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Abstract: Alkali-activated concrete (AAC) could be a solution to use a cement-less binder and
recycled materials for producing concrete reducing the carbon dioxide emission and the demand for
raw materials, respectively. In addition to the environmental aspect, AACs can achieve mechanical
characteristics higher than those of ordinary Portland concrete (OPC) but also an improvement of the
thermal insulation capacity. Despite the positive results available in the scientific literature, the use of
AACs in construction practice is still limited mainly due to the absence of codification for the mix
design and consequently of specific design rules. In this paper, AAC produced by ground-granulated
blast-furnace slag (GGBFS) and silica fume is investigated for the production of structural elements
and to discuss the reliability of formulations for evaluating mechanical properties, necessary for
structural design. The mechanical strengths (compression strength, tensile strength, flexural strength)
are evaluated by experimental tests according to different curing times (7, 14, 28, 90 days) in ambient
conditions and the thermal conductivity is measured to understand the effect that the material
could have on thermal losses for a sustainable building perspective. The results showed that AAC
strengths depend on the curing time and the exposure conditions, and the insulation properties can
be improved compared to the traditional Portland cement with the proposed composition.

Keywords: alkali-activated concrete; slag; silica fume; experimental tests; mechanical properties;
thermal properties; standard formulations

1. Introduction

The environmental and economic concerns associated with conventional cement-based
building materials have led the scientific and technical community to explore possibilities
in the use of alternative materials.

Currently, the concrete industry faces two main challenges that are the increasingly
limited limestone reserves and the carbon taxes increase because of the growing demand
for Portland cement (OPC) and the greenhouse gas emissions resulting from the production
of OPC, respectively [1]. Indeed, approximately 5–7% of global CO2 emissions originate
from the manufacturing of Portland cement [2,3], and its production consumes a high
amount of energy that is accounting for 50–60% of the plant production costs [4].

These issues require the development of alternative binders, such as alkali-activated
cement (AAC), with the aim of reducing the environmental impact of buildings, the use of
a greater percentage of pozzolan waste and improving concrete performance [5]. From this
point of view, they are considered an ecological binder whose production involves CO2
emissions lower than those necessary to produce OPC [6,7], with a reduction of greenhouse
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gas emissions up to 64% [8]. Other researchers found that the aluminosilicate material used
for producing AAC such as fly ash and slag, which are both industrial by-products, have
much lower carbon dioxide emission factors compared to cement: slag has been shown to
release up to 80% less greenhouse gas emissions [9] and there are 80–90% less greenhouse
gas emissions in the production of fly ash [10,11]. Based on a life cycle assessment (LCA),
it was reported that the global warming potential of fly ash-based AAC is about 70%
lower than that of OPC [12]. In addition, AAC is one of the alternative binders that
attracts considerable attention also for its favorable engineering properties, that is, early
compression strength, higher tensile strength, low permeability, good chemical resistance
and fire-resistant behaviour [13].

Despite the advantages mentioned above, the use of alkali-activated materials in
buildings and civil engineering, that is, as structural material, is limited by the lack of con-
sistent guidelines for the mixture proportioning design [14]; furthermore, many mechanical
properties have to be defined as strength in compression and tension, elastic modulus,
bond and more, in general, the response of the reinforced elements. Due to the diversity of
raw materials, additives and mixed proportions of AAC, current research is not yet able to
give a consistent conclusion on the mechanical characteristics and influencing factors, but
this variety suggests that this material could be locally adapted with the aim of achieving
suitable engineering properties [15].

This study was a part of a research activity that was aimed to evaluate the performance
of ground-granulated blast-furnace slag (GGBFS) and silica fume-based alkali-activated
concrete for the application as structural elements (i.e., blocks, panels). During the research
activity, many mixtures were developed and the most promising is the one discussed herein.
The main scope of the paper was to discuss the reliability of formulations for evaluating
mechanical properties necessary for structural design. The mixture was mainly designed to
obtain good structural performance, but considering the current attention to the multifunc-
tional use of new materials and the sustainability of the buildings, the thermal behaviour
is worthy of investigation, especially for realizing blocks. It is known that the improve-
ment of the thermophysical properties is usually matched with a reduction of the density
and thus of the mechanical performance, therefore finding a mix design that provides a
material with good structural and thermal performance is the current challenge. Hence,
experimental tests carried out at the Laboratory of Materials and Structures (LAMAS) of
the University of Sannio (Benevento, Italy) were performed to evaluate the main structural
strengths, such as the compression strength, the splitting tensile strength and the flexural
strength, according to different curing time; in addition, the characterisation of the material
was completed with the tests for determining the thermal conductivity performed in the
Insulating Material Thermal Analysis laboratory (IMATlab) of the University of Naples
Federico II (Naples, Italy). In the available literature, very few researchers consider the
combined effect of slag and silica fume on the mechanical and thermal parameters of alkali-
activated concrete, instead, the evaluation of thermal behaviour is usually investigated for
lightweight aggregate foamed geopolymer concrete whose insulation properties can be
attributed to the porosity and voids of the microstructure.

