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Abstract: Silica fume (SF) is a mineral additive that is widely used in the construction industry when 
producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement 
has several evident benefits, including reduced CO2 emissions, cost-effective concrete, increased 
durability, and mechanical qualities. As environmental issues continue to grow, the development 
of predictive machine learning models is critical. Thus, this study aims to create modelling tools for 
estimating the compressive and cracking tensile strengths of silica fume concrete. Multilayer 
perceptron neural networks (MLPNN), adaptive neural fuzzy detection systems (ANFIS), and 
genetic programming are all used (GEP). From accessible literature data, a broad and accurate 
database of 283 compressive strengths and 149 split tensile strengths was created. The six most 
significant input parameters were cement, fine aggregate, coarse aggregate, water, superplasticizer, 
and silica fume. Different statistical measures were used to evaluate models, including mean 
absolute error, root mean square error, root mean squared log error and the coefficient of 
determination. Both machine learning models, MLPNN and ANFIS, produced acceptable results 
with high prediction accuracy. Statistical analysis revealed that the ANFIS model outperformed the 
MLPNN model in terms of compressive and tensile strength prediction. The GEP models 
outperformed all other models. The predicted values for compressive strength and splitting tensile 
strength for GEP models were consistent with experimental values, with an R2 value of 0.97 for 
compressive strength and 0.93 for splitting tensile strength. Furthermore, sensitivity tests revealed 
that cement and water are the determining parameters in the growth of compressive strength but 
have the least effect on splitting tensile strength. Cross-validation was used to avoid overfitting and 
to confirm the output of the generalized modelling technique. GEP develops an empirical 
expression for each outcome to forecast future databases’ features to promote the usage of green 
concrete. 
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1. Introduction 
Global warming is widely believed to be the primary contributor to greenhouse gas 

(GHG) emissions, with CO2 being the most abundant and strongest influence of all GHGs 
[1,2]. Around 5–7 percent of global CO2 emissions are attributed to the cement industry 
[3]. Due to its mechanical and durability features, concrete is a widely used building 
material [4]. Around 8% of CO2 emitted during the concrete making process contributes 
to global warming [4,5]. Concrete is expected to be manufactured at a rate of 20 billion 
tons per year, making it the second most frequently utilized substance on the planet after 
fresh water. Apart from its benefits, concrete is harmful to the Earth and human health 
and has long-term negative consequences on the natural environment and atmosphere 
[6]. It expands the human footprint by creating living space out of thin air, spreading 
across fertile topsoil, and impeding biodiversity. The biodiversity crisis is the primary 
focus of research, as it is one of the most serious dangers to a sustainable ecosystem and 
is mostly caused by urbanization. For hundreds of years, humans have longed for the 
dubious benefits of concrete to overlook this environmental drawback. However, the 
balance is currently shifting in the opposite direction. At times of unsettling transition, 
solidity is an alluring quality that can create more problems than it can resolve [7]. 

The most energy-intensive stage of the cement manufacturing process is clinker 
production, which accounts for half of all CO2 emissions from concrete (produced by 
calcareous and clay minerals in the kiln). Nearly 900 kg of CO2 is emitted during the 
manufacturing of a ton of cement. It must be heated to extremely high temperatures 
during the cement manufacturing process to generate clinkers. Cement is made by 
grinding clinker to a fine powder and then mixing it with gypsum (Ca3SiO5), sometimes 
called alite. It is generated during the clinker production process and gives an excessive 
early strength. Alite must be maintained at a temperature of 1500 °C during this process 
[8,9]. According to some studies, alite can be replaced by various naturally occurring 
minerals that require a lower roasting temperature than alite. Carbon emissions from 
concrete have long been a source of concern for both the academic and industrial sectors 
[10]. Numerous techniques have been proposed to address this issue, one of which asserts 
that we can achieve sustainability by completely or partially replacing cement with 
readily available natural materials [11–13]. Extra cementitious materials such as silica 
fume (SF) have been employed to partially replace cement in concrete mixtures to offset 
the cement industry’s CO2 emissions [14–17]. SF is a significant by-product of the silicon 
metal manufacturing sector. Silicon metal is a semi-metallic element that exhibits various 
metal-like properties. After oxygen, silica is the second most abundant element in the 
Earth’s crust, occurring primarily in the form of silicon dioxide or silicates but also in its 
pure state [18]. 

SF is a toxic substance that has a deleterious effect on the atmosphere and its 
surroundings. Until the mid-1970s, nearly all silica fume was released into the 
environment. As environmental worries about SF grew, it was being used in a variety of 
applications. SF is composed of extremely small particles and a high concentration of 
amorphous silicon dioxide, making it a highly pozzolanic material. Due to its amorphous 
structure, it is extremely reactive. They are spherical and possess a substantial surface 
area. Because SF particles are 100 times smaller than cement particles, they are entirely 
packed with cement grains and also react with calcium hydroxide to generate more CSH, 
resulting in the earlier strength [16,19–21]. Due to its small size, it enhances the packing 
density of concrete. They are also significantly more advantageous in terms of strength. 
Additionally, due to its superior qualities, SF concrete has been widely employed in high-
strength and high-performance concrete for highway bridges, maritime structures, and 
parking decks [14,22,23]. Figure 1 represents the advantages of silica fume in concrete. 
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Figure 1. Silica fume benefits in concrete. 

