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Abstract: The synthesis of Bio-MOF using aspartic acid as an organic linker and water as a solvent
was performed to create an environmentally friendly material. The chemical composition, structure,
and morphology of the synthesized zirconium Bio-MOF (MIP-202) was evaluated using X-ray
diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy
(TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The
synthesized Bio-MOF was used as an adsorbent for trimethoprim antibiotic as pollutants from an
aqueous solution under various operating parameters. The increase in the initial trimethoprim
concentration from 2.5 mg/L to 20 mg/L decreased the decontamination efficiency from 77.6% to
35.9% at a solution pH of 7 with 0.5 g/L adsorbent dose after 60 min reaction time. The rise of
adsorbent dose from 0.1 g/L to 1.5 g/L increased the removal efficiency from 47.7% to 87.6%. The
maximum trimethoprim removal efficiency of 95% was attained at a solution pH of 11. Langmuir
and pseudo-second order models described the adsorption process of trimethoprim antibiotic onto
zirconium Bio-MOF and the chemo-physical nature of trimethoprim adsorption onto the synthesized
zirconium Bio-MOF. Accordingly, it was evident that the prepared zirconium Bio-MOF (MIP-202) is
an ecofriendly and efficient adsorbent for antibiotic decontamination from polluted water.

Keywords: zirconium Bio-MOF; trimethoprim; adsorption process; antibiotic decontamination;
ecofriendly materials

1. Introduction

Metal−organic frameworks (MOFs) are constructed by linking metal ions with or-
ganic linkers [1]. MOFs are characterized by the large surface area, controllable size/shape,
uncommon physiochemical properties and high porosity [2]. According to the aforemen-
tioned characteristics, MOFs have been investigated for many applications such as gas
storage [3], sensors [4], separation [5], catalysis [6], drug delivery [7] and water purifica-
tion [8]. However, MOFs have some shortcomings such as insufficient stability and a small
pore size, which hinder their application for water treatment [9]. Adsorption is considered
one of the auspicious processes for water purification due to its simplicity [10]. Moreover,
this process does not produce any secondary pollutants [11]. Previous studies used porous
carbon, polymeric resin, clay, and agricultural waste as adsorbents, but the aforementioned
adsorbents are inefficient and expensive materials [12–16]. Therefore, it is necessary to
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develop efficient adsorbents at a low cost. Zr-based MOFs showed excellent stability and
high performance as adsorbents [17]. Qui et al. prepared UiO-66 (Zr-MOF) and achieved
excellent adsorption of anionic dyes [18]. Zhan et al. synthesized UiO-66 and UiO-67 for
the adsorption of acid orange 7 dye [19]. The MOFs are usually synthesized from toxic
metal ions and organic linkers using toxic solvents [20]. So, it is challenging to prepare
MOFs from less toxic inorganic metals and organic linkers using harmless solvents. An
ecofriendly Zr-based biocompatible MOF (MIP-202) was synthesized using aspartic acid
as a bio-organic linker. As both the inorganic Zr4+ metal and the organic aspartic acid
linker of MIP 202 are harmless to the human body, so, water was used as a safe solvent for
the synthesis of Zr-Bio-MOF for the complete production of an environmentally friendly
adsorbent material. The synthesized biocompatible Zr-Bio-MOF was employed as an
adsorbent of trimethoprim antibiotic from an aqueous polluted solution. Trimethoprim is
one of the commonly used antibiotics due to its ability to treat microbial infections caused
by a wide range of bacteria [21]. The frequent release of wastewater from pharmaceuti-
cal industries as well as domestic wastewater to water streams without an appropriate
treatment results in the existence of trimethoprim in the aquatic environment [22]. The
formation of bacteria resistant to antibiotics due to the spread of antibiotics in the aquatic
environment has attracted wide attention [23]. Therefore, it is urgent to remove antibiotics
from the wastewater before the discharge to water bodies.

In this study, biocompatible Zr-Bio-MOF was synthesized and analyzed using various
physico-chemical techniques to evaluate its morphology, chemical composition, and chemi-
cal structure. The synthesized Zr-Bio-MOF was employed as an adsorbent of trimethoprim
antibiotic from polluted wastewater. The effects of operating parameters such as pH, adsor-
bent dose, initial trimethoprim concentration, and reaction time on the removal efficiency
of trimethoprim were studied to elucidate the kinetics of the adsorption process.