The experimental evaluation of the mechanical strength allowed us to analyse the
reliability between measured values and those prevised by standards provisions for OPC,
which usually provide the relationship for tensile and flexural strength as a function of the
compression one, pointing out the unsuitableness of the current codes in describing the
AAC behaviour. Formulations developed by previous authors specifically for AAC were
also considered.

2. State of the Art
2.1. Composition and Current Applications

Alkali-activated materials (AAMs) are formed by the reaction between alumino-
silicates precursors with an alkaline chemical activator. These products are also named
geopolymers (GPC), but even if chemically similar they are based on different aluminosili-
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cate precursors. Indeed, geopolymers are viewed as a subset of AAM with the highest Al
and lowest Ca concentrations [16]. In this paper, AAM was experimentally investigated, but
a wider state of the art is provided considering previous works on geopolymers, since the
purpose of this work is to study the mechanical and thermal aspect of the alkali-activated
binders, thus the feasibility of the proposed mixture to realize structural elements.

Specifically, the typical precursors for the alkali-activated systems are cementitious
materials such as steel and blast furnace slag (SG), or pozzolanic materials such as fly ash
(FA), metakaolin (MK), silica fume (SF), rice husk ash (RHA). Various alkali activators
can be used to activate the binder, such as potassium hydroxide (KOH), sodium hydrox-
ide (NaOH), potassium silicate (K2SiO3), sodium silicate (Na2SiO3), sodium carbonate
(Na2CO3) or a combination of these alkalis [16]. In addition, water and fine and coarse
aggregates used in the production of OPC and other additives (i.e., plasticizer, fibres) can
be added to the paste to reach the required concrete properties.

The various alumina silicates resources that can be used, affect the microstructures
and chemical properties, although many physical properties of geopolymers prepared from
various aluminosilicate sources may appear to be similar: FA, that is the most commonly
used and widely tested resource, has a higher reactivity and more durability than MK
based geopolymer, while SG based ones are considered to have higher early strength and
greater acid resistance than MK and FA based systems. [15,17]. Provis and Deventer [18]
summarised the properties of raw materials used in geopolymer manufacture.

Regarding the production and the spread of these materials, the scientific interest in
the field of geopolymers is considerably increased since 2016 [19] becoming one of the
hotspots of international research in recent years leading to the involvement of a larger
number of geopolymer suppliers companies.

Despite this, GPC has not yet obtained international acceptance as a building material
mainly because the production cost of geopolymer is not yet competitive. Mathew et al. [20]
estimated that the cost of geopolymer based on coal ash and granulated blast furnace slag
can be more than twice that of OPC-based concrete if the difference in the rate of transport
is considered; otherwise, normalizing this effect, the cost difference between the two
types of concrete is equal to 7%. However, the social cost that includes the advantages in
terms of ambient temperature processing, low carbon dioxide emissions, environmental
friendliness, carbon dioxide reduction targets and reutilisation of waste must be considered.
Another study [8] on the lifecycle impacts of geopolymers in comparison to OPC revealed
that the financial costs could be about 10–40% cheaper compared to conventional cement-
based concrete, but those benefits are only realisable given the most appropriate source of
feedstock and the least cost transportation.

Practical applications of geopolymer in the field of civil engineering can be found in the
USA as a solution for repairing highways and airport runways thanks to the short setting
time of geopolymer cement, and in Australia both for prefabricated elements and in situ
castings [21]. However, for the spreading of the geopolymer market more investigations on
long-term behaviour and durability are required [16] and data on the practicality of using
geopolymer concrete as structural reinforced elements are needed to develop the design
procedures [22].

2.2. Previous Research on Fresh and Hardened Properties

Research on the AAC has shown that the main parameters affecting the fresh and
hardened properties include:

• Chemical composition and mineralogy of the precursor materials;
• Quantity, shape (solid, liquid) and type of alkaline activator;
• Si/Al ratio of precursor materials and quantity of available calcium sources such as

Portland cement, blast furnace slag and lime;
• Total water/solids ratio (precursors + alkaline salts);
• Curing conditions.
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It should be clarified that the exact contributions of these parameters to the strength
are still not fully clear, consequently the various mixture design methods proposed in the
literature are usually empirical or experimental [23].

Regarding the precursor materials, mixtures with fine particles activated with alkali
exhibit greater workability and require less water due to the reduction of porosity and to
the increase of the surface in the finer particles [24,25]. The concentration level and type of
the activator play an important role in the mechanical and microstructural properties of
geopolymers: increasing the activator concentration beyond an ideal concentration, may
not only prevent the strength development of the geopolymer, but also lead to detrimental
effects such as efflorescence and brittleness [26]. Furthermore, the molarity of the acti-
vator, the superplasticizer and the water content strongly influenced the workability of
geopolymer concrete [27,28]. In particular, the addition of naphthalene and polycarboxylate
super-plasticizing additives increases the workability [29,30].

The water to geopolymer solids ratio has been observed to have an inverse relationship
with the compressive strength of concrete, instead, it has a direct relationship with the
workability, similar to that observed between water/cement ratio and behaviour of OPC
concrete [31].