Numerous experimental studies have been conducted to determine concrete’s short- 
and long-term mechanical characteristics when various quantities of fine aggregate or 
cement are replaced with SF [24,25]. According to the literature, replacing 15% of the SF 
content improves the mechanical properties of SF, including compressive strength, initial 
strain owing to creep, and modulus of elasticity. However, higher concentrations result in 
a reduction in concrete creep over time [26]. The strength development of SF-based 
concrete is temperature-dependent, material size-dependent, and silica content-
dependent. Between 3 and 28 days is when the majority of the strength contribution occurs 
at a typical curing temperature. After 28 days, the additional strength conferred by SF is 
negligible. The substitution of SF for cement in the range of 5–25% with a water to binder 
ratio of 0.26–0.42 increases compressive strength by approximately 6–30% [13]. The 
compressive strength of silica fume concrete (SFC) can be greatly enhanced by adjusting 
the water–cement ratio between 10% and 20% [26]. Increases in the water–cement ratio of 
SFC resulted in a decrease in the overall strength of concrete. The compressive strength of 
concrete is reduced by 27% after 28 days when the water–cement ratio increases by 0.05% 
with a 15% SF concentration [27]. Numerous factors affect the qualities of concrete, 
including the proportions of cement, sand, aggregate, and water. The proportion of these 
components in concrete impacts its strength and durability. The mechanical 
characteristics of concrete exhibit anomalous behavior at various mix ratios incorporating 
additives including silica fume. To accommodate this behavior and to facilitate the 
widespread use of SF in concrete, a link between the mechanical properties of SF and the 
proportion of materials used in concrete is required to support sustainable development. 
To develop this link, various artificial intelligence modelling approaches are used, and 
empirical models are constructed to promote sustainable growth. SFC design must take 
into account fundamental mechanical qualities such as compressive strength and splitting 
tensile strength. 
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Additionally, SFC mixtures must be cost-optimized to attain desired attributes by the 
effective proportioning of SFC components. Traditionally, laboratory-prepared test 
batches have been used to ensure that these criteria are met, and that building 
specifications are followed [28]. Because a laboratory can only produce a finite number of 
tests, experimental procedures can generate well-performing, rather than best-
performing, quantities of SFC combinations. Computational modelling approaches may 
be a viable alternative to laboratory-based mixture optimization due to their time-saving 
nature. These approaches begin by developing objective functions between the inputs 
(concrete ingredients) and outputs (properties), and then employ optimization algorithms 
to determine the optimal concrete mixes. Traditionally, goal functions have been 
developed for linear or nonlinear models [29]. However, because the relationships 
between concrete properties and controlling factors are highly nonlinear, the coefficients 
of these models cannot be determined exactly [5]. As a result, researchers are employing 
machine learning (ML) approaches to predict concrete qualities. 

Historically, various machine learning techniques have been used to predict concrete 
qualities such as the modulus of elasticity, compressive strength, splitting tensile strength, 
and so on. Among machine learning algorithms, multilayer perceptron neural networks 
(MLPNNs) [30–34], support vector machines (SVMs) [35], genetic engineering 
programming (GEPs) [36–40], and deep learning (DL) [41–43] were the most often 
utilized. Ling et al. [44] used SVM in conjunction with k-Fold cross-validation, an artificial 
neural network (ANN), and a decision tree (DT) to forecast concrete strength degradation 
in a marine environment. SVM anticipated the expected results with greater accuracy and 
demonstrated superior performance compared to the other two approaches. Additionally, 
Motamedi et al. [45] extended the SVM-based analysis to a more sophisticated screen and 
determined the unrestricted compression capacities of cement-sand cockle-coated 
combinations. Chithra et al. [46] developed an ANN technique for predicting the strength 
of copper slag and nano-silica concrete. Tanyildizi et al. [47] used SVM and ANN to 
predict lightweight concrete’s compressive and flexural strengths reinforced with carbon 
fiber. The ANN approach achieves a higher level of accuracy, with R2 values of 0.99 and 
0.96 for compressive and flexural strength, respectively. Naderpour et al. [48] used ANN 
to forecast the compressive strength of recycled aggregate concrete and building waste 
concrete. 

Similarly, Kadir et al. [49] predicted compressive strength using ANN, DT, SVM, and 
linear regression approaches. It was discovered that the DT approach accurately predicted 
compressive strength values and outperformed others. Awoyera et al. [50] used GEP and 
ANN to construct models to forecast the strength properties of geopolymer self-
compacting concrete made from raw ingredients. The author found that the GEP model 
outperformed the ANN model by providing an empirical relationship for predicting 
output parameters. Similarly, Ziolkowski et al. [51] investigated the role of ANNs in 
forecasting concrete’s compressive strength. Mathematical equations for creating the 
aforementioned output were generated. Chopra et al. [52] used DT, RF, and ANN to 
forecast the compressive strength of concrete for 28, 51, and 90 days. Statistical parameters 
including the coefficient of determination (R2) and root mean square error (RMSE) were 
used for the evaluation of models. Based on these statistical indicators, it was concluded 
that RF predicted the best results, followed by ANN. Han et al. [53] also highlighted the 
utility of machine learning algorithms for calculating the strength of reinforced concrete 
materials with high accuracy. Similarly, Table 1 outlines research on machine learning 
conducted by researchers employing waste materials.  
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Table 1. Prediction of Concrete Properties by using Waste Material. 

S. 
No 

Algorithm Name Notation Dataset Prediction Properties Year 
Waste Material 

Used 
References 

1 Artificial neural network ANN 300 Compressive strength 2009 FA [54] 
2 Artificial neural network ANN 80 Compressive strength 2011 FA [55] 
3 Artificial neural network ANN 169 Compressive strength 2016 THE [56] 
4 Artificial neural network ANN 69 Compressive strength 2017 FA [33] 
5 Artificial neural network ANN 114 Compressive strength 2017 FA [57] 
6 An adaptive neuro-fuzzy inference system ANFIS 55 Compressive strength 2018  [58] 

7 Random Kitchen Sink algorithm RKSA 40 

V-funnel test 
J-ring test 
Slump test 

Compressive strength 

2018 FA [59] 

8 Multivariate adaptive regression spline 
M5 

MARS 
114 

Compressive strength 
Slump test 
L-box test 

V-funnel test 

2018 FA [60] 

9 Artificial neural network ANN 205 Compressive strength 2019 

FA 
GGBFS 

SF 
RHA 

[61] 