2. Materials and Methods
2.1. Materials

Zirconium tetrachloride (ZrCl4, 99.5%) and L-aspartic acid (C4H7NO4, LA, 99.0%)
were obtained from Strem Chemicals Inc. (Newburyport, MA, USA) and Sigma Aldrich
Co., Ltd. (St. Louis, MO, USA), respectively. Deionized water was used as the solvent for
the preparation of all chemicals solutions. Ethanol (99.9%, CH3OH) was purchased from
Fisher Scientific. All chemicals obtained were used directly without further purification.

2.2. Synthesis of Bio-MOF (MIP-202)

In a 25 mL screw-capped jar, 0.7 g (5.26 mmol) of L-Aspartic acid was dispersed in
5 mL of deionized water. The dispersed powder of L-Aspartic acid was then sonicated in
an isothermal oven at 40 ◦C for 40 min to give a well-dispersed solution of the bio-organic
ligand. In another 25 mL screw-capped jar, 0.57 g (2.465 mmol) of ZrCl4 was completely
dissolved in 5 mL of deionized water under stirring for 5 min. Then, the solution of
ZrCl4 was added dropwise to the L-Aspartic solution with a stirring rate of 200 rpm.
Subsequently, the mixture was transferred to a 25 mL round-bottom flask and heated
at 373 K using reflux and the mixture was stirred for 12 h. After cooling the mixture to
room temperature, the precipitate was collected by centrifugation at 7000 rpm, washed
vigorously with deionized water and ethanol for three days, and subsequently dried in air.
The air-dried Bio-MOF sample was transferred to a vacuum chamber. The chamber was
first evacuated at room temperature for 5 h. Finally, the sample was dried under vacuum
at 70 ◦C for 12 h yielding the powder of MIP-202.

2.3. Experimental Procedures

The adsorption experiments were performed in a Pyrex beaker (250 mL) including
100 mL of trimethoprim solution. The solution was mixed using a magnetic stirrer (150 rpm)
to achieve continuous contact between the MIP-202 adsorbent and the trimethoprim antibi-
otic molecules, and samples were withdrawn every 15 min. The influences of adsorbent
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dose, pH, and initial trimethoprim concentration were investigated by changing the ad-
sorbent dose from 0.1 g/L to 1.5 g/L, solution pH was varied from 1 to 11, and the initial
trimethoprim concentration from 2.5 mg/L to 20 mg/L. All experiments were performed
at room temperature (25 ± 4 ◦C). The removal efficiency percentage of trimethoprim an-
tibiotic (R (%)) and the adsorption capacity of the Bio-MOF (qt) were measured according
to Equations (1) and (2).

R (%) =
Co − Ct

Co
× 100 (1)

qt (
mg
g

)=
Co − Ct

w
× V (2)

where R (%) is the removal efficiency of trimethoprim, Co is the initial concentration of
trimethoprim, Ct (mg/L) is the trimethoprim concentration at time (t), V(L) is the solution
volume, and w (g) is the adsorbent weight.

2.4. Analytical Methods

The concentration of trimethoprim antibiotic was detected using high pressure liquid
chromotography HPLC (Agilent 1200 series, Santa Clara, CA, USA), according to the
literature [21].

The X-ray spectra was recorded using a Shimadzu XRD-6100 with Cu–Kα radia-
tion (λ = 1.54 Å) to identify the crystalline structure. The morphology of the synthesized
Bio-MOF was investigated using scanning electron microscopy (SEM, JEOL JSM-6010LV)
equipped with energy dispersive X-ray (EDX) spectroscopy to specify the chemical com-
position of the synthesized Bio-MOF. The surface area and the pore size distribution of
the prepared MOF were determined using a Belsorp-max automated apparatus. The
prepared Bio-MOF was degassed at 200 ◦C for 5 h before measurement. To assess the chem-
ical states of the prepared Bio-MOF, an X-ray photoelectron spectroscopy (XPS, Thermo
Fisher Scientific, Waltham, MA, USA) analysis with X-ray Al kα radiation was used.
Photoluminescence spectra were recorded using an Agilent Cary Eclipse Fluorescence
Spectrophotometer. The thermal stability of the synthesized Bio-MOF was evaluated using
thermogravimetric analysis (TGA, TGA-50, Shimadzu, Kyoto, Japonia). The temperature
was increased from 25 ◦C to 1000 ◦C using nitrogen, and the weight of the sample was
measured during the temperature rise. The heating rate and flow rate were 10 ◦C/min and
40 mL/min, respectively.

