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Abstract: The fabrication of deep microgrooves has become an issue that needs to be addressed
with the introduction of difficult-to-cut materials and ever-increasing stringent quality requirements.
However, both laser machining and electrochemical machining could not fulfill the requirements of
high machining efficiency and precision with good surface quality. In this paper, laser and shaped
tube electrochemical milling (Laser-STEM) were initially employed to fabricate microgrooves. The
mechanisms of the Laser-STEM process were studied theoretically and experimentally. With the
developed experimental setup, the influences of laser power and voltage on the width, depth and
bottom surface roughness of the fabricated microgrooves were studied. Results have shown a laser
power of less than 6 W could enhance the electrochemical machining rate without forming a deep
kerf at the bottom during Laser-STEM. The machining accuracy or localization of electrochemi-
cals could be improved with laser assistance, whilst the laser with a high-power density would
deteriorate the surface roughness of the bottom machining area. Experimental results have proved
that both the machining efficiency and the machining precision can be enhanced by synchronous
laser-assisted STEM, compared with that of pure electrochemical milling. The machining side gap
was decreased by 62.5% while using a laser power of 6 W in Laser-STEM. The laser-assistance effects
were beneficial to reduce the surface roughness of the microgrooves machined by Laser-STEM, with
the proper voltage. A laser power of 3 W was preferred to obtain the smallest surface roughness
value. Additionally, the machining efficiency of layer-by-layer Laser-STEM can be improved utilizing
a constant layer thickness (CLT) mode, while fabricating microgrooves with a high aspect ratio.
Finally, microgrooves with a width of 1.79 mm, a depth of 6.49 mm and a surface roughness of 2.5 µm
were successfully fabricated.

Keywords: laser and shaped tube electrochemical milling; hybrid machining; microgroove; surface
roughness; machining efficiency

1. Introduction

Deep microgrooves, which have a width ranging from 0.7 mm to 2 mm and a depth
of greater than 3 mm, are widely used in the critical components of various areas such as
aerospace, medical, precision mold, and automotive manufacturing industries. Typically,
microgrooves have found wide applications including the annular grooves of the aero-
engine sealing parts, grooves of the turbine disc and the cooling channel of the rocket
engine combustion chamber [1,2]. The machining accuracy and the surface roughness of
microgrooves determine both the performance and life span of the equipment. With the
introduction of various types of difficult-to-cut materials and ever-increasing stringent
quality requirements, the fabrication of high-surface-quality microgrooves have posed a
great challenge for the existing machining methods.
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Mechanical machining methods have the defects of severe tool wear, poor chip re-
moval and heat dissipation [3,4]. Non-traditional machining processes, such as electrical
discharge machining (EDM), electrochemical machining (ECM), laser beam machining
(LBM), and hybrid machining methods, have been increasingly employed to fabricate
microgrooves. EDM removes material by a pulse spark discharge between electrode and
workpiece, with high efficiency. Chu et al. has processed deep microgrooves utilizing
the electrode jump motion in the EDM process and found that an electrode jump motion
speed of 36 m/min could effectively improve the processing efficiency and accuracy [5].
Flaño et al. employed a thin foil electrode in an EDM process and showed that the 4 mm
diameter holes in the electrode could reduce the processing time by 57% while machin-
ing microgrooves with a depth of 6.5 mm, and by 65% while machining 10 mm-depth
microgrooves, respectively [6]. LBM could also process microgrooves with the translation
of workpiece or laser beams in the lateral direction, with a high machining efficiency.
However, both the EDM and the LBM process inherently remove materials by thermal
effects, thus the processed microgrooves could always suffer from the recast layers and heat
affected zone (HAZ) [7]. Besides, with the increase of machining depth of the LBM process,
the surface quality and precision can deteriorate due to the difficulties in removing the de-
bris and the shielding effects of the laser-induced plasma plume. ECM removes workpiece
materials by the controllable anodic dissolution process, and the machining capacity is
not limited by the mechanical properties of workpiece materials [8,9]. Furthermore, ECM
could remove materials without tool wear, recast layers and heat-affected zone [10,11].
Hence, ECM possesses great potential in fabricating deep and narrow microgrooves with
high surface quality. Zhang et al. proved that microgrooves with a width of 1.32 mm
and a depth of 8.05 mm can be fabricated, utilizing the electrochemical milling with a
shaped tube electrode [12]. However, the machining efficiency of ECM is lower than other
unconventional machining methods, and the machining accuracy might be affected by
stray current corrosion.