Curing temperature has a significant effect on the microstructural and mechanical
strength development of the geopolymer system. Generally, the geopolymerisation is
accelerated at a higher temperature than the ambient one: it was observed the existence of
an optimum curing temperature (60 ◦C) that allows the achievement of the best physical
and mechanical properties [32].

Several mixes of geopolymer concrete based on low calcium FA activated by solutions
of sodium silicates and sodium hydroxide were analysed by various authors [31,33–39].
From these studies it is noted that conditioned curing at a high temperature for at least
24 h is generally necessary to obtain mean values of compression strength greater than
50 MPa; therefore, only prefabricated elements can be made that require a large space
with a conditioned environment. Furthermore, the modulus of elasticity has a scattered
correlation with compression strength showing that for the same value of compression
strength, the stiffness of the geopolymer concrete is significantly lower than that of ordinary
concrete. Indeed, according to Duxson et al. [40], the Young modulus of geopolymer
concrete is affected by microstructure based on speciation of the alkali silicate activating
solutions, while for conventional concrete the Young modulus depend on the properties of
the aggregate [41]. This is one difference between geopolymer and normal concrete that
can lead to a different result; in the latter, Young modulus depends on the properties of the
aggregate. However, the use of the appropriate aggregate type and content can improve
the elastic modulus of geopolymer concrete can be improved up to 14.4% than that of
the OPC concrete with the same compressive strength [42]. In addition, environmental
conditions can also affect the development of elastic modulus, as for the compression
strength: Pan et al. [43] reported that higher elastic modulus of geopolymer paste can be
achieved after its being exposed to 300 ◦C, whereas the elastic modulus of OPC paste was
almost unchanged.

In contrast to the case of elastic modulus, previous studies showed that the tensile
strength of GPC was usually higher than that of the OPC concrete at the same compressive
strength. In particular, the tensile strength of geopolymer concrete is affected by the type
of raw materials: for instance, the decrease in the amount of additional water [44], the
increase in percentage replacement of MK with RHA [45] or with FA [46] as the precursor
material, higher concentration activator [47] led to higher tensile strength.

Similarly, to the tensile strength, geopolymer concretes exhibit higher flexural strength
than ordinary ones [42,48], and it is related to the type and dosage of source materials [49,50].
Experimental results indicated that the diversity of binder materials is beneficial to the flex-
ural strength development and adding a certain amount of OPC to FA seems to be a good
way to increase the flexural strength [51]. Moreover, the alkaline activator concentration
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contributes to the increase in flexural strength, but excessive concentration can reduce the
efficiency of geopolymerisation [52].

Several researchers are focused on the evaluation of the incidence of the geopolymeric
process on other properties as thermal conductivity, sound absorption and durability.
However, the main results regard the geopolymer foam concrete [53] for which it is obtained
that the thermal conductivity is in a range of 0.15–0.48 W/m K [54]. It has been also
demonstrated [55] that for the fly ash-based lightweight geopolymer concrete, the increase
in dry density and fine aggregate contents resulted in higher compressive strength and
thermal conductivity. Henon et al. [56] have demonstrated that the thermal conductivity
can vary from 0.35 to 0.12 W/m K for pore volume fraction values in a geopolymer foam
between 65 and 85%.

It is worthy of investigation the analysis of the thermal behaviour of not aerated
geopolymer concrete that can also show high structural characteristics. More in general
it has been obtained that for the metakaolin-derived Na, NaK, and K geopolymers, the
thermal conductivity is closely linked with the specific heat, with little variation in thermal
diffusivity observed in different conditions [57]. The sand particles incorporated in the
geopolymeric matrix increase the thermal conductivity and decrease the specific heat
of the resulting mortar structure [58]. Wongkeo et al. [59] considering a geopolymer
synthesised by using fly ash, sodium hydroxide (NaOH) solution and sodium silicate
(Na2SiO3) have found a maximum of compressive strengths at 1.7 MPa and the minimum
thermal conductivity at 0.31 W/m K. Baran et al. [60] have indicated that addition of
perlite could influence on the physical properties of geopolymer products. Moreover,
Sukontasukkul et al. [61] have indicated that the incorporation of PCM aggregate could
improve the thermal storage and the insulation level.

Pantongsuk et al. [62] have found that the porosity increases with higher hydrogen
peroxide (H2O2) and decreases with increasing bagasse ash content. The increase in
porosity resulted in a decrease in compressive strength but with a significant reduction in
thermal conductivity from 0.3194–0.4519 to 0.1532–0.1857 W/m K with 1–1.5 wt% H2O2
addition and 10–20 wt% bagasse ash replacement.

3. Experimental Investigations
3.1. Mixture and Manufacturing Process

The alkali-activated concrete used in these experimental tests included gravel (4–14 mm),
sand (<4 mm), filler power with limestone and gypsum (<0.07 mm), grand granulated
blast furnace slag (by-product of iron and steel-making) and silica fume (by-product of the
silicon and ferrosilicon alloy production) as solid part (Figure 1). The chemical composition
and properties of slag are summarised in Table 1.