10 Random forest RF 131 Compressive strength 2019 
FA 

GGBFS 
SF 

[62] 

11 
Intelligent rule-based enhanced multiclass support vector 

machine and fuzzy rules 

IREMSVM-FR 
with 
RSM 

114 Compressive strength 2019 FA [63] 

12 Support vector machine SVM  Compressive strength 2020 FA [64] 

13 Multivariate MV 21 Compressive strength 2020 Crumb rubber 
with SF 

[65] 

14 Biogeographical-based programming BBP 413 Elastic modulus  
SF 
FA 

SLAG 
[66] 

15 Support vector machine SVM 115 

Slump test 
L-box test 

V-funnel test 
Compressive strength 

2020 FA [67] 

16 Adaptive neuro fuzzy inference system 
ANFIS with 

ANN 
7 Compressive strength 2020 POFA [68] 

17 
Data envelopment 

analysis 
DEA 114 

Compressive strength 
Slump test 
L-box test 

V-funnel test 

2021 FA [69] 

The novelty of this study is two-fold. First of all, the compressive and tensile 
strengths of SFC were predicted using MLPNN and ANFIS. Secondly, a GEP model was 
constructed for each outcome, comprising equations and an expression tree. Then, 
machine learning techniques were compared to the GEP model. According to the authors, 
there is no comparable study in the literature that uses ensemble machine learning and 
GEP for SFC. Numerous statistical variables were employed to evaluate the predictive 
accuracy of machine learning algorithms. This project aims to promote the use of SF in 
concrete and to perform investigations focusing on carbon footprint reduction. We want 
to make concrete more environmentally friendly by employing computational tools to 
optimize the use of SF as an additive or a replacement material in concrete for more 
sustainable development. This article discusses the use of advanced machine learning 
algorithms to investigate the behavior of SFC and how they were used to develop the most 
environmentally friendly concrete. 
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2. Algorithms for Machine Learning 
Machine learning (ML) is a relatively new topic of artificial intelligence that is 

commonly utilized in the construction industry to forecast the behavior of materials [5]. 
As indicated in Figure 2, the current work applied machine learning techniques to 
estimate the compressive and split tensile strengths of SFC by applying MLPNN, ANFIS, 
and GEP. These approaches are deemed to be the most effective data prediction 
algorithms and were chosen based on their widespread use in similar research. The next 
section provides an overview of the AI and machine learning methodologies used in this 
research. 

 
Figure 2. Machine learning algorithms. 

Machine learning models are extremely efficient in terms of computation and 
processing time. When compared to traditional models, it reduces error rates to virtually 
insignificant levels. The research establishes an empirical model between the mechanical 
properties of SFC and the mix proportions using various machine learning approaches 
and then compares the findings to forecast the best model among them. Among the major 
machine learning techniques, this article discusses MLPNN (a kind of ANN), ANFIS, and 
GEP. The following section briefly discusses the various modelling strategies employed 
in this study. 

2.1. Multilayer Perceptron Neural Network (MLPNN) 
The MLPNN algorithm consists of neurons, which are called the perceptron. These 

networks are based on a single output from multiple inputs by producing nonlinear 
mapping among input and output vectors. The complex neural networks are based on the 
basic multilayer perceptron (MLP) model. The capacity to predict neural networks derives 
from the hierarchical or multi-layered network structure [70]. 

These networks consist of three steps; in the forward pass, the model input is 
forwarded and multiplied by weight, the bias is applied to each sheet, and the measured 
model output is determined. Predicted outputs are evaluated that match the given inputs. 
Loss is determined after the forward exit. The output model provides predicted results 
after taking the input parameters. The failure can be compared with predicted results by 
means of the back-propagation algorithm. Different loss functions are used depending on 
our performance and requirements. The backward pass propagates partial derivatives of 

Start Literature Review Data 

 

Prediction Phase 

MLPNN, ANFIS & GEP Optimization phase 

Best Model Conclusion 

End 



Materials 2021, 14, 7531 7 of 29 
 

 

the cost function concerning the various parameters back into the network. In this process, 
there is back-propagation loss and the weights of the model are updated using gradient 
descent. An MLP contains a minimum of three layers of nodes: an input, hidden, and 
output layer. This network has three layers: the input layer on the left side with three 
neurons, the hidden layer in the middle with three neurons with nonlinear mapping, and 
the output layer on the right with one neuron, as seen in Figure 3. 

 
Figure 3. Typical neural network architecture. 

2.2. Adaptive Neural Fuzzy Detection System (ANFIS) 
Jang was the first to introduce the adaptive network-based fuzzy inference 

technology. It is a remarkable computational intelligence model that combines the 
learning capabilities of ANNs with the reasoning capabilities of fuzzy logic. ANFIS has a 
better estimating ability and is a better approach for computing nonlinear complicated 
problems with greater precision. ANFIS uses input–output sets and a series of IF–THEN 
fuzzy rules to incorporate the human-like reasoning style of fuzzy inference systems (FIS). 
FIS contains structured knowledge in which each fuzzy rule defines the system’s local 
behavior, but it lacks the adaptability to deal with a changing external environment. As a 
result, FIS has been updated to include neural network learning techniques, resulting in 
ANFIS. The basic learning method of the network, back propagation, tries to reduce the 
prediction error. The learning skills of a neural network and the reasoning capabilities of 
fuzzy logic were integrated in ANFIS for the reasons stated above. The ANFIS model is 
especially effective in a variety of engineering applications when data is inconsistent or 
nonlinear, where conventional methods fail or are too complicated to employ. Various 
adjustments were done in order to produce the most efficient ANFIS model with the 
minimum possible error size. 