To enhance the machining efficiency and precision of ECM, the hybrid machining
processes, which combine the ECM and other processes, have been increasingly proposed
such as the electrochemical grinding process, hybrid laser and electrochemical process, and
electric discharge and electrochemical process [13–15]. Hybrid laser and electrochemical
machining (LECM) take advantage of the high efficiency of LBM and good surface quality of
ECM [16]. Nowak et al. showed that laser-induced heating could accelerate electrochemical
dissolution in the passivation and trans-passivation zone during the laser-induced wet
chemical etching [17]. Long et al. utilized an excimer laser in the LECM process, and proved
that LECM could overcome the recast layer, heat-affect zone and thermal stress inherent
in LBM [18]. Tsao et al. revealed that laser assistance could accelerate the electrochemical
etching rate and improve the process localization [19]. Desilva et al. proposed that the
processing accuracy could be enhanced by 38%, and the materials removal rate (MRR)
could be increased by 54% and 33% while machining aluminum alloy and stainless steel,
during the laser-assisted jet electrochemical machining process [20]. However, to date,
previous research was mainly focused on the materials removal mechanism of LECM, and
the processability of microcavities of LECM. Few studies have considered the fabrication
of deep and narrow microgrooves utilizing LECM.

Hybrid laser and shaped tube electrochemical machining (Laser-STEM) utilize a hy-
brid tubular electrode as both the cathode for ECM and an optical guide for the laser
beam [21]. Laser-STEM combined the advantages of laser-material interaction, electro-
chemical machining, and laser-electrochemical interaction, which could make the material
removal efficiency on the front machining gap continuously maintained at a high level [22].
Compared with the pure STEM process, Laser-STEM could promote the machining pre-
cision and MRR by 60.7% and 122.7% [23]. Laser-STEM processes have the capability of
processing the large-depth small holes with a diameter of 1.25 mm and a depth of 5 mm on
an aluminum alloy workpiece, free of a recast layer, which has been fabricated [24]. How-
ever, as a hybrid machining process, the current research on Laser-STEM was limited to the
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processability of the high-aspect-ratio small holes and explores the optimum processing
parameters to improve the processing properties, such as machining efficiency, machining
precision, and surface quality. The feasibility of Laser-STEM in processing microgrooves
and three-dimensional microstructures has not been studied yet.

In this paper, the Laser-STEM process was introduced to the machining of deep and
narrow microgrooves. Ni-based superalloys, which are widely used in hot-end compo-
nents of aeroengines such as combustor and turbine arrangements, were utilized as a
work material [25]. A three-dimensional hybrid laser and shaped tube electrochemical
milling could be achieved by controlling the workpiece movement path, while taking
the advantages of laser-electrochemical coupling effects, laser processing and localized
electrochemical dissolution. Reaction products and heat could flow out of the machining
zone immediately by the high-speed flow of electrolytes from the inner hole of the hybrid
tubular electrode. The influences of laser power and voltage on the dimensions of the deep
microgrooves, machining efficiency and surface roughness of the laser-assisted shaped
tube electrochemical milling will be studied. Further, microgrooves with a large depth
were fabricated using layer-by-layer Laser-STEM with the constant inter-electrode gap
(CIEG) and constant layer thickness (CLT) mode.