The alkaline activator consisted of a commercially available sodium silicate (SS) so-
lution having a modulus (R = SiO2/Na2O) of 1.6 with 27.50% by weight SiO2, 17.19%
by weight Na2O, and a solid content of 44.69% by weight; water was used to complete
the mix design. The addition of a naphthalene-based superplasticizer with a dosage of
2% by weight with respect to the binder improved its workability. Details of the mixture
proportions used in this study are shown in Table 2. These proportions are the result of
preliminary research activity, which was not part of the present work and included other
partners, based on literature and tests with the aims of defining the best mixture in terms
of both fresh and hardened properties.

Different researchers suggested several mixing methods based on the preparation of
the liquid part one day before to make the polymerisation easier [35,63]. However, other
authors have shown that the strength of the GPC is not significantly affected by the mixing
process [64]; therefore, the mixing method applied in the present study does not need any
pre-preparation resulting very similar to the process generally used for OPC concrete.
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Figure 1. Solid constituents: (a) coarse aggregate, (b) sand, (c) limestone and gypsum, (d) slag,
(e) silica fume.

Table 1. Chemical composition and physical properties of GGBFS used.

Component/Property Slag

FeO (%) <1.3
CaO (%) 38–45
SiO2 (%) 32–37

Al2O3 (%) 13–16
MgO (%) 5–8
TiO2 (%) <1.5
MnO (%) <0.5

Available alkali <0.5
SO3 (%) 2–3

S (%) <1.0
Cl (%) <250 ppm

Fineness (m2/kg) 440
Specific gravity 2.85

Bulk density (kg/m3) 1200

Table 2. Mixture proportions of experimental concrete.

Constituents Mass (kg/m3)

Gravel (4–14 mm) 471
Sand (<4 mm) 1092

Limestone and gypsum (<0.07 mm) 128
GGBFS 224

Silica fume 48
Alkali activator 170
Superplasticizer 8

Water 140

The mixing protocol applied in this study included the following steps:

• Step 1: all solids were mixed after quantifying by a mixer machine. The amount
used was determined by the amount required for the number of specimens needed
according to the mixture proportions reported in Table 2;
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• Step 2: the liquids (alkali activator, superplasticiser and water) were poured over
the solids and then they were mixed for about four minutes until a homogeneous
compound was obtained;

• Step 3: the freshly prepared geopolymer concrete was poured into different type
molds (cylindrical and prismatic depending on the test for which they were intended)
in three layers and vibrated by means of a vibrating table to remove any entrapped air;

• Step 4: specimens were demolded within 48 h after casting and were stored in ambient
conditions until the test day.

During the casting procedure, it was observed a fast setting of the mixture adhered
strongly to the mold. The workability of AAC is generally lower than that of OPC concrete
due to the presence of silicate in AAC would provide a sticky characteristic [64], therefore
the use of a vibrating table is needed to compact well the geopolymer even for relatively
low slump value, and the oiling of the molds is very important to guarantee a clean
release of the samples. Furthermore, during the vibrating phase of the concrete, swelling
of the mixture was observed, probably due to the heat release that occurs during the
geopolymerisation process [65].

Hence, it is noted that the specimen’s preparation is a crucial phase that needs to be
performed accurately for the correct success of the experimental program. Figure 2 shows
the reportage of the step followed in the manufacturing.
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Figure 2. Alkali-activated concrete manufacturing process: Step 1 mixing of the solids, Step 2
homogeneous compound after the mixing of the liquids, Step 3 molding and vibration of the
specimens, Step 4 storage of the specimens.

3.2. Test Methods

The test program consists of mechanical and thermal characterisation. In Table 3 infor-
mation about the testing procedure (standard references, measured properties, number
and type of specimens) is summarised, while the details are presented in the following
sections.
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Table 3. Summary of the tests.

Type Reference Details

Compression
test EN 12390-3 [66]

Type of specimens: cylinder h/d = 2
Number of specimens: 3 specimens per age

Test age: 7, 14, 28, 90 days
Measured properties: compression strength

Splitting tensile
test EN 12390-6 [67]

Type of specimens: cylinder h/d = 2
Number of specimens: 3 specimens per age

Test age: 28, 90 days
Measured properties: tensile strength

Four-point
bending test EN 12390-5 [68]

Type of specimens:
beam 100 × 100 × 400 mm

Number of specimens: 3 specimens per age
Test age: 28, 90 days

Measured properties: flexural strength

Thermal test ISO 8302 [69]

Type of specimens:
Block: 300 × 300 × 500 mm

Number of specimens: 2 specimens of same age
Test age: 90 days

Measured properties: thermal conductivity

3.2.1. Mechanical Tests

Mechanical characterisation was carried out according to the standards EN 12390-3 [66],
EN 12390-6 [67], EN 12390-5 [68] for compression, tensile and flexural tests, respectively.

In particular, the compression tests were performed on cylinders with height-to-
diameter ratio h/d = 2 applying a compressive axial load to molded cylinders until failure
occurs. The cylindric compression strength fc of the specimens was determined as follows:

fc = F/A (1)

where F is the maximum load attained during the test and A is the cross-sectional area of
the concrete specimen.