ANFIS is made up of various layers, as shown in Figure 4. ANFIS structure with two 
inputs and one output is shown in this diagram, which is made up of four membership 
functions and four rules. According to the ANFIS structure shown in Figure 4, the layer 
structure of ANFIS is detailed below. The first layer is known as the fuzzification layer. 
To generate fuzzy clusters from input values, the fuzzification layer employs membership 
functions. The rule layer is the second layer. The rules’ firing strengths are calculated 
using membership values derived in the fuzzification layer. The normalizing layer is the 
third layer. It determines the normalized firing strengths of each rule. The ratio of the ith 
rule’s firing strength to the total of all firing strengths is the normalized value. The fourth 
layer is known as the defuzzification layer. In each node of this layer, weighted values of 
rules are determined. The summation layer is the fifth layer. The actual output of ANFIS 
is obtained by summing the outputs obtained for each rule in the defuzzification layer. 
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Figure 4. Flow chart of ANFIS. 

2.3. Genetic Algorithm and Gene Expression Programming 
Genetic algorithms (GA) were first introduced by John et al. and are known as genetic 

expression [71]. The introduction of GA in the field of artificial intelligence is evolutionary 
and has overcome many limitations. GA are computer-based models that work on the 
evolution mechanism of nature. GEP consists of two primary parts known as tree 
expression (ET) and chromosomes [71]. The mathematical information or function is 
encoded in the chromosome and then this information is used to build the initial 
chromosome which is then converted into ETs [72]. These expression tree values are 
translated by means of language used and written in the form of mathematical expression 
[73]. The GA starts with the random creation of the chromosome based on individual 
programs [74]. Subsequently, the fitness of each chromosome is evaluated; based on 
fitness results, the procedure of reproduction is applied until the best chromosome is 
obtained. This chromosome is then extracted to pass them to the next generation. This 
process is continued unless the chromosome with the best survival and the best fitness 
value is obtained. The GEP model contains five parameters having the same analogy to 
GP, including terminal set, fitness function, control parameters, function set, and terminal 
conditions. The basic steps and parameters are represented in Figure 5. 
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Figure 5. Flow chart of the GEP [73]. 

3. Modeling Dataset and Model Development 
The silica fume concrete (SFC) database was constructed using data from 22 

internationally published investigations [26,28,75–88]. Figures 6 and 7 illustrate the 
frequency distribution and statistical description of the database, which contains 283 
compressive tests (fc) and 149 split tensile strength tests (fst). The mean, standard 
deviation, median skewness, maximum and minimum ranges of metrics, as well as the 
maximum and minimum ranges of parameters, are reported in Table 2 and Table 3. 
Gandomi et al. [89] recommended that the minimal ratio between the input variables and 
the database be three, and that it should be greater than five for reliable models. The ratios 
are substantially higher in this work using 283 databases for compressive strength and 
149 databases for split tensile strength with six input factors, i.e., 47.17 and 24.83, 
respectively. Prior to constructing a model, the primary process that influences the SFC’s 
attributes is input selection. The constituents with the greatest influence on the properties 
of concrete are isolated in order to construct a generalized function. Concrete properties 
are studied as a function of Equation (1). 

fc, fst (MPa) f(C, FA, CA, W, SF, SP) (1) 

These variables have an effect on the model’s strength forecast. With the intended 
output (f’c and fst), the relationship between these input variables is calculated. Table 4 
and Table 5 list the lowest and maximum ranges of input variables that are functions of 
outputs, along with their ranges. Other variables also affect the characteristics of concrete, 
although their effect on the desired output of SFC is minor. Machine-learning empirical 
models were developed using training data (80% of total data) and then applied to 
validation data (20% of total data) to determine the model’s precision and accuracy [90]. 
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The database, which was compiled from the literature, provides data on the % of SF 
replacement, water-to-binder ratios, the specific gravity of fine aggregate and SF, the 
fineness modulus of SF, and the superplasticizer fractions used to preserve workability. 
A database’s training set is utilized to build a model, whereas the built-in model is 
evaluated using test data or a validation set [5]. 

Table 2. Statistical Description of Data in the Model for Compressive Strength (Kg/m3). 

Parameters Cement Fine Aggregate Coarse Aggregate Water 
Silica 
Fume Superplasticizer 

Statistical description   
Mean 393.48 702.90 1062.41 185.15 38.25 2.56 

Std error 3.92 13.44 10.88 1.84 2.27 0.35 
Median 383.15 653.00 1040.00 175.00 26.25 0.00 
variance 4359.48 51,138.84 33,530.89 963.29 1469.97 34.80 
Std. dev 66.02 226.13 183.11 31.03 38.34 5.89 
Kurtosis −0.15 −0.51 0.20 3.66 0.57 30.00 

Skewness 0.15 0.11 0.61 1.50 1.11 4.97 
Range 376.00 985.36 728.00 178.87 150.00 43.00 
Min 224.00 184.63 702.00 135.00 0.00 0.00 
Max 600.00 1170.00 1430.00 313.87 150.00 43.00 
Sum 111,354.90 198,941.50 300,663.20 52,397.59 10,827.33 726.11 

Count 283.00 283.00 283.00 283.00 283.00 283.00 
Training Dataset 

Mean 393.14 697.76 1067.67 185.80 36.78 2.65 
Std error 4.41 14.67 11.94 2.15 2.56 0.42 
Median 382.82 653.00 1040.00 176.00 26.25 0.00 
variance 4404.11 48,659.21 32,197.86 1045.27 1483.09 40.60 
Std. dev 66.36 220.59 179.44 32.33 38.51 6.37 
Kurtosis −0.14 −0.38 0.28 3.70 0.52 27.05 

Skewness 0.13 0.11 0.65 1.57 1.11 4.83 
Range 376.00 985.37 728.00 178.88 150.00 43.00 
Min 224.00 184.63 702.00 135.00 0.00 0.00 
Max 600.00 1170.00 1430.00 313.88 150.00 43.00 
Sum 88,848.53 157,693.90 240,1294.40 41,990.32 8313.19 599.42 