2.5. Langmuir and Freundlich Adsorption Isotherm Models

The relation between the amount of the adsorbed pollutant on the adsorbent’s sur-
face at equilibrium and the effluent concentration were investigated using adsorption
isotherms [24]. Langmuir and Freundlich isotherm models were employed to analyze the
experimental data of the trimethoprim adsorption onto the Bio-MOF surface.

The Langmuir isotherm model is based on some assumptions, such as all adsorption
sites are identical in size and shape, the number of vacant sites is equal, and the vacant site
can be only occupied by one molecule [25]. Moreover, the Langmuir model assumes that
the same amount of heat energy is released during adsorption. Langmuir’s model can be
described in linear form as shown in Equation (3).

Ce

qe
=

Ce

qm
+

1
KL qm

(3)

where qe is the amount of trimethoprim adsorbed per 1.0 g of the adsorbent at equilib-
rium (mg/g), qm is the maximum amount of trimethoprim adsorbed on the unit mass
of the adsorbent (mg/g), KL is the Langmuir adsorption constant (L/mg), and Ce is the
concentration of trimethoprim at equilibrium (mg/L).
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The Freundlich isotherm model can be applied to the heterogeneous adsorption
process [26]. The Freundlich model can be represented in the linear form as depicted in
Equation (4).

Ln(qe) = ln(Kf) +
1
n

ln(Ce) (4)

where Kf and n are the Freundlich isotherm constants, Kf refers to the adsorption capacity
of the adsorbent, and n describes the favorability of the adsorbent.

2.6. Adsorption Kinetics

The adsorption mechanism and dynamics were studied using kinetic models, such
as the pseudo-first and second order models [27]. The kinetic behavior of the adsorption
reaction can be understood using pseudo-first order model as shown in Equation (5):

Ln(qe − qt) = ln(qe) − K1 × t (5)

where qe and qt are the amount of trimethoprim adsorbed on the unit mass of the adsorbent
at equilibrium and time (t), respectively. K1 is the constant of the pseudo-first order
model (min−1).

The pseudo-second order model can be presented as shown in Equation (6):

t
qt

=
1

K2
× 1

qe
2 +

t
qe

(6)

where k2 is the constant of the pseudo-second order model (g/mg/min).

3. Results and Discussion
3.1. Synthesis and Characterization of Bio-MOF

The synthesized MIP-202 crystalline structure is shown by X-ray diffraction (XRD)
in Figure 1. The PXRD pattern of the synthesized MOF exhibited distinct peaks at 8.5◦,
9.9◦, 13.9◦, 19.9◦, and 21.7◦, which were assigned to the (111), (200), (222), (420), and (440)
planes of MIP-202. The other peaks were imputed to the diffraction planes of MIP-202,
according to the literature. The stability of the synthesized MIP-202 was evaluated by
soaking MIP-202 in water for 24 h. The diffraction peaks of the soaked particles were
identical to the peaks of dry particles affirming the stability of MIP-202 in water. Therefore,
the synthesized MOF can be employed in water treatment applications.
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FTIR spectra, shown in Figure 2, for the synthesized MIP-202 demonstrates the char-
acteristic peaks of the Bio-MOF. The peaks at 1652 cm−1 and 1568 cm−1 were attributed
to the C-O and C-C stretching modes, respectively. The double characteristic peaks at
3490 cm−1 and 3380 cm−1 were appointed to the asymmetric and symmetric vibration of
the −NH2 groups, whereas the peaks at 1590 cm−1 and 1340 cm−1 were allocated to the
−NH2 bending vibration and the C−N stretching modes, respectively [3,5].
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Figure 2. FTIR spectra of prepared Bio-MOF (MIP-202).

Thermogravimetric analysis (TGA) was conducted in air to evaluate the thermal
stability of the synthesized Bio-MOF, as shown in Figure 3. A weight loss ratio of about 20%
observed at a temperature of nearly 240 ◦C was due to the loss of residual water molecules
and atmospheric gases trapped into the pores. The increase in temperature from 240 ◦C
to 450 ◦C increased the weight loss percentage to 56% as a result of the decomposition of
organic matter.
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The surface area and pore size distribution are shown in Figure 4. The estimated
surface area of the synthesized Bio-MOF was nearly 49.5 m2 g−1. The wide pore size
distribution confirmed the high porosity of the prepared MIP-202.
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Figure 4. N2 adsorption−desorption isotherms for the BET surface area of the prepared Bio-
MOF (MIP-202).