2. Methods
2.1. Principles of Laser and Shaped Tube Electrochemical Milling

Figure 1 shows the mechanism of the hybrid laser and shaped tube electrochemical
milling (Laser-STEM), in which a tubular electrode was employed as both the tool cathode
and optical waveguide. The innermost layer of the tubular electrode was a capillary tube
with the optical refractivity lower than that of the electrolyte (n = 1.35), which served as a
total reflective layer of the laser beam. A hollow metal capillary with an outer insulating
coating on the external surface was adhered coaxially outside of the reflective layer and
worked as the electrochemical machining electrode. The electrode could feed into the
workpiece materials during the process similar to the tool electrode in the shaped tube
electrochemical machining process, realizing the synchronous coupling of the laser beam
and electrochemical reaction at the machining zone. The electrolyte flow was from the
inside channel of the electrode into the machining gap; thus the reaction products and heat
could flow out effectively.
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Figure 2 shows the schematic diagram of Laser-STEM for the fabrication of mi-
crogrooves and high-aspect-ratio microstructures. The electrode and workpiece were
connected with the negative and positive polarities of the high frequency pulse power
source, respectively. The initial interelectrode gap ∆ was pre-set between the end of the
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electrode and workpiece. Materials were removed under the synchronous coupling of the
laser and electrochemical reaction. During the processing, the target machining structure
was divided into several layers along the axis of the tubular electrode, the electrode could
travel along the programmed path layer by layer.
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Figure 2. Schematic diagram of Laser-STEM for the fabrication of microgrooves and three-dimensional microstructures.

2.2. Experimental Setup

The schematic diagram of the experimental setup for the Laser-STEM was shown
in Figure 3. A three-dimensional motion platform was utilized to achieve the precision
control of the relative motion between the hybrid tubular electrode and the workpiece.
The hybrid tubular tool electrode was clamped on the machining head and traveled along
the z-axis. A gantry frame structure made of marble was adopted as the base. The linear
displacement platform of the x-y axis was fixed on the marble platform, located below the
z-axis. The workpiece and the electrolytic cell were fastened on the x-y axis platform so that
the workpiece could move arbitrarily in the x-y plane. A laser source with a wavelength
of 532 nm was employed, because the laser attenuation coefficient at this wavelength is
smallest in water (4.5 × 10−4 cm−1), which could reduce the energy loss of the laser in
the electrolyte and thus improve the energy utilization efficiency. The laser beam traveled
by using the reflective mirrors and was focused on the entrance center of the hybrid
tubular tool electrode. The position of the laser focal point could be observed by the charge
coupled device (CCD) system, and the position of the electrode could be adjusted by a
multi-freedom micro-displacement device. A high frequency pulse voltage was utilized as
the energy source for the electrochemical dissolution. The electrolyte was filtered before
flowing into the hybrid tubular tool electrode with a filtering accuracy of 1 µm.
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3. Experimental Procedure and Materials

The effects of the parameters of the laser and high frequency pulse voltage on the
performance of Laser-STEM were studied utilizing the developed experimental setup.
The mechanism of the hybrid laser and electrochemical machining was studied under
the different laser power density and pulsed voltage. Comparison experiments were also
carried out with the shaped tube electrochemical milling (STEM). Inconel 718, with a
thickness of 10 mm, was utilized as the workpiece, and the other experimental parameters
are listed in Table 1. The electrode had an outer diameter of 1.2 mm and inner diameter of
0.5 mm, the retracted length of the electrode was set to 0.5 mm. The improvements of the
retracted electrode on the Laser-STEM have been studied in the previous research [26].

Table 1. Experimental conditions for hybrid laser and shaped tube electrochemical milling.

Parameter Value

Voltage (V) 10–16
Pulse frequency (KHz) 20

Duty cycle (%) 50
Electrolyte concentration (g/L) 12.5% NaNO3

Electrolyte pressure (MPa) 0.3
Electrolyte flow rate (mL/min) 100

Laser power (W) 1–6
Laser pulse width (ns) 16

Laser repetition frequency (KHz) 8
Wavelength (nm) 532
Temperature (◦C) 24

The initial interelectrode gap (IEG) was set to 0.2 mm using a short-circuit between
the end of the tubular electrode and the workpiece surface. The IEG was set by moving
the electrode back while the two electrodes contacted physically. The moving speed of the
hybrid tubular electrode was set to 1.8 mm/min, while the tool electrode moved along the
programmed trajectory in a lateral direction. The workpiece was cleaned ultrasonically
with ethylalcohol for 30 min after machining. A laser scanning confocal microscope
was utilized to measure three-dimensional morphology and surface roughness of the
machined microgrooves.

