizes the different bitumen samples experimentally analyzed in this
study. In addition to the eight bitumen samples, a fresh or virgin bitumen sample and an
aged bitumen sample were analyzed for comparison purposes. The bitumen was aged
applying the pressure aging vessel (PAV) method.

Table 1. Symbology of the bitumen samples tested in this study.

Symbology Description

Bitumen 1 Bitumen sample recovered from SMA without stages of aging 1

Bitumen 2–8 Bitumen samples recovered from SMA test specimens exposed to different
microwave and oven stages of aging 1

Fresh Bitumen Virgin bitumen sample without any treatment
PAV Bitumen Bitumen sample aged using the pressure aging vessel (PAV) method

1 See Figure 3.

3. Results and Discussion
3.1. Effect of the Microwave Heating and Long-Term Aging on Bitumen from Mode I
3.1.1. Effect on the Rheological Properties of Bitumen Samples from Mode I

Figures 4 and 5 summarize all the results of rheological properties measured for the
bitumen samples from Mode I (see Section 2.2) exposed to different cycles of microwave
heating and long-term aging. The results of the viscoelastic parameters complex modulus
(G*) and phase angle (δ) are presented in master curves at a reference temperature of
30 ◦C. Both master curves for G* and δ were plotted as a function of reduced frequency. In
these figures, the aging of the bitumen samples can be observed in master curves when G*
increases and δ decreases [37].

As can be seen in Figures 4 and 5, all the master curves for bitumen 1–8 overlap.
Hence, no obvious differences can be seen in the variation of G* through the different
microwave heating and long-term aging cycles. Figure 5 shows an unexpected result for
bitumen 6, with a few degrees lower than bitumen 8. This result was attributed to testing
variability. The overlap tendency shown in Figures 4 and 5 can be attributed to the fact
that, once the bitumen or asphalt is aged, the additional aging due to microwave heating
has no significant effect on the aging performance of G* and δ. From low frequency to
high frequency, the spacing for the G* master curve of all bitumen samples was minor.
However, at higher frequency, all samples tended to reach an asymptote at value of 106

Pa. Figure 5 shows the master curves for the phase angle with an overlap trend between
the eight bitumen specimens. No clear effect can be seen in the phase angle through the
various microwave heating and long-term aging cycles.
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Additionally, Figures 4 and 5 show the G* and δ master curves for a fresh and a PAV
bitumen. From these figures, it can be observed that the rheological properties at low
frequency show that fresh and PAV bitumen had lower values of G* and higher values of δ,
which means that fresh and PAV bitumen samples were less aged than the other bitumen
samples exposed to the microwave and long-term aging cycles. This is an interesting
phenomenon to be noted considering that bitumen samples 1 to 8 were initially exposed to
long-term aging (conventional oven at 85 ◦C ± 3 ◦C for 72 ± 0.5 h). It would be expected
that this method of long-term aging promotes the oxidation process, increasing G* and
decreasing δ gradually with the cycle increase; however, this result cannot be seen in the
master curves because the bitumen was very aged. It should be noted that this result
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is consistent, because the oxidation process for old bitumen increases at a very low rate
according to the literature [47].

Hence, to quantify the effect of the microwave and long-term aging on the rheological
properties of bitumen from Mode I, the rheological aging indices (AI) were calculated using
two criteria. The first was to calculate the AI at 20 ◦C and frequency 10 Hz, representing the
typical design considerations, and the second was to calculate the AI at 60 ◦C and frequency
1 Hz, established as the high-temperature and low-frequency condition that corresponds
closely to permanent deformation conditions. Thus, Figures 6 and 7 present the average
results of three replicates (± one standard deviation error bar) of the rheological aging
indices for the eight bitumen samples at two different criteria, respectively. Average results
were calculated using three values. Figure 6 shows the aging index of G* and δ for the first
criterion. The x-axis shows the identification of the specimen, along with the number of
its associated recovered bitumen. For example, for bitumen 1 (which is related to S1), it
is indicated that there was no microwave heating and no long-term aging cycle (control
sample); therefore, it had a value of AIG∗ and AIδ of 1.0.

