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The total cost and environmental consequences of corrosion problems have become
a major challenge to engineers [1]. Steel is known as an important engineering material,
mostly it has high corrosion resistance combined with favorable mechanical properties [2,3].
For example, the high corrosion resistance of stainless steel is attributed to the presence
of a passive film, which is stable, invisible, thin, durable and extremely adherent and
self-repairing [4,5]. However, in many aggressive environments, such as a chloride-ion-rich
environment or under physiological conditions, the surface is still observed to suffer from
corrosion. For example, reinforced concrete structures require continuous monitoring and
maintenance to prevent corrosion of the carbon steel reinforcement [6]. Therefore, in the
past two decades, the modification of metallic surfaces by various coatings, organic or
polymeric, has become part of an important procedure in enhancing particular surface
properties, such as scratch resistance, oxidation, and corrosion [7].

Stainless steels are commonly used materials in biomedical applications also because
of their good biocompatibility [8]. However, an increasing number of clinical procedures
require the development of materials with superior performance and higher reliability [9].
The major issues in biomedical applications are related to understanding the relationship
between the material’s surface properties and the cellular responses, accompanied by
the risk of microbial infections [10]. The interaction of nanoscale surface topographies
with cells was proven to play a crucial role in the biocompatibility of implants. Various
nanoscale surface modifications have been proposed in order to enhance the biocompati-
bility and antibacterial activity of medical implants [7,11]. Biocompatible polymers, such
as hydrophilic polyurethanes, poly(ethylene glycol), and poly(ethylene oxide) brushes,
are known to reduce bacterial adhesion by alternating the physicochemical properties
of the coating [12–14]. Epoxy resins are also extensively used to protect stainless steels
because of their good chemical resistance, mechanical properties, strong adhesion with
the substrate and corrosion protection by providing an effective physical barrier between
the metal and the biological environment [15,16]. Mechanical properties in combination
with biocompatibility can be further improved by adding nanoparticles into the epoxy
resin, i.e., biocompatible TiO2 nanoparticles [7,17]. An alternative approach in modifying
surface properties in terms of biocompatibility is treatment with highly reactive plasma,
which may alter stainless steel topography, chemistry, and wettability under appropriate
treatment conditions [18].

To conclude, the published papers indicate the scientific and technological relevance
of the topics covered by the Special Issue. Therefore, this Special Issue represents an
important contribution to the broader audience, which will result in an increased number
of article readings as well as citations.
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