4. Results and Discussion
4.1. Effects of Laser Power on Laser-STEM

Microgrooves were fabricated by laser and shaped tube electrochemical milling with
the laser power increasing from 0 W to 10 W, with a single layer. Results showed that
while the laser power exceeded a threshold value of 6 W, the central machining area can be
directly removed by laser processing, resulting in a kerf along with an electrode moving
path at the bottom of the processed microgroove. Figure 4 shows the three-dimensional
morphology of the microgrooves machined at a laser power of 3 W and 8 W, respectively.
A microgroove, with a relatively flat bottom, was obtained with a laser power of 3 W. At
that laser power, the materials in the front machining gap could not be removed by laser
processing directly. The distribution of the laser power density was similar to the Gaussian
distribution. Thus, the materials removal rate in the central machining zone was much
higher than that of the side of the microgrooves because of the uneven distribution of the
laser power density in the machining zone. Microgrooves with a kerf on the center along
the machining path were obtained with a laser power of 8 W, as shown in Figure 4b. To
enhance the machining precision of the microgrooves, a laser power ranging from 0 to 6 W
was used. Thus, in this study, the workpiece materials were removed by laser-assisted
electrochemical machining. The laser-induced temperature rise could improve the electric
conductivity of the electrolyte at the machining area and enhance the diffusion rate of the
electrolytic products, contributing to a higher machining rate and localization, which are
studied in the following experiments.
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Figure 5 shows the variation of the width and depth of the machined microgrooves
with the laser power. A laser power of 0 W to 6 W was applied to the machining area.
Results showed that the depth of the machined grooves increased when the laser power
increased from 0 W to 6 W. The width of the microgrooves increased when the laser power
increased from 0 W to 4 W, and then decreased with a laser power of larger than 4 W. The
materials removal rate of the electrochemical machining was directly related to the electric
current density in the machining zone, based on Faraday’s law. The electric current density
of the electrochemical dissolution can be expressed as [27]:

iL = i0 exp
[

E0∆T
RT0(T0 + ∆T)

]
(1)

where T0 is the initial temperature of the processing zone, ∆T is the laser induced temper-
ature rise, i0 is the electric current density of the ECM without laser-assist, R is the gas
constant and Ea is the activation energy of the ECM. Hence, the laser-induced temperature
rise could improve the electric current density for electrochemical machining. Additionally,
the electric conductivity of electrolyte in the machining zone and the transport efficiency of
particles would be enhanced with the increased temperature. Thus, the materials removal
rate can be boosted with the increase of laser power, leading to an increase of the width and
depth of fabricated microgrooves. While the laser power was larger than 4 W, as shown
in Figure 5a, the localization of ECM was enhanced with the distribution of the current
density tending towards the front machining gap with a machining depth increase.



Materials 2021, 14, 7714 7 of 13

Materials 2021, 14, x FOR PEER REVIEW 7 of 14 
 

 

Results showed that the depth of the machined grooves increased when the laser power 
increased from 0 W to 6 W. The width of the microgrooves increased when the laser power 
increased from 0 W to 4 W, and then decreased with a laser power of larger than 4 W. The 
materials removal rate of the electrochemical machining was directly related to the electric 
current density in the machining zone, based on Faraday’s law. The electric current den-
sity of the electrochemical dissolution can be expressed as [27]: 

0
0

0 0

exp
( )L
E T

i i
RT T T
 Δ

=  + Δ 
 (1)

where T0 is the initial temperature of the processing zone, ∆T is the laser induced temper-
ature rise, i0 is the electric current density of the ECM without laser-assist, R is the gas 
constant and Ea is the activation energy of the ECM. Hence, the laser-induced temperature 
rise could improve the electric current density for electrochemical machining. Addition-
ally, the electric conductivity of electrolyte in the machining zone and the transport effi-
ciency of particles would be enhanced with the increased temperature. Thus, the materials 
removal rate can be boosted with the increase of laser power, leading to an increase of the 
width and depth of fabricated microgrooves. While the laser power was larger than 4 W, 
as shown in Figure 5a, the localization of ECM was enhanced with the distribution of the 
current density tending towards the front machining gap with a machining depth in-
crease. 