As for the compression test, cylindrical specimens (h/d = 2) were used in the tensile
splitting test. This test method applies a compressive load along the length of a cylinder
until failure occurs. This loading causes tensile stresses in the plane containing the applied
load, and relatively high compressive stresses in the area immediately around the applied
load. Splitting tensile strength fct was determined as follows:

fct =
2F

πhd
(2)

where F is the maximum applied load indicated by the testing machine, h and d are
respectively the length and the diameter of the specimen.

Four-point bending tests were performed on 100 × 100 × 400 mm geopolymer beams.
In this type of test vertical forces are applied to the beam in two points at 1/3 and 2/3 of
the span length between the supports (S), allowing to achieve a constant bending moment
without shear stresses in the length between the applied forces, thus ensuring pure bending
failure. At failure, the flexural strength of the specimen fc f was calculated using the
following formulation:

fc f =
F · S
b · d2 (3)

where F is the maximum load supported by the specimen, S = 300 mm is the span length
between the supports, b = 100 mm and d = 100 mm respectively, the breadth and the depth
of the specimen section.
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All the specimens were cured in laboratory conditions and tested after 7, 14, 28,
90 days from casting for compression tests and after 28, 90 days both for tensile and flexural
tests in order to evaluate the short- and long-term strength performance. Each mechanical
test was conducted on three specimens per age, for a total of 24 specimens, therefore in
the following section, the average results with their measure of statistical dispersion are
reported according to the testing age.

3.2.2. Thermal Tests

The Guarded Hot Plate (GHP) instrument is used for the measurement of the ther-
mal conductivity (λ) of two specimens according to the standard ISO 8302 [69]. Several
researchers are done with the application of the same principle for determining the con-
ductivity of geopolymeric concrete. For instance, Lach et al. [70] have studied the thermal
conductivity by varying the hydraulic additives; Kozub et al. [71] have found that the
addition of glass wool waste can reduce the thermal conductivity coefficient and the
amount of 5% by weight of glass wool waste causes a reduction of −6.6% in relation to the
reference sample.

More in detail, The GHP principle is based on an absolute measurement method
and therefore requires no calibration standards. The NETZSCH GHP 456 Titan® system,
high-temperature version [72] was used; the mean specimen temperature range is from
−160 ◦C to 600 ◦C without the risk of thermally induced deformation and it requires liquid
nitrogen for the sub-ambient temperature range. The plates are made of tungsten alloy
with a dimension of 300 mm × 300 mm. The system can measure the thermal conductivity
from 0.003 W/m K to 2 W/m K with an accuracy of 2% and reproducibility <1%. Figure 3
shows the NETZSCH GHP 456 Titan® machine used in the above test.
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Figure 3. NETZSCH GHP 456 Titan® system.

The measurement is done by means of two plates with different temperatures and a
guard ring that must host two samples of the material with the same thickness t. Thus,
the samples are placed between two heated plates set to different temperatures. These
temperatures are regulated by means of the heating (electrical power supply) and cool-
ing (liquid nitrogen) systems. During the test, the desired temperature difference ∆T is
established between the hot and the cold plates. The guard ring has the aim to minimize
lateral heat losses. When the steady-state conditions are reached, the thermal conductivity
is calculated according to the Fourier law, as reported in Equation (4) where the factor 2 is
present because the measure is performed on two samples:

λ =

.
Q · t

∆T · 2A
(4)

herein:
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•
.

Q is the thermal power input to the hot plate, generated electrically thanks to the Joule
effect;

• t is the average thickness of the sample, and ∆T is the temperature difference;
• A is the front area of the sample, equal to the hot plate area, i.e., 0.30 m × 0.30 m,

otherwise filling materials (spacers) have to be used;
• the factor 2 is present because the measure is performed on two samples.

4. Results and Discussion
4.1. Mechanical Tests

The mass and the dimensions of the specimens were measured before conducting the
tests in order to calculate the average unit weight of the geopolymer concrete that resulted
in approximately 2300 kg/m3, which is slightly lower than the density of OPC concrete.

Table 4 presents the results of the experimental program: the results of each specimen
are reported ( fi), then the mean value ( fm) of compression strength, tensile strength and
flexural strength with the associated coefficient of variation (COV = standard deviation
divided by mean value) are calculated according to the test age.

Table 4. Results of mechanical tests.

Property Test Age (Days) ID_specimen fi (MPa) fm (MPa) COV (%)