Count 226.00 226.00 226.00 226.00 226.00 226.00 
Testing Dataset 

Mean 394.85 723.64 1041.56 182.58 44.11 2.22 
Std error 8.64 32.84 26.13 3.36 4.96 0.46 
Median 390.00 653.00 990.00 175.00 29.62 0.00 
variance 4255.64 61,470.40 38,931.08 642.77 1399.90 11.97 
Std. dev 65.24 247.93 197.31 25.35 37.42 3.46 
Kurtosis −0.17 −0.93 0.05 0.46 1.07 9.21 

Skewness 0.28 0.09 0.57 0.73 1.24 2.55 
Range 302.00 932.82 728.00 125.70 150.00 19.00 
Min 238.00 237.19 702.00 135.20 0.00 0.00 
Max 540.00 1170.00 1430.00 260.90 150.00 19.00 
Sum 22,506.35 41,247.52 59,368.84 10,407.28 2514.14 126.69 

Count 57.00 57.00 57.00 57.00 57.00 57.00 
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Table 3. Statistical Description of Data in the Model for Split Tensile Strength (Kg/m3). 

Parameters Cement Fine Aggregate Coarse Aggregate Water 
Silica 
Fume Superplasticizer 

Statistical description   
Mean 386.48 756.67 1102.91 186.36 55.33 3.57 

Std error 4.64 23.17 18.24 3.05 12.57 0.18 
Median 375.00 912.00 980.00 169.53 26.25 3.90 
variance 3212.04 79,963.57 49,589.84 1388.00 23,545.85 4.98 
Std. dev 56.67 282.78 222.69 37.26 153.45 2.23 
Kurtosis −0.12 −1.07 −0.83 2.72 30.06 1.27 

Skewness 0.73 −0.39 0.28 1.68 5.49 0.40 
Range 234.60 985.37 728.00 178.68 953.98 10.48 
Min 289.49 184.63 702.00 135.20 0.00 0.00 
Max 524.09 1170.00 1430.00 313.88 953.98 10.48 
Sum 57,586.23 112,744.40 164,334.20 27,766.94 8244.31 531.91 

Count 149.00 149.00 149.00 149.00 149.00 149.00 
Training Dataset 

Mean 388.13 749.54 1109.50 187.36 57.08 3.55 
Std error 5.79 28.83 22.72 3.85 16.18 0.22 
Median 375.00 912.00 980.00 169.53 26.25 3.90 
variance 3212.04 79,963.57 49,589.84 1388.00 23,545.85 4.98 
Std. dev 57.92 288.26 227.22 38.52 161.78 2.22 
Kurtosis −0.32 −1.10 −0.87 2.35 27.33 1.29 

Skewness 0.60 −0.33 0.18 1.61 5.25 0.38 
Range 234.60 985.37 728.00 178.68 953.98 10.48 
Min 289.49 184.63 702.00 135.20 0.00 0.00 
Max 524.09 1170.00 1430.00 313.88 953.98 10.48 
Sum 38,813.39 74,954.21 110,950.07 18,736.21 5707.68 354.82 

Count 100.00 100.00 100.00 100.00 100.00 100.00 
Testing Dataset 

Mean 383.12 771.23 1089.47 184.30 51.77 3.61 
Std error 7.78 39.08 30.69 4.97 19.48 0.32 
Median 375.00 920.00 980.00 165.00 26.25 3.90 
variance 2966.32 74,850.46 46,145.30 1212.64 18,596.89 5.17 
Std. dev 54.46 273.59 214.81 34.82 136.37 2.27 
Kurtosis 0.63 −0.97 −0.61 4.14 42.05 1.47 

Skewness 1.08 −0.54 0.51 1.89 6.29 0.46 
Range 201.59 985.37 728.00 178.68 953.98 10.48 
Min 322.50 184.63 702.00 135.20 0.00 0.00 
Max 524.09 1170.00 1430.00 313.88 953.98 10.48 
Sum 18,772.84 37,790.19 53,384.14 9030.73 2536.63 177.09 

Count 49.00 49.00 49.00 49.00 49.00 49.00 

Table 4. The Maximum and Minimum Range of Silica Fume Concrete Data for Compressive Strength. 

Parameters Abbreviation Minimum Maximum 
Input Variables    

Binder C 224 600 
Fine Aggregate 

Coarse Aggregate 
FA 
CA 

184.6 
702 

1170 
1430 

Water W 135 313.9 
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Silica Fume 
Superplasticizer 

SF 
SP 

0 
0 

150 
43 

Output Variable    
Compressive Strength fc’ 5.66 95.9 

Table 5. The Maximum and Minimum Range of Silica Fume Concrete Data for Split Tensile Strength. 

Parameters Abbreviation Minimum Maximum 
Input Variables    

Binder C 289.5 524.1 
Fine Aggregate 

Coarse Aggregate 
FA 
CA 

184.6 
702 

1170 
1430 

Water W 135 313.9 
Silica Fume 

Superplasticizer 
SF 
SP 

0 
0 

954 
10.5 

Output Variable    
Split Tensile Strength fst’ 6.97 0.66 

 
Figure 6. Relative frequency distribution of parameters to compressive strength; (a) cement, (b) sand, (c) gravel, (d) water, 
(e) silica fume, (f) super plasticizer. 
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Figure 7. Relative frequency distribution of parameters to tensile strength; (a) cement, (b) sand, (c) gravel, (d) water, (e) 
silica fume, (f) super plasticizer. 