 
Figure 5. (a) Variation of the width and depth of the microgrooves fabricated by Laser-STEM with laser power. (b) Varia-
tion of the surface roughness Ra of the bottom of the microgrooves with laser power. 

Figure 5b shows the variation of surface roughness Ra at the bottom of the processed 
microgrooves with a laser power ranging from 0 to 6 W, and voltage 14 V. It was demon-
strated that the surface roughness Ra decreased sharply when the laser power increased 
from 0 W to 1 W, which could be attributed to the positive effect of the machined surface 
smoothness with an increase of electric current density for electrochemical dissolution 
[28,29]. The surface roughness of the bottom surface of the laser-assist electrochemical 
machined microgrooves was kept constant when the laser power increased from 1 W to 4 
W. Contrarily, the roughness Ra of the bottom surface increased while the laser power 
increased from 4 W to 6 W, due to an increased number of laser-induced cavitation bub-
bles in the machining zone. A micro-jet with high-pressure and high-speed was generated 
while the cavitation bubbles reached near the solid surface and collapsed [30], which 
would deteriorate the processed surface quality obtained by laser and shaped tube elec-
trochemical milling, as illustrated in Figure 6. 

Figure 5. (a) Variation of the width and depth of the microgrooves fabricated by Laser-STEM with laser power. (b) Variation
of the surface roughness Ra of the bottom of the microgrooves with laser power.

Figure 5b shows the variation of surface roughness Ra at the bottom of the pro-
cessed microgrooves with a laser power ranging from 0 to 6 W, and voltage 14 V. It was
demonstrated that the surface roughness Ra decreased sharply when the laser power
increased from 0 W to 1 W, which could be attributed to the positive effect of the machined
surface smoothness with an increase of electric current density for electrochemical dissolu-
tion [28,29]. The surface roughness of the bottom surface of the laser-assist electrochemical
machined microgrooves was kept constant when the laser power increased from 1 W to
4 W. Contrarily, the roughness Ra of the bottom surface increased while the laser power
increased from 4 W to 6 W, due to an increased number of laser-induced cavitation bubbles
in the machining zone. A micro-jet with high-pressure and high-speed was generated
while the cavitation bubbles reached near the solid surface and collapsed [30], which would
deteriorate the processed surface quality obtained by laser and shaped tube electrochemical
milling, as illustrated in Figure 6.
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During the Laser-STEM process, electrolyte flows out of the inner hole of the tubular
electrode and fills the processing gap. The fluctuating effect of cavitation bubbles could
produce a micro-stirring effect of the electrolyte, and the diffusion rate of reactive ions,
electrolytic products, and reaction heat within the machining zone could be enhanced. Thus,
the electric current density in the machining zone could be increased and the concentration
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polarization effect could be reduced. However, the cavitation bubbles collapsed, with
the energy diminishing after multiple fluctuations; a micro-jet impact would act on the
workpiece material nearby. The pressure on the surface of the workpiece under the micro-jet
impact generated by the bubbles collapse can be expressed as [31]:

Pj =
ρ1c1ρ2c2

ρ1c1+ρ2c2
vj (2)

where ρ1 and ρ2 are the density of the solution and workpiece, c1 and c2 are the propagation
velocity of sound in the electrolyte and workpiece, and vj is the impact velocity of the
micro-jet. It was suggested that the impingement pressure of the micro-jet could reach
400 to 500 MPa, and the micro-flow rate could exceed 100 m/s [32]. Hence, the machined
surface quality would be affected by the erosion effect of the micro-jet impingement.