Compression
strength

7
GC_C1
GC_C2
GC_C3

23.21
21.29
28.70

24.40 16

14
GC_C4
GC_C5
GC_C6

41.75
50.36
50.68

47.59 11

28
GC_C7
GC_C8
GC_C9

42.04
47.51
29.71

39.75 23

90
GC_C10
GC_C11
GC_C12

33.76
24.58
23.28

27.21 21

Tensile
strength

28
GC_T1
GC_T1
GC_T3

3.52
3.19
2.96

3.22 9

90
GC_T4
GC_T5
GC_T6

2.41
2.48
2.68

2.65 8

Flexural
strength

28
GC_F1
GC_F2
GC_F3

6.02
6.49
6.14

6.22 4

90
GC_F4
GC_F5
GC_F6

5.70
5.93
5.71

5.78 2

According to previous studies [63,73,74], the experimental results showed that most
of the compression strength is gained already in the first 7 days from casting, but it is also
noted that the curing time consistently affected the performance. Indeed, the value of fcm
approximately doubled from tests performed at 7 days of curing to those at 14 days and
improved from 7 days to the long-time, but a reduction of about 16% and 43% has been
observed at 28 and 90 days compared to 14 days, respectively. Regarding the dispersion of
the data, a higher value of COV (up to 23%) affected the measures at curing times greater
than 14 days.
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All the measured properties at 90 days showed a degradation of the strength; this
effect could be related to the curing conditions in environments with high humidity or
with uncontrolled humidity, as happened for the tested specimens, which played an
important role in the development of compressive strength [75]. Indeed, when the products
are exposed to humid air the phenomenon of efflorescence, and sub florescence, might
occur due to the high alkalinity and the high mobility of alkalis, and the process of the
loss of alkalis can affect the compressive strength. In particular, the phenomenon of sub
fluorescence, which is not externally visible taking place under the surface of the material,
leads to crystallisation pressure, which may exceed the tensile strength of hardened binders
and generate structural damage [76,77]. The long-term strength loss was acknowledged
also by Humad et al. [78] especially for sodium silicate–activated mixes, like the one
analysed in this work, that showed a significant degree of carbonation with highly cracked
areas already after 12 months of storage in a laboratory environment (20 ◦C ± 2 ◦C and
40% ± 7% RH). However, further experimental tests are necessary to investigate the long-
term properties of the proposed mixture also with microscopic analysis, in order to have a
complete characterisation of the material.

As the reduction of compression strength was observed for curing times greater
than 14 days, the experimental mean values of compression strength, also indicating the
standard deviation for each experimental value, are plotted with reference to the inverse
of the test age (Figure 4). This allows the identification of an asymptotic value of strength
through a linear regression (with a coefficient of determination R2 = 0.94) that is equal to
25.2 MPa.
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Figure 4. Linear regression of the compressive strength as a function of the inverse of the curing time.

The behaviour of the AAC identified in this study does not reflect that of the ordinary
concrete cured in standard conditions for which the increase in strength is expected over
time. Therefore, the qualification rules in terms of control times and environmental condi-
tions used for the ordinary concrete cannot be applied to this material, but new procedures
need to be developed especially for the identification of the design strength. In particular,
if standardised mixtures are defined a specific set of tests in compression at different curing
times can be established (three ages at least) to extrapolate the effective resistance at a long
time by the proposed procedure.

In addition, the reduction of the compressive strength is relatively more considerable
than that of the tensile and flexural strength; the latter varies much lower compared to the
tensile strength showing also lower dispersion of data.

However, further analyses by monitoring the microstructural and mineralogical devel-
opments are needed to better understand the behaviour of the material also for durability
issues in the long term.
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Figure 5 shows the failure mode of the specimens typically obtained after the test.
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In order to analyse the tensile and bending resistance of AAC, it is useful to compare
the experimental results reported in Table 4 with those expected applying formulations
proposed by codes for OPC or by technical literature specific for alkali-activated materials.
In particular, the following standards and relationships for OPC are considered:

• Eurocode 2 (EN 1992) [79] for strength class of concrete C ≤ 50/60

fctm = 0.30 · ( fck)
2/3 with fck = fcm − 8 ; fc f m = 1.2 · fctm (MPa) (5)

• American Standards (ACI 318) [80]

fctm = 0.56·( fcm)
1/2; fc f m = 0.62 · ( fcm)

1/2 (MPa) (6)

where fctm and fc f m are the mean value of splitting tensile strength and flexural
strength, respectively, and fcm is the mean value of cylinder compression strength.

Various studies have acknowledged that geopolymer concrete shows a better perfor-
mance in tension compared to the provisions for OPC [35,48,49,81] especially for heat-cured
geopolymer concrete [47]. This aspect has led several authors to make attempts for the
development of new specific empirical correlations considering the experimental result
of all curing conditions and ages, instead, the previous research lacks new formulations
for the flexural behaviour. Ryu et al. [82] found that the splitting tensile strength ( fct)
with respect to the cylindric compressive strength ( fcm) is lower than that provided by
the formulae of ACI 363R-92 [83] and Model Code [84], proposing hence the following
Equation (7):

fct = 0.17( fcm)
3/4 (MPa) (7)

Other formulations based on experimental investigations were suggested by Lee-
Lee [85] (Equation (8)), Hardjito [86] (Equation (9)), Nguyen et al. [35] (Equation (10)) for
the splitting tensile strength fct as a function of the compressive cylinder strength fcm:

fct = 0.45( fcm)
1/2 (MPa) (8)

fct = 0.7( fcm)
1/4 (MPa) (9)

fct = 0.858( fcm)
0.41 (MPa) (10)

The comparison between the experimental values of the splitting tensile strength and
the aforementioned formulations is reported in Figure 6; the experimental results are used
considering the tests at 28 and 90 days of curing. The mean error between the experimental
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and the theoretical values (e =

√(
N
∑
i

((
fcti,exp − fcti,th

)
/ fcti,exp

)2
)

/N where N = 6 is the

number of measured values, fcti,exp and fcti,th are the value of tensile strength measured
from tests and calculated by codes, respectively) is calculated and reported also in Figure 6
for the various formulations.
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Figure 6. Comparison between the experimental values of tensile strength, the experimental relation-
ships for AAC proposed in the literature, and the standard relationships for OPC depending on the
compression strength.