4. Models Evaluation Criteria 
The performance of the developed model on a training or testing set can be quantified 

using statistical errors such as mean absolute error (MAE), root mean square error 
(RMSE), root mean squared logarithmic error (RMSLE), and root square value (R2). 
However, the R2 value, also known as the coefficient of determination, is considered the 
best of these for model evaluation. With advancements in the field of artificial intelligence, 
several modelling techniques have been used to construct prediction models for the 
resulting concrete’s mechanical properties. To promote the use of SF in concrete on an 
industrial scale, we attempted to develop regression and GEP models between 
compressive strength and split tensile strength with a mixed proportion of SFC and then 
compared them to determine the model that best predicts the output with the least or no 
deviation. The models are tested in this work using statistical analysis and the 
computation of error metrics. These metrics can provide a variety of insights regarding 
the flaws in your model. Additionally, the coefficient of variance and standard deviations 
are used to evaluate the model’s performance. The correctness and validation of the model 
are justified in this study by its coefficient of determination. R2 values between 0.65 and 
0.75 indicate satisfactory findings, whereas values less than 0.50 indicate disappointing 
results. R2 can be determined using Equation (2). 

R2 =  
∑ (Mi − M� i)(Pi −n
i=1 P�i)

�∑ (Mi − M� i)2 ∑ (Pi − P�i)2n
i=1

n
i=1

 (2) 

MAE is the mean of absolute error when all input entities have the same weight; it is 
the difference between prediction and observed value. To remove the negative sign, the 
absolute value is used. It calculates the absolute size of the errors and uses the same units 
as the result. A model with an MAE value inside a range can have extremely large errors 
at times. It is determined using Equation (3). 

MAE =
1
n
� |Pi − Mi|

n

i=1
 (3) 
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The RMSLE algorithm takes into account the relative inaccuracy between the 
anticipated and actual values. It is defined as the discrepancy between the expected and 
actual logarithms of a value. RMSLE is calculated using Equation (4), where x is the 
predicted value and y denotes the actual value. This is advantageous when dealing with 
right-skewed outputs, as the log transform restores the target spread to its original state. 

RMSLE = �
1
N
�(log(yi + 1) − log(y� + 1))2
N

i=1

  (4) 

The root mean square error (RMSE) is the average of the squared differences between 
estimation and actual measurement. It quantifies the error’s mean square magnitude. It is 
the expected error’s standard deviation. Large exceptions, such as outliers, are given 
greater weight in this approach, resulting in larger squared differences and smaller 
squared differences. The root mean square error quantifies the model’s average prediction 
error while predicting the output for a given input. The lower the root mean square error, 
the more accurate the model. The RMSE score of 0.5 indicates that the model is unable to 
reliably predict the data. The root mean square error (RMSE) can be calculated using 
Equation (5). Table 6 summarizes the various statistical parameters. 

RMSE = �∑ (Pi − Mi)2n
i=1

N
   (5) 

Table 6. Range of Errors for Statistical Parameters [91] 

Assessment Criteria Range Accurate Model 
MAE [0, ∞) The Smaller the Better 
RMSE [0, ∞) The Smaller the Better 
MSLE [0, ∞) The Smaller the Better 

R² Value (0,1] The Bigger the Better 

5. Results and Discussion 
5.1. Formulation of the Compressive Strength and Split Tensile Strength of SFC 

By integrating and combining several inferior analytical models, machine learning 
techniques tend to alleviate excessive training concerns (sub-models). By carefully 
altering training data, the development of multiple sub-models/classification components 
(1, 2,... m) will aid in the development of a more proficient learner. More precisely, the 
optimal parametric/predictive model can be created by combining qualifying sub-models 
with averaging/voting procedures. Compressive and split tensile strength models were 
built and assessed in this study using determination coefficient (R2) values. R2 values for 
several models are shown in Table 7 for each outcome. 

Table 7. R2 Values of Models. 

Output Parameter Approach Employed R Value 

Compressive Strength 
MLPNN 0.85 
ANFIS 0.91 

GEP 0.97 

Split Tensile Strength 
MLPNN 0.90 
ANFIS 0.92 

GEP 0.93 
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5.1.1. Model Outcome of MLPNN 
Figure 8a depicts the compressive strength prediction of the compressive strength 

MLPNN model of SFC with R2 = 0.85. The error distribution of the targeted values with 
the model values is shown in Figure 8b. The MLPNN compressive model shows an 
average error of 5.28 MPa, with the maximum and minimum errors of 19.34 MPa and 
0.048 MPa. Moreover, data indicate imprecision of 57.90% below 5 MPa, 24.56% between 
5–10 MPa, 12.28 percent between 10–15 MPa, and 5.26 % between 15–20 MPa.  

The MLPNN split tensile strength model depicts R2 = 0.90 as shown in Figure 8c. The 
error distribution of the models obtained is depicted in Figure 8d. The MLPNN tensile 
strength model shows an average error of 0.41 MPa with maximum and minimum error 
values of 1.05 MPa and 0.02 MPa, respectively. In addition, 96.67% of error is below 1 
MPa, and only 3.34% of the error lies in between 1 to 2 MPa. The results of the model are 
satisfactory and can be used to predict the split tensile strength of the model. Based on the 
above stats, the MLPNN is capable of predicting the compressive strength and split tensile 
strength of SFC with appreciable accuracy. 

 
Figure 8. MLPNN model for; (a) compressive strength and (b) its error distribution between; (c) splitting tensile strength 
and (d) its error distribution. 

(a) (b) 

(d) (c) 
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5.1.2. Model Outcomes of ANFIS. 
Figure 9a shows the relation of predicted values with the target values with R2 = 0.91 

for ANFIS compressive strength. Figure 9b depicts maximum and minimum errors of 
22.94 MPa and 0.001 MPa, respectively, with an average error of 4.18 MPa for the ANFIS 
compressive strength model. Moreover, data indicates an error of 71.93% below 5 MPa, 
21.05% between 5–10 MPa, 5.26% between 10–15 MPa, 0% between 15–20 MPa and 1.75 % 
between 20–25 MPa. The error distribution of MLPNN shows a higher peak in comparison 
to the ANFIS model but the overall performance of both models gives approximately the 
same results. 