The electrochemical polarization curves of workpiece materials were measured to
study the effect of electrochemical machining characteristics while a laser of different
powers was synchronized, coupling into the machining zone. As shown in Figure 7, the
electric current density of the electrochemical machining increased with an increase of
laser power, under the same voltage. Additionally, the over-passivation potential of the
workpiece surface increased while the laser power increased, which could be attributed to
a laser induced increase of the oxide layer thickness on the surface of the workpiece. Thus,
the materials removal rate can be enhanced with an increase of laser power.
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4.2. Effects of Voltage on Laser-STEM

Voltage was the crucial factor of the material removal rate and machining precision
in ECM. The voltage of 10 to 16 V was applied in Laser-STEM. Based on Ohm’s law,
both the electric current density and material removal rate increased with an increase
of voltage. Figure 8 shows the variation of the width and depth of the microgrooves
with the voltage, demonstrating that the laser could effectively improve the material
removal rate of the ECM process. As shown in Figure 8a, the depth of the microgrooves
increased with the voltage, rising from 10 V to 16 V, and the laser power rose from 0 to
6 W, which could be attributed to the enhancement of the high depth machining capacity
with the electric current density distribution on the end of the hybrid tubular electrode
with the increase of voltage. However, Figure 8b shows a decreasing trend of the width
of the microgrooves with the processing voltage while utilizing the synchronous laser
assistance in the machining zone. The electric current distribution at the front machining
gap increased when the laser was introduced to the ECM, and the machining capacity on
the high depth increase. The machining side gap decreased by 62.5% while using a laser
power of 6 W. Therefore, the synchronous laser assistance could enhance the machining
localization of electrochemical dissolution.
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Figure 8. Variation of the (a) depth and (b) width of the microgrooves processed by Laser-STEM with voltage and
laser power.

Figure 9 shows the variation of the surface roughness Ra of the microgrooves pro-
cessed by laser and shaped tube electrochemical milling with voltage and laser power. It
was observed that the surface roughness Ra decreased when the voltage ranged from 10 V
to 12 V, and then increased while the voltage ranged from 12 V to 16 V. The electric current
density is positively associated with processing voltage, hence, the surface roughness
decreased with an increase of current density while the voltage rose from 10 V to 12 V.
However, the reaction speed of laser-assisted ECM was accelerated with the voltage in-
crease. An uneven distribution of a large amount of reaction products was produced with a
rising reaction speed, which would lead to the inhomogeneity of the electrical conductivity
of the electrolyte and had an unfavorable impact on the uniformity of the material removal
rate. Hence, uneven transport efficiency of electrochemical machining products on the
front machining gap would affect the quality and roughness of the machined surface while
the processing voltage ranged from 12 V to 16 V, as shown in Figure 9.
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It was also found that the surface roughness Ra decreased when the laser power rose
from 0 W. It could be attributed to the enhancement of the electrochemical reaction products
diffusion efficiency on the reaction interface with the laser-induced local temperature rise.
The surface roughness Ra of the machined surface decreased with the improvement of the
uneven distribution of the electrochemical reaction products. The diffusion coefficient and
diffusion rate of ECM products were closely related to temperature (T). The relationship
between the diffusion coefficient (D) and the temperature (T) can be represented as [33]:

D = D0 exp(−Qd
RT

) (3)
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where D0 is the pre-exponential factor independent of temperature, Qd is the activation
energy of diffusion, R is the gas constant, T is the absolute temperature. The diffusion
coefficient of the ECM products increased with the temperature on the machining zone
increase due to the rise of laser power. Hence, the laser-assistance effect was beneficial to
reduce the surface roughness of the machined microgrooves, under certain processing volt-
age conditions. Further, results showed that the proper laser power of 3 W was preferred
to obtain the smallest surface roughness value, that is, the smoothest machining surface.