In Figure 6, no clear effect is observed in the AIG∗ because some bitumen samples
increased and others decreased the aging index value as the microwave heating increased
and the long-term aging cycles were extended. The increase in AIG∗ was expected to be
gradual, due to the increase in the complex modulus by the oxidation process with the
long-term aging procedure. The trend in the AIδ was also variable as microwave cycles and
long-term aging increased. There was not a gradual trend as expected. The most important
variation in AIG∗ can be seen in bitumen 2, where, after one microwave heating cycle (S2),
the G* increased by 2% (p < 0.001, calculated with Student’s t-test and 95% confidence level)
in relation to bitumen 1. In the case of AIδ, the most important variation was in bitumen 6,
which, after three microwave heating and two long-term aging cycles (S6), the phase angle
decreased by 4% (p < 0.001) in relation to bitumen 1. This result confirms that the effect on
the aging performance rheological properties of bitumen samples (G*, δ) was minor.
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Furthermore, Figure 7 shows the aging index of G* and δ for the second criterion.
A similar trend to that of AIG∗ and AIδ at 20 ◦C (see Figure 6) can be seen at 60 ◦C. A
variable behavior can be noted in the indices and not a gradual tendency as expected,
since, as microwave heating and long-term aging cycles increased, the oxidation process
also increased, generating a gradual increase in AIG∗ and a gradual decrease in AIδ. An
unexpected result of AIG∗ can be noted in bitumen 6 and 7, related to the control bitumen,
where AIG∗ increased by 31% (p < 0.001) and 17% (p < 0.001).
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3.1.2. Effect on the Chemical Properties of Bitumen Samples from Mode I

On the basis of DSR results, only bitumen samples 1 and 8 were selected to compare the
chemical changes when the bitumen is exposed to microwave heating and long-term aging
cycles. Additionally, fresh bitumen 50/70 pen (without any artificial aging treatment) and
PAV-aged bitumen were analyzed to contrast with bitumen 1 and 8 in terms of FTIR. The
FTIR spectral results ranging from 2000–600 cm−1 wavenumbers, covering the regions with
the main oxidative aging products [48], are shown in Figure 8. In Figure 8, the absorption
bands of the C=O and S=O groups of the bitumen were in a wavenumber range centered
around 1700 cm−1 and 1030 cm−1, respectively. The trend for all bitumen samples was
almost the same. However, as shown by the arrow in Figure 8, the FTIR spectrum of bitumen
8 (blue line), there were new absorption peaks around approximately 1100 cm−1. These
results indicate that a new functional group was generated, which can be attributed to the
molecular interactions and chemical composition changes of the bitumen under microwave
heating and long-term aging cycles. To appreciate the formation of an oxidation product,
Figure 9 shows a closer view of the carbonyl and sulfoxide peaks framed in Figure 8.

In Figure 9a, the absorption peaks for the carbonyl group can be seen, where bitumen
samples 1 (S1) and 8 (S8) show a similar trend. However, the absorption of bitumen 8
was slightly higher than that of bitumen 1. In addition, at the peak 1700 cm−1, the PAV
bitumen showed a similar absorption to bitumen 1, but lower absorption than bitumen 8.
Moreover, the area amplitude for PAV bitumen was less than that for bitumen 1 and 8.
Fresh bitumen had no peaks of the carbonyl group. Likewise, in Figure 9b, the sulfoxide
group can be observed in the FTIR spectra, occurring due to thermo-oxidative aging during
the production and storage of bitumen [44]. Figure 9b demonstrates that bitumen 1 and the
PAV bitumen had a similar tendency in the sulfoxide zone. Additionally, bitumen 8 had a
higher absorption in the sulfoxide zone than all bitumen samples. The obtained spectral
carbonyl and sulfoxide indices were calculated using Equations (6) and (7) to quantify the
aging degree. The tables in Figure 9a,b present the carbonyl index (IC=O) and sulfoxide
index (IS=O) of the different bitumen samples analyzed, respectively. The tables show that
the carbonyl and sulfoxide indices increased as the microwave heating and long-term aging
cycles increased. Moreover, it should be noted that, after four microwave heating and three
long-term aging cycles, bitumen 8 (S8) slightly increased the IC=O and IS=O compared
with bitumen 1 (S1). Furthermore, fresh bitumen had the lowest rates, which is consistent
with its virgin bitumen condition. PAV bitumen had a lower carbonyl index compared
to bitumen 1 and 8, a similar sulfoxide index to bitumen 1, and a lower sulfoxide index
than bitumen 8. These results are consistent with the literature because (1) the carbonyl
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functional group is related to the increase in viscosity by effect of the aging of bitumen,
and (2) the sulfoxide functional group is usually produced in higher amounts than the
carbonyl group [43]. Thus, the variation of carbonyl and sulfoxide groups represents the
oxidation degree and further reflects the aging degree of bitumen. In short, the difference
between the carbonyl index values for bitumen 1 (control sample) and bitumen 8 was
smaller (0.0021), demonstrating the minor effects of aging on bitumen due to microwave
heating and long-term aging cycles.
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3.2. Effect of the Microwave Heating and Long-Term Aging on Bitumen from Mode II
3.2.1. Effect on the Rheological Properties of Bitumen Samples from Mode II