Figure 9c shows R2 = 0.92 for the ANFIS tensile strength model. The average, 
maximum and minimum errors observed from Figure 9d are 0.26, 1.09, and 0.001 MPa, 
respectively, for the ANFIS split tensile strength model. Data of the ANFIS tensile strength 
model shows an error of 93.33% below 1 MPa, whereas a 6.67% error between 1–2 MPa. 
The ANFIS model can predict the targeted results with an ignorable deviation observed 
by the value of errors.  

 
Figure 9. ANFIS model for (a) compressive strength and (b) its error distribution between actual and target values; (c) 
split tensile strength model and (d) its error distribution between actual and target values. 

(b) (a) 

(d) (c) 
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5.2. Evaluation of GEP Models for Compressive Strength and Split Tensile Strength  
The prediction and accuracy of compressive strength and split tensile strength is 

determined by R2. In this section, genetic expression models are made to predict the 
compressive strength and split tensile strength of concrete containing a different amount 
of SF. The outcome of both properties was obtained based on expression trees as shown 
in Figures 10 and 11. 

 
Figure 10. GEP expression tree for compressive strength (a) sub-ET 1; (b) sub-ET2; (c) sub-ET 3; (d) sub-ET4; (e) sub-ET5; 
(f) sub-ET6. 
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Figure 11. GEP expression tree for splitting tensile strength (a) sub-ET 1; (b) sub-ET2; (c) sub-ET 3; (d) sub-ET4; (e) sub-
ET5. 

Moreover, the outcome of both properties can also be represented in the form of 
Equations (6) and (7), which are the empirical equations derived from ETs for each output 
of SFC. The ETs consist of five arithmetic operators, including. +,-,/,*,∛ .  
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fc′(MPa) = A +
B
2

+ C + D + E + F (6) 

A = 1 − �
1

0.485 + CA
FA − 2.410

� (6.1) 

B =  −11.710 +
SP + SF

2
+

SF
3.954

 (6.2) 

C = �|−3.337 − SF| 3  (6.3) 

D = 1 − �
1

−5.592 + SP + 12.586
FA − SF − CA + FA

2
� (6.4) 

E = −
1

23.111
∗ (−0.999 − min(CA, FA)) (6.5) 

F =
atan ��|1 − c|3 �

(CA − FA − 0.6) ∗ �W
CA�

 (6.6) 

fsts (MPa) = A + B + C + D + E (7) 

A = 1 − c +
0.0456

2 ∗ c − FA
CA − 32.0932

 (7.1) 

B = 1 +
2.8916

1 − FA + CA − √W3 + 4.5035
 (7.2) 

C = ATan�√CA − W3 ∗ √9.50133 − �
�W + c

2 � + 7.434 − W
2 �� (7.3) 

D =
SF + c + SP

2
(W − SP − 37.0359) 

2 − e−0.276
 

 

(7.4) 
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E = c ∗ (1 − (
1

3W − FA − 10.255
))2    (7.5) 

Model Outcomes of Gene Expression Programming (GEP) 
GEP model performance yielded a robust relationship between actual and predicted 

compressive strength, as depicted in Figure 12a,b. It can be observed that R2, by employing 
GEP, is close to 1. Moreover, Figure 12b represents an average of 3.52 MPa, with the 
maximum and minimum errors of 4.46 and 2.70 MPa, respectively. The data of the GEP 
model for compressive strength indicate that all the errors lie below 5 MPa. A comparison 
is drawn between the actual and the predicted compressive strength to evaluate the model 
accuracy and to measure the deviation of the model from the experimental results. Figure 
12c shows the coefficient of correlation for the split tensile strength model with R2 = 0.93, 
whereas Figure 12d shows the error distribution of predicted results with actual results. 
The GEP model for fst may show high error peaks as compared to the models obtained 
by DT, MLPNN, SVM, but the overall performance of the model is better comparatively 
as can be seen in the statistical parameters in Table 8. Average, maximum, and minimum 
errors for the tensile strength GEP model are 0.3, 0.4, and 0.23 MPa, respectively. 
Moreover, the data indicate that 100% of the error lies below 0.5 MPa. The expression tree 
for the GEP split tensile strength model is shown in Figure 11. The relationship that 
developed between tensile strength and input parameters is shown in Equation (7).  
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Figure 12. GEP model for (a) compressive strength and (b) its error distribution; (c) split tensile strength and (d) its error 
distribution. 

5.3. Comparison between Ensemble Models and the GEP Model 
To the author’s knowledge, no model for predicting the mechanical properties of SFC 

has been devised. As a consequence of this study, nonlinear regression models were 
developed to predict the mechanical properties of SFC, and their results were compared 
to gene expression models. The statistical errors between anticipated and actual values 
are shown in Table 8. The statistical metrics demonstrate that the actual and anticipated 
values are closer for GEP models, confirming their predictive ability in forecasting the 
compressive and split tensile strengths of SFC. 

As shown in Figures 13 and 14, the GEP models outperform other machine learning 
models with the same input variables for both compressive and split tensile strengths of 
SFC. The GEP model is superior to other machine learning models in that it is capable of 
effectively establishing a relationship between nonlinear input and output variables. 

(b) (a) 

(d) (c) 
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Table 8. Statistical Errors in Validation Stages for the Models. 

Models MAE RMSE RMSLE R2 Value 
MLPNN 

Compressive Strength 5.28 7.25 0.065 0.85 
Split Tensile Strength 0.41 0.51 0.059 0.90 

ANFIS 
Compressive Strength 4.18 5.69 0.056 0.91 
Split Tensile Strength 0.26 0.40 0.052 0.92 

  GEP   
Compressive Strength 3.52 3.56 0.046 0.97 
Split Tensile Strength 0.31 0.31 0.037 0.93 

 
Figure 13. Comparison of errors for compressive strength. 