4.3. Effect of Scanning Mode on Layer-by-Layer Laser-STEM

To fabricate microgrooves or microstructures with a high aspect ratio, layer-by-layer
Laser-STEM was utilized. Each layer thickness could be set as a constant distance (constant
layer thickness mode, CLT) and a constant interelectrode gap mode (CIEG), as shown in
Figure 10b,c. Comparative experiments were carried out to study the difference between
the two proposed modes. Figure 10a shows the variation of the depth of the microgrooves
processed by electrochemical machining (ECM) and laser-assisted shaped tube electrochem-
ical machining (LECM) with the two modes, respectively. The voltage was set to 12 V and
the laser power was set to 6 W. Results showed the depth of microgrooves increased with
the increase of the scanning number n, while using the two modes, with and without laser
assistance. It was shown that the depth of the microgrooves machined by the CLT mode
was larger than the CIEG mode. The materials removal rate in each layer decreased with
the increase of the machining depth of the microgrooves due to the difficulties in removing
the electrolytic debris. Thus, the machining efficiency of the layer-by-layer laser and shaped
tube electrochemical milling could be enhanced utilizing the CLT mode. However, the
machining could not be continued in ECM while not using synchronous laser assistance
when the scanning number exceeded 4; this is attributed to the electric short-circuits as the
machining efficiency decreased at a large depth. In contrast, the machining depth could
increase with the scanning number n, through the contribution of the enhanced machining
efficiency of ECM assisted by the synchronous laser, as shown in Figure 10a. Besides, the
depth of the microgrooves machined by ECM and LECM in CIEG mode was almost the
same, which could be attributed to the limitation of the machining capability with a larger
front interelectrode gap.
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Figure 11 shows the three-dimensional profiles of the deep microgrooves machined by
layer-by-layer laser and shaped tube electrochemical milling with a constant layer thickness
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of 0.1 mm, a voltage of 16 V and a laser power of 6 W. The depths of the microgrooves were
2.5 mm and 6.49 mm, and the widths were 1.93 mm and 1.79 mm, respectively.
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5. Conclusions

In this paper, a laser and shaped tube electrochemical milling (Laser-STEM) process
was proposed to fabricate deep and narrow microgrooves. Influences of the laser power
and voltage on the depth, width and surface roughness of the microgrooves were studied,
theoretically and experimentally. The conclusions can be summarized as follows:

1. When the laser power exceeded a threshold value of 6 W, a kerf processed by high
power density was obtained at the bottom of the microgrooves. Microgrooves with a
flat bottom were obtained with a laser power of smaller than 3 W, where the materials
in the front machining gap were removed by laser-assisted electrochemical machining.

2. Results showed that the width of the microgrooves increased when the laser power
increased from 0 W to 4 W, and then decreased with a laser power larger than 4 W.
This contributed to increased machining efficiency of electrochemical machining due
to the laser-induced temperature in the machining zone. The machining side gap
decreased by 62.5%, while using a laser power of 6 W in laser and shaped tube
electrochemical milling.

3. With a laser power of 0–4 W, the surface roughness was enhanced by the increased elec-
tric current density due to the laser-induced high temperature in the machining area.
However, the surface roughness deteriorated, which was attributed to the intensified
erosion effects of the micro-jet while the laser-induced cavitation bubbles collapsed.

4. The laser-assistance effects were beneficial to reduce the surface roughness of the
microgrooves machined by Laser-STEM milling with the proper voltage. A laser
power of 3 W was preferred to obtain the smallest surface roughness value.

5. The machining efficiency of layer-by-layer laser and shaped tube electrochemical
milling can be enhanced utilizing the CLT mode while fabricating microgrooves with
a high aspect ratio. Microgrooves with a width of 1.79 mm, a depth of 6.49 mm and a
surface roughness of 2.5 µm were processed with a constant layer thickness of 0.1 mm,
a voltage of 16 V, a feeding rate of the electrode of 1.8 mm/min and a laser power
of 6 W.
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Laser-STEM combines the advantages of laser processing and electrochemical dissolu-
tion, but the contradiction between the coupling efficiency of laser power and dimension
of hybrid tubular electrodes has always been the bottleneck for the development of this
process towards miniaturization, the coupling scheme needing further optimizing. The
hybrid tubular electrode of a smaller dimension should be utilized in following studies.
The future development of the Laser-STEM process will cover the miniaturization of the
dimension of the hybrid tubular electrode and the fabricated structure. Additionally, the
travel trajectory of the tubular electrode should be controlled and optimized to fabricate
three-dimensional microstructures.
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