The ACI formulation gives the best fitting, but it is unsafe, while quite the same fitting
is given by Equation (8) that is also safe because the raw materials used and the curing
conditions applied in this study are similar to those reported in Ref. [85]. Instead, the
difference between the other relationships proposed by the previous authors is probably
due to the variability of the aluminosilicate material used in the mixture composition;
therefore, it would be important to identify more standardised mixtures and achieve a
classification, also considering economic aspects, to be able to define reliable formulae of
the mechanical characteristics.

Considering the experimental measures from Figure 6, the regression with the same
approach of OPC is developed obtaining R2 = 0.91, which confirm the efficiency of the type
of formulation.

Regarding the tensile resistance in flexure, Figure 7 shows the comparison between
the experimental values and the theoretical ones calculated according to the standards
Eurocode 2 and ACI 318 for OPC as a function of the fcm; it results up to double of the
standard provisions, that is also double of the resistance measured in pure tension. In
Figure 7 the regression formulation of the experimental results is also reported in the
form fc f = k( fcm)

α, that seems the efficient approach for OPC. The improved flexural
performance of about 60% of geopolymer concrete with respect to the ACI prediction was
acknowledged also by Warhono et al. [87]. These results depend on the stronger connection
between geopolymer binder and aggregate. Indeed, according to Lee & Deventer [88],
the use of soluble silicates promotes greater interparticle bonding within the geopolymer
binders to the aggregate surface than the case of ordinary concrete, therefore it is more
difficult to cut the link between them. The higher cohesive behaviour does not improve
the tensile resistance but increases the ultimate bending moment due to a post-peak
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contribution of the constitutive relationship in tension, that results in a higher resistance
in flexure.
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4.2. Thermal Tests

Thermal conductivity is the most important thermal property that affects heat transfer
by conduction through concrete. The adoption, also for structural elements, of concrete with
low thermal conductivity, contributes to reducing the heat losses of the building envelope
and thus the building energy consumptions. Specifically, the thermal conductivity indicates
the quantity of heat transmitted through a unit thickness in a direction perpendicular to
a surface of the unit area, due to a unit temperature gradient under given conditions.
It influences the conduction heat transfer. Two geopolymer panels have been used for
the measurement of thermal conductivity. The operation temperature of such panels,
considering typical ranges for the buildings, can generally vary between −10 ◦C and 50 ◦C
in most climatic zones, worldwide. Therefore, this latter property is measured at three
temperature (T) levels, i.e., −10 ◦C, 20 ◦C and 50 ◦C. In this regard, a temperature difference
(∆T) of 6 ◦C between the hot plate and cold ones is set in all cases. Table 5 shows the results.

Table 5. Measurements of thermal conductivity.

λ (W/m K) at −10 ◦C λ (W/m K) at 20 ◦C λ (W/m K) at 50 ◦C

0.51 ± 0.01 0.57 ± 0.01 0.64 ± 0.01

First of all, it can be noted that the thermal behavior varies with the operative tem-
perature since the thermal conductivity can increase by more than 25% from −10 ◦C to
50 ◦C. However, there is a regular slope of around 12% each 30 ◦C of temperature variation.
A slight increase was expected but the magnitude of the increment is not comparable
with other values in the literature because researchers usually give only the measurement
with one operative condition or considering extreme ranges of variation (20–800 ◦C). For
instance, Wang et al. [89] for the fly ash concrete have found that the thermal conductivity
reduced from 1.69 to 0.95 W/m K with temperature increment from 20 ◦C to 550 ◦C. Briefly,
when the temperature exceeds the conventional value of a moderate environment, the
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changing of λ-value is attributable to chemical and physical changes in the concrete struc-
ture that is heterogeneous and permeable. Kim et al. [90] have stated that the humidity
specimen’s condition and aggregate volume fraction are the main effective factors on the
thermal conductivity of concrete. considered the effect of seven factors on the thermal
conductivity of cement paste, mortar and concrete. For this reason, the values in Table 5
seem to suggest that the thermal conductivity, as the compressive strength, is influenced by
the moisture content and thus the phenomenon of efflorescence and sub florescence also
affect the insulation property. Other investigations are needed for evaluating the incidence
of this phenomenon on long-term and the aging effect. Indeed, the installation in a humid
environment could compromise the effectiveness of the insulation or the application of
particular protective products with a high degree of breathability should be designed.

The value of measured thermal conductivity is influenced by the spatial spreading and
volume ratio of mixed elements and voids created during the process also of a high-density
material. For understanding the effect of adding slag and silica fume to the production
process, the value measured at 20 ◦C is compared with the thermal conductivity of other
geopolymer concrete (foamed or not) and traditional materials as reported in the scientific
literature. Figure 8 proposes the comparison of thermal conductivity of the tested sample
with other values measured and reported in the literature; herein:

• TC: traditional concrete with high density [91];
• MT: traditional mortar [91];
• CF1: modified concrete with fly ash (FA1) [91];
• OPSNFGC and OPSFGC15: oil palm shell respectively non-foamed and foamed

geopolymer concrete [92] utilizing waste materials such as low-calcium fly and palm oil
fuel ash as cementitious materials, and oil palm shell as lightweight coarse aggregate.