The chemical states of the synthesized MIP-202 were recorded by an X-ray photo-
electron spectroscopy (XPS) as shown in Figure 5. The XPS survey spectra affirmed the
existence of Zr, C, O, and N at the prepared Bio-MOF. The peak around 288.36 eV was
ascribed to C 1S. The peak around 401.37 eV was due to the presence of N 1S. The peak at
529.65 eV was appointed to O 1S. The peak at 182.38 eV was due to Zr 3d3/2, whereas the
peak at 184.76 was attributed to Zr 3d5/2.
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Figure 5. XPS analysis of the prepared Bio-MOF (MIP-202).

The morphology of the synthesized Bio-MOF is shown in Figure 6; it was evident from
SEM imaging that the material had a sphere-like structure. The size of particles ranged
from 70 to 80 nm, which confirmed the high surface area of the prepared MIP-202.
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Figure 6. SEM images at different magnifications of the prepared Bio-MOF (MIP-202), synthesized at
110 °C for 18 h in pure water.

The EDX analysis confirmed the simultaneous existence of C, O, N, and Zr. The small
chlorine content was due to the high interaction between chloride ions and +NH3 through
the pores of the prepared Bio-MOF during the preparation process.

3.2. Effect of Contact Time and Initial Trimethoprim Antibiotic Concentration

The effect of contact time on the removal efficiency of trimethoprim antibiotic is il-
lustrated in Figure 7. Contact time is one of the major factors that influences adsorption
efficiency. An initial experiment was conducted at a contact time of 120 min, initial trimetho-
prim concentration of 5 mg/L, pH of 7, and adsorbent dose of 0.5 g/L. The removal rate of
trimethoprim was high in the first 60 min due to the availability of vacant binding sites on
the adsorbent’s surface [28]. However, the removal efficiency of trimethoprim antibiotic
did not significantly increase by raising the contact time from 60 min to 120 min, as the
binding sites on the adsorbent’s surface became filled with the trimethoprim molecules [29].
All subsequent experiments were conducted at a contact time of 60 min.
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Figure 7. Effect of contact time on the removal efficiency of trimethoprim antibiotic at pH of 7, initial
trimethoprim concentration of 10 mg/L, and adsorbent dose of 0.5 g/L.

The influence of the initial trimethoprim concentration on the removal percentage
onto the synthetized MIP202 and its adsorption capacity is depicted in Figure 8. The
removal efficiency of trimethoprim antibiotic decreased from 77.6% to 35.9% by increasing
the initial trimethoprim concentration from 2.5 mg/L to 20 mg/L, at a pH of 7, a reaction
time of 60 min, and adsorbent dose of 0.5 g/L. The decrease in trimethoprim removal
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efficiency was due to the unavailability of binding sites on the adsorbent’s surface to uptake
trimethoprim molecules in the case of higher concentrations of trimethoprim. However,
the adsorption capacity of trimethoprim increased from 0.4 mg/g to 1.44 mg/g by raising
the initial trimethoprim concentration from 2.5 mg/L to 20 mg/L onto the synthetized
MIP202. This behavior may be due to the increase in trimethoprim concentration, which
acts as a driving force to overcome the mass transfer resistance of trimethoprim molecules
between aqueous phases and solid resulting in the increase in equilibrium sorption [30].
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Figure 8. Effect of initial trimethoprim concentration on the removal efficiency of trimethoprim
antibiotic and the adsorption capacity of Bio-MOF, pH of 7, contact time of 60 min, and adsorbent
dose of 0.5 g/L.

3.3. Effect of MIP-202 Dosage

The effect of the adsorbent dose on the removal efficiency of trimethoprim antibiotic
and the adsorption capacity of the Bio-MOF is shown in Figure 9. The rise in adsorbent
dose from 0.1 g/L to 1.5 g/L increased the removal efficiency of trimethoprim antibiotic
from 47.7% to 87.6%. This may be imputed to the existence of available adsorption sites
on the adsorbent’s Bio-MOF surface due its efficient high surface area [29]. However, the
adsorption capacity of trimethoprim declined from 2.4 mg/g to 0.29 mg/g by raising the
adsorbent dose from 0.1 g/L to 1.5 g/L. At a high dosage of adsorbents, an aggregation
and/or overlapping of the adsorbent may take place resulting in the decline of the surface
area available for antibiotic adsorption as well as the increase in diffusion path length [31].