 
Figure 14. Comparison of errors for splitting tensile strength. 

5.4. Sensitivity Analysis 
Six parameters were employed as inputs: cement, FA, CA, water, SF, and SP. The 

contribution of each input parameter to the construction of GEP models is depicted in 
Figure 15. Compressive strength is increased more by water and cement than by FA, CA, 
and other additives. Although, the least sensitive parameters in the creation of the tensile 
strength model are water and cement. The most sensitive factors for splitting tensile 
strength are FA and CA. Both SF and SP contributed modestly to the development of both 
models.  
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Figure 15. Contribution of input parameters to compressive and splitting tensile strength. 

5.5. Cross-Validation 
Cross-validation is a statistical technique for estimating the true performance of 

machine learning models. It is vital to understanding the performance of the models 
chosen. A validation technique is required to ascertain the accuracy level of the model’s 
data for this purpose. The k-fold validation test requires randomly shuffling the data set 
and segmenting it into k-groups. The data from the experimental samples are evenly 
divided into ten subgroups in the given study. It makes use of nine of ten subsets, whereas 
the remaining one is used to validate the model. The identical procedure is then 
performed ten times in order to acquire the average accuracy of these ten repeats. It is 
commonly accepted that the tenfold cross-validation approach accurately portrays the 
model’s conclusion and correctness [92,93]. 

K-fold cross-validation can be used to check for bias and variance reduction in the 
test set. Correlation coefficients (R2), mean absolute error (MAE), mean square logarithmic 
error (RMSLE), and root mean square error (RMSE) are used to evaluate the outcomes of 
cross-validation, as depicted in Figure 16 and Figure 17 for compressive strength and 
splitting tensile strength, respectively. The GEP model shows fewer errors and better R2 
as compared to supervised machine learning techniques. The average R2 for GEP 
modeling is 0.84 for a compressive strength of ten folds with maximum and minimum 
values of 0.97 and 0.61, as shown in Figure 16. Similarly, the average R2 = 0.83 for tensile 
strength with a maximum and minimum value of 0.98 and 0.71, respectively, is shown in 
Figure 17. Each model shows fewer errors for validation. The validation indicator result 
shows that mean values of MAE, RMSE, and RMSLE come to be 5.33, 6.54, and 0.039, 
respectively, for the compressive strength GEP model and 0.49, 0.63, and 0.031 for the 
splitting tensile strength GEP model. Similarly, the ensemble models show the same trend 
by showing comparatively more errors.  
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Figure 16. K-fold cross validation of compressive strength for MLPNN, ANFIS and GEP; (a) Based 
on R2; (b) Based on MAE; (c) based on RMSE; (d) based on RMSLE 

 
Figure 17. K-fold cross validation of tensile strength for MLPNN, ANFIS and GEP; (a) Based on R2; 
(b) Based on MAE; (c) based on RMSE; (d) based on RMSLE. 
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6. Conclusions 
Since the last two decades, soft computing approaches have been widely employed 

to forecast various properties of concrete using both linear and nonlinear modelling 
systems. This study used MLPNN, ANFIS, and GEP to predict the compressive and split 
tensile strengths of SFC. Concrete’s primary feature is compressive strength, and no 
model has been created to estimate the compressive strength of SFC. Following a 
thorough study of the literature, a substantial and reliable database was compiled from 
the various studies. Models were evaluated using statistical measures such as R2, MAE, 
RMSE, and RMSLE. The values of statistical parameters indicated that all models are 
capable of accurately predicting the compressive and split tensile strengths of concrete. 
The outcomes of the machine learning models and the GEP model are compared. External 
validation and sensitivity assessments were also done for additional assurance. R2 values 
of 0.97 for compressive strength and 0.93 for tensile strength were achieved using the best 
model (GEP). 

The specific outcomes obtained from this study are, 
1 The results of this study indicated that GEP models have higher accuracy for the 

prediction of data than other ML models.  
2 After a detailed study, it was observed that the order of accuracy followed by the 

compressive strength and tensile strength models is: GEP > ANFIS > MLPNN.  
3 The benefit of GEP is it gives us a new mathematical equation that can be used to 

predict the properties for another database. 
4 Sensitivity analysis showed that water and cement are the governing factors in the 

model development for compressive strength. However, these factors have least 
effect in tensile strength model development. 

5 Statistical parameters including R2, MAE, RMSE, and RMSLE were used to check the 
k-fold validation results. These parameters depicted satisfactory results for all the 
models. 

6 Accurate expressions and models can be used to increase the industrial-level 
utilization of hazardous SF in concrete in construction procedures, rather than 
accumulating it as industrial waste. This research contributes to sustainable 
development by lowering energy usage, landfill waste, and greenhouse gas 
emissions. 

7. Limitations and Directions for Future Work 
Compressive strength and split tensile strength were determined using a 

comprehensive and dependable database. However, if a more generic expression is 
sought, adding additional input parameters and expanding the database may yield the 
desired results. Models developed in this study are for the prediction of SFC compressive 
and split tensile strength. These models provided accurate and reliable results in 
predicting the SFC strengths as indicated by statistical parameters. However, MLPNN, 
ANFIS and GEP models can be used for the prediction of concrete properties comprising 
various other concrete constituents by keeping the same modelling parameters. These 
models will be modified on the basis of input parameters and results forecasted rely 
mainly on the database utilized. Additionally, machine learning approaches can be used 
in conjunction with heuristic methods such as the whale optimization algorithm, ant 
colony optimization, and particle swarm optimization to achieve optimal outcomes. These 
strategies can then be compared to the ones used in this study. 

Additionally, multi-expression programming (MEP) is a more advanced and 
improved variant of GEP. MEP analysis should be used to circumvent GEP’s restrictions. 
Comparatively, MEP employs basic decoding processes and is given special consideration 
when the complexity of the targeted expression is unknown. MEP can