In Mode II, a not-so-aged asphalt mixture was compared with Mode I. Thus, in this
mode and analogously to Mode I (discussed in previous section), a comparison of master
curves across bitumen 1 and 8 was carried out with the aim of analyzing the specimens
most and least exposed to the microwave and long-term aging cycles. The master curves of
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G* and δ at a reference temperature of 30 ◦C are presented in Figures 10 and 11, respectively.
As shown in Figure 10, the difference in the G* master curve for bitumen 8 was narrow
compared to that of bitumen 1. There were slight differences after four microwave heating
and three long-term aging cycles (S8) for bitumen 8; the G* range of bitumen 8 was about
205 to 5.30 × 108 Pa and that of the bitumen 1 was 602 to 4.98 × 108 Pa. Furthermore,
Figure 11 shows that the δ master curve for bitumen 8 was slightly lower than that for
bitumen 1, which indicates that bitumen 8 was more aged by the effect of the heating
aging cycles.
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Furthermore, fresh and PAV master curves were also drawn in Figures 10 and 11 to
compare the aging level of the recovered bitumen samples. In Figure 10, PAV bitumen
can be seen as the most aged bitumen, since the master curves present greater values of
G*. In contrast, in Figure 10, fresh bitumen shows a master curve with lower values of G*.
Although bitumen 8 was exposed to four microwave heating and three long-term aging
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cycles (S8), the master curve was lower than that of PAV bitumen, which shows that the
aging cycles may not present as much damage due to aging as expected. This conclusion
coincides with the observed rheological behavior for the bitumen samples tested in Mode I.

Similarly, in Figure 11, at lower and intermediate frequency, there was an important
difference in the phase angle master curves. PAV had the lower values of δ, which indicates
that PAV bitumen had the most important aging in comparison with all bitumen samples.
Hence, to quantify the effect of the microwave heating and long-term aging on the rheolog-
ical properties of bitumen samples 1 and 8 from Mode II, the rheological aging indices (AI)
were calculated according to the same criteria as for Mode I, i.e., at 20 ◦C, 10 Hz and 60 ◦C,
1 Hz, as shown in Figure 12.
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From Figure 12, it can be observed that, as microwave heating and long-term aging
cycles increased, AIG∗ increased and AIδ decreased. This result is caused by the oxida-
tion process of the chemical components of the bitumen, which impacts the mechanical
properties of the bitumen, with the samples becoming more solid-like, as indicated by the
increased G* and decreased δ. If the aging indices at 20 ◦C and 10 Hz are compared in
Figure 12a, bitumen 8 increased by 29% (p < 0.001, calculated with Student’s t- test and
95% confidence level) in relation to bitumen 1. In Figure 12b, the aging index for bitumen 8
increased by 21% (p < 0.001) in relation to bitumen 1. For AIδ, at 20 ◦C and 10 Hz, bitumen 8
decreased the aging index by 5% (p = 0.0015), and, at 60 ◦C and 1 Hz, the variation of the
AIδ was 1% (p < 0.001), both in relation to bitumen 1.

3.2.2. Effect on the Chemical Properties of Bitumen Samples from Mode II

In Mode II, the same chemical analyses were conducted for bitumen 1 and 8 to analyze
the chemical composition changes of bitumen at different aging levels by effect of the
microwave heating and long-term aging. Thus, fresh bitumen 50/70 pen and PAV-aged
bitumen were analyzed to contrast with bitumen 1 and 8 in terms of FTIR. The spectra
collected from 2000–600 cm−1 are shown in Figure 13. Figure 13 shows that (1) the trend
for bitumen 1 and 8 were almost the same and, thus, no new functional groups were
generated during the oxidation process with either the microwave and long-term aging
cycles, and (2) with the increase in the aging severity, the absorption spectra gradually
increased. According to Figure 13, peaks at 1030 cm−1 attributed to the stretch vibration of
the sulfoxide group were observed in all bitumen samples. However, peaks at 1700 cm−1

related to the carbonyl group were only observed in the FTIR spectra of PAV and bitumen 8.
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For a better appreciation of the formation of the oxidation product, Figure 14 shows a
closer view of the carbonyl and sulfoxide peaks framed in Figure 13. From Figure 14a, it can
be observed that the PAV bitumen presented greater absorption in the carbonyl zone than
the other bitumen samples. Moreover, no carbonyl group peaks were observed for bitumen 1
and fresh bitumen. In the carbonyl zone (see Figure 14a), bitumen 8 had a slighter increase
in absorption compared to bitumen 1. In contrast, Figure 14b shows that the peaks of the
sulfoxide group were similar for all bitumen samples, while the ratio of the peak area was
different. The amplitude for the area increased as the aging level of the bitumen increased.
In particular, the amplitude for the area of PAV bitumen was the greatest. In addition to the
spectral observation, the effect of aging was evaluated by the carbonyl and sulfoxide indices.
The tables in Figure 14a,b present the carbonyl index (IC=O) and sulfoxide index (IS=O) of the
different bitumen samples analyzed from Mode II, respectively.
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After four microwave heating and three long-term aging cycles, the IC=O for bitumen
8 reached 0.0109, which is 1.4 times higher than the IC=O for bitumen 1. Comparing
the results with PAV bitumen samples, it can be seen that IC=O reached 0.0244, which
demonstrated that bitumen aging had a much higher effect than in bitumen 1 and 8. In
the case of IS=O, bitumen 8 measured 1.2 times higher than bitumen 1, and its value
gradually increased as the bitumen aging severity increased, with the PAV bitumen having
the greatest index, showing the minor effects of aging on bitumen by effect of microwave
heating and long-term aging cycles. This result is consistent with the obtained conclusions
for Mode I.

3.3. Relationship between Chemical and Rheological Results from Mode I and II

It is widely recognized that the performance of an asphalt mixture is largely dependent
on the rheological behavior of bitumen [49]. At the same time, the rheological properties
depend on the chemical changes in the bitumen [7]. Qin et al. [50] found a linear relationship
between rheological parameters and chemical composition, such as the FTIR absorbance
given by the sum of carbonyl and sulfoxide indices. In this context, Elwardany et al. [34]
and Ge et al. [30] confirmed this behavior, where G* increased consistently when the sum
of the carbonyl index (IC=O) and sulfoxide index (IS=O) increased. Figure 15 presents the
relationship between the sum of the carbonyl and sulfoxide indices (IC=O + IS=O) and
log G* at 64 ◦C and 10 Hz from the obtained results for Mode I and II and the literature
results [34]. As can be seen, as the sum of IC=O and IS=O, increased, the log of the complex
modulus at 64 ◦C and 10 Hz also increased.

Additionally, Figure 15 shows two literature results corresponding to bitumen recov-
ered from a compacted specimen exposed during a procedure of PAV (3 days at 85 ◦C and
300 kPa air pressure) and another from an 8 year old field core [34], in order to contrast
the aging level of the samples in Mode I and II. As can be seen, the results of Mode I for
bitumen 1 and 8 were very similar to the results of the 8-year-old field core. On the other
hand, the results of log G* at 64 ◦C for Mode II were lower than for the PAV bitumen, which
simulated a long-term aging of approximately 5 years [34]. Comparing all the results of
Mode I and II, it can be concluded that the changes in chemical and rheological properties
were very small, mainly resulting from the viscoelastic properties that changed at a lower
rate for aged materials [47]. The opposite can be seen in Mode II, where the material used
was newer; after different microwave heating and long-term aging cycles, the changes
were greater.
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From a chemical perspective, the hydrocarbon reaction of the free radical of the
bitumen with oxygen is responsible for most of the oxidative aging [51]. Aging can be
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summarized as a process in which the chemical components of the bitumen vary, are
consumed, and increase. The components move from more nonpolar fractions to the more
polar fractions as oxygen-containing functional groups are formed in the asphalt [52]. As
the time of aging increases, the free radical production begins to decrease. Initially, there is
a rapid reaction followed by a slower, constant reaction [51]. This may be an explanation for
the results obtained in Mode I, where the oxidation process did not have a clear behavior.
Comparing bitumen 1 and 8 proved that the presence of aging, as reflected in the chemical
and rheological properties, was low.

4. Conclusions

This paper evaluated the effect of microwave heating and long-term aging on recov-
ered bitumen through rheological and chemical properties. On the basis of the test results,
the following conclusions were drawn:

• Microwave heating and long-term aging have no significant effect on the aging perfor-
mance of G* and δ for aged asphalt mixtures. However, the rheological properties of
bitumen showed minor aging effects with microwave heating and long-term aging
cycles for newer asphalt mixtures.

• It was expected that modified AASHTO R30 would promote the oxidation process,
increasing G* and decreasing δ gradually; however, the long-term standard did not
oxidize the samples as expected. The study of microwave aging together with aging
by modified AASHTO R30 did not permit to clearly differentiate the aging due to
microwave heating and the AASHTO R30 accelerated procedure.

• According to the FTIR results, as the microwave heating and long-term aging cycles
increased, the carbonyl and sulfoxide indices increased in both phases. Therefore,
bitumen aging influences chemical changes in bitumen, including the formation of
carbonyl and sulfoxide compounds.

• It was possible to confirm that changes in the molecular composition of the samples
varied the viscoelastic properties of the bitumen, as shown in DSR tests.

• A strong relationship could be observed between the chemical and rheological results,
showing that both properties are good indicators to evaluate bitumen aging.

• Overall, this study confirmed that microwave heating is a valuable alternative for the
maintenance of asphalt pavements, without severely affecting the rheological and
chemical properties of bitumen.

Author Contributions: Conceptualization, M.F. and A.G.; methodology, M.F., A.G., G.C. and S.L.;
investigation, M.F.; resources, G.C., S.L. and M.R.; data curation, M.F.; writing—original draft
preparation, M.F.; writing—review and editing, M.F., A.G., G.C., S.L. and J.N.-C.; supervision, A.G.,
G.C. and S.L.; project administration, M.F., A.G. and G.C.; funding acquisition, S.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by Deutsche Forschungsgemeinschaft (DFG) under Grants WE
1642/11 and LE 3649/2 within the DFG Research Group FOR 2089.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from corre-
sponding author.

Acknowledgments: The authors gratefully acknowledge the financial support by Deutsche Forschu-
ngsgemeinschaft (DFG) under Grants WE 1642/11 and LE 3649/2 within the DFG Research Group
FOR 2089. The first author also wants to thank the financial support given by the Impulso Inicial
foundation from Chile. Lastly, the corresponding author is grateful for the financial support given
by the Chilean National Agency for Research and Development (ANID), through Research Project
FONDECYT Regular 2021 N◦1211009, during the final revision of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2021, 14, 7787 17 of 18

References
1. González, A.; Norambuena-Contreras, J.; Storey, L.; Schlangen, E. Effect of RAP and fibers addition on asphalt mixtures with

self-healing properties gained by microwave radiation heating. Constr. Build. Mater. 2018, 159, 164–174. [CrossRef]
2. Kim, Y.; Little, D.N.; Asce, F.; Lytton, R.L.; Asce, F.P.E. Fatigue and Healing Characterization of Asphalt Mixtures. J. Mater. Civil

Eng. 2003, 15, 75–83. [CrossRef]
3. Rochlani, M.; Leischner, S.; Falla, G.C.; Wang, D.; Caro, S.; Wellner, F. Influence of filler properties on the rheological, cryogenic,

fatigue and rutting performance of mastics. Constr. Build. Mater. 2019, 227, 116974. [CrossRef]
4. Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the bitumen ageing phenomenon: A review.

Constr. Build. Mater. 2018, 192, 593–609. [CrossRef]
5. Sirin, O.; Paul, D.K.; Kassem, E. State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives. Adv. Civ.

Eng. 2018, 2018. [CrossRef]
6. Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; ICE Virtual Library: London, UK, 2015.
7. Miró, R.; Martínez, A.H.; Moreno-Navarro, F.; del Carmen Rubio-Gámez, M. Effect of ageing and temperature on the fatigue

behaviour of bitumens. Mater. Des. 2015, 86, 129–137. [CrossRef]
8. Sandoval, G.; Thenoux, G.; Molenaar, A.A.A.; Gonzalez, M. The antioxidant effect of grape pomace in asphalt binder. Int. J.

Pavement Eng. 2016, 20, 163–171. [CrossRef]
9. Gallego, J.; Del Val, M.A.; Contreras, V.; Páez, A. Heating asphalt mixtures with microwaves to promote self-healing. Constr.

Build. Mater. 2013, 42, 1–4. [CrossRef]
10. Miao, P.; Wang, S.; Liu, W. Improving microwave absorption efficiency of asphalt mixture by enriching Fe3O4 on the surface of

steel slag particles. Mater. Struct. Constr. 2017, 50. [CrossRef]
11. Norambuena-Contreras, J.; Serpell, R.; Valdés Vidal, G.; González, A.; Schlangen, E. Effect of fibres addition on the physical and

mechanical properties of asphalt mixtures with crack-healing purposes by microwave radiation. Constr. Build. Mater. 2016, 127,
369–382. [CrossRef]

12. González, A.; Valderrama, J.; Norambuena-Contreras, J. Microwave crack healing on conventional and modified asphalt mixtures
with different additives: An experimental approach. Road Mater. Pavement Des. 2019, 20, S149–S162. [CrossRef]

13. Ayar, P.; Moreno-Navarro, F.; Rubio-Gámez, M.C. The healing capability of asphalt pavements: A state of the art review. J. Clean.
Prod. 2016, 113, 28–40. [CrossRef]
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