3.4. Effect of Solution pH

Figure 10 shows the effect of pH on the removal efficiency of trimethoprim antibiotic at
the initial trimethoprim concentration of 5.0 mg/L, adsorbent dose of 0.5 g/L, and contact
time of 60 min. The solution pH greatly influenced the removal efficiency of trimethoprim,
as the solution pH changed, the adsorbent’s surface was changed as well as the charge
of the trimethoprim molecules [26]. The pka1 and pka2 of trimethoprim antibiotic were
3.2 and 7.2, respectively, so trimethoprim became negatively charged at a pH higher than
7.2 and positively charged at a pH lower than 3.2 [21]. The highest removal efficiency
of trimethoprim recorded as 95 % was achieved at a pH of 11. The increase in removal
rate at high pH values may be due to the attraction forces between the adsorbent and the
trimethoprim molecules.
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Figure 9. Effect of adsorbent dose on the removal efficiency of trimethoprim antibiotic and the
adsorption capacity of Bio-MOF, pH of 7, contact time of 60 min, and adsorbent dose of 0.5 g/L.
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Figure 10. Effect of solution pH on the removal efficiency of trimethoprim antibiotic, contact time of
60 min, and adsorbent dose of 0.5 g/L.

3.5. Langmuir and Freundlich Adsorption Isotherm Models

In the Langmuir isotherm model, the relation between Ce and Ce/qe was fitted to
estimate the Langmuir isotherm constants as shown in Figure 11a. The values of qm
and KL were estimated to be 1.62 mg/g and 0.315 L/g, respectively. The value of the
coefficient of determination (R2) was 0.99 affirming the appropriateness of the Langmuir
isotherm model to describe the adsorption of trimethoprim antibiotic onto the prepared
the Bio-MOF surface.

In the Freundlich isotherm, the relation between ln(qe) and ln(Ce) in Figure 11b was
fitted and the slope and the intercept of the aforementioned relation refer to the values
of 1/n and ln(Kf), respectively. The value of 1/n (0.4) was lower than 1 confirming that
trimethoprim antibiotic was favorable to be adsorbed on the prepared Bio-MOF surface.
The R2 in the case of Freundlich model was 0.95. The R2 in the case of the Langmuir model
was higher than the R2 using Freundlich model, so the Langmuir model better described
the experimental data confirming the chemical interaction between trimethoprim antibiotic
and the function groups at the MIP-202 Bio-MOF.
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3.6. Pseudo-First and Second Order Kinetics Models

The pseudo-first order constant is the slope of the relation between log (qe − q) and
time as shown in Figure 12a. The values of K1 and qe were 0.0643 min−1 and 1.23 mg/g,
respectively. The high value of R2 (0.95) indicated that the pseudo-first order kinetic model
was suitable to describe the adsorption process of trimethoprim antibiotic onto the prepared
MIP-202 Bio-MOF. The values of qe and K2 can be determined by measuring the slope and
intercept of the relation between (t/qt) and time in the case of pseudo-second order kinetic
model as demonstrated in Figure 12b. The values of K2 and qe were 0.029 g/mg/min
and 1.07 mg/g. The experimental equilibrium adsorption capacity (0.72) was near to the
estimated equilibrium adsorption capacity from the pseudo-second order model confirming
the applicability of this model. Moreover, the high value of R2 (0.99) affirmed the suitability
of the pseudo-second order model to describe the adsorption process. The value of R2

in the case of the pseudo-first order model was lower than the R2 of pseudo-second
order model, and the difference between the experimental and theoretical adsorption
capacity at equilibrium was lower in the case of the pseudo-second order kinetic model
confirming the appropriateness of second order kinetic model to describe the adsorption
process of trimethoprim antibiotic onto the prepared MIP-202 Bio-MOF, confirming the
physico-chemical adsorption process.
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linker and water as a solvent. The chemical composition and structure as well as the
morphology and thermal stability were evaluated using various analyses. The synthesized
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Bio-MOF was employed as an adsorbent for the removal of trimethoprim from aqueous
solutions. The effects of various operating parameters such as pH, contact time, initial
trimethoprim concentration, and adsorbent dose on the removal efficiency of trimethoprim
were investigated. The increase in contact time above 60 min did not significantly enhance
the removal efficiency. The increase in initial trimethoprim concentration decreased the
removal efficiency of trimethoprim, whereas the increase in adsorbent dose improved the
removal efficiency. The highest removal efficiency of trimethoprim antibiotic was achieved
at a pH of 11. The Langmuir model better described the adsorption process than the
Freundlich model. The pseudo-second order model was suitable to describe the adsorption
process confirming the chemical interactions between the studied water pollutant and the
prepared MIP-202 Bio-MOF.
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