• FA30: concrete with fly ash in 30% cement replacement [93];
• FA+BSF: concrete with fly ash and blast furnace in 30% cement replacement [93];
• FC: foamed concrete with medium density [94];
• SF+SI: concrete containing 2% silane and 15% silica fume as admixture [95].
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Figure 8. Comparison between measured thermal conductivity and available data from experiments
in literature.

As seen from Figure 8, the experimental mixture exhibited lower thermal conductivity
compared to the conventional materials (MT and TC) with comparable density. The
results prove that the added materials give higher thermal resistivity compared to the
conventional mixture without compromising the structural performance. The reduction
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in the conductivity is about −40% compared to the modified concrete with fly ash and
blast furnace (FA30 and FA+BSF) also if the density is comparable thus the decrease in the
thermal conductivity cannot be attributed to the increase of void ratio that should decrease
the unit weight of concrete but to the property of slag and silica fume.

Moreover, it can be noted that the measured conductivity is comparable to non-foamed
geopolymer concretes (lower than −2.0%) and to foamed concrete but the density is higher
respectively of 28% and 44%. The improvement compared with the foamed concrete is
not expected because in this case, the improvement of thermal conductivity is due to
foaming agents that generate a large volume of artificial pores in hardened pastes, leading
to increasing the thermal resistance. However, the foamed binder pastes are usually not
suitable for structural purposes, due to their significantly low strength. Moreover, literature
findings indicate that for reducing the thermal conductivity of concrete two solutions can
be adopted, or the replacement of normal weight aggregates by lightweight aggregates
or the replacement of Ordinary Portland Cement by supplementary cementing materials;
however, these techniques generally compromise the mechanical properties as in the case
of foamed concrete.

Thus, the purpose of the proposed experiment is to demonstrate that the obtained
mixture conjugates good thermal and mechanical properties.

In addition to affecting the structural behavior, the higher value of density positively
influences the thermal inertia/capacity enhancement of the building envelope, which
is highly effective during the cooling season because it increases lag and attenuation of
the heatwave.

Finally, it wants to be remarked that this comparison is affected by several factors that
can modify the mix design of a specific mixture, and the final results can be largely get
affected by such parameters. In the future, some other mixes will be prepared and utilised
for comparison under the same thermal testing conditions.

5. Conclusions

In this research, the mechanical and thermal properties of alkali-activated concrete
produced by silica fume and GGBFS were investigated by experimental tests. The main
results are summarised below:

• A rapid setting of the mixture has been observed during the manufacturing process,
therefore, the difficult workability can be a challenge to face during casting;

• The compression strength of alkali-activated concrete is affected by test age and
significant performance is obtained already in the early days of curing;

• The long-term measured properties showed a degradation of the strength probably
due to the curing conditions in humid environments that could favor the development
of the sub fluorescence phenomenon and the carbonatation causing internal damage
to the material. In addition, it is necessary to define new qualification procedures and
identify more standard mixtures because AAC is sensitive to the curing regime. The
proposal could be a procedure with a fixed number of tests for various curing ages
and the extrapolation of the long-term resistance;

• The measured values of tensile strength fct is in good agreement with the formulation
proposed by ACI 318 for OPC, but it is unsafe, while quite the same good fitting
is obtained by Lee-Lee formulation that is also safe. However, other formulations
proposed in the literature for AAC and GPC do not give good fitting confirming the
strong dependence of the mechanical properties from the mix design;

• The experimental flexural strength resulted much greater (quite double) than the
values calculated applying the formulations of codes as a function of the compressive
strength or strength in pure tension. This phenomenon is due to a higher interparticle
bond between geopolymer binder and aggregate, but also in this case the result cannot
be generalised for all the mix designs. Anyway, the relation of the tensile strength in
flexure with the strength in compression is well fitted by a formula as fc f = k( fcm)

α;
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• The measured thermal conductivity is affected by the test temperature but the reference
value at 20 ◦C is 0.57 W/m K. This value is about 60% lower than traditional products
with the same density and 14% higher compared with foamed geopolymer concrete
with half the density value. The adoption of structural and non-structural building
components would help to reduce the heat losses (low thermal conductivity) but also
the overheating problem during the summer period (thanks to high density) and thus
the yearly energy consumption.

Finally, the results of the experimental campaign give preliminary information on
the potential of the proposed mix for the application in the construction sector as bearing
block or blocks for infill walls due to high compressive strength, good performance in
tension and lower thermal conductivity. Additional experimental and simulation studies
are needed both to complete the understanding from the mechanical side, such as in the
fields of multiaxial stress states and long-term mechanical properties, both to evaluate the
effect of different environmental conditions on the thermal conductivity and also to test the
amount of energy savings. Nevertheless, a standardisation of the mix design supported by
specific procedures of qualification (type, numbers and curing ages of the specimens) and
design formulations are necessary to really employ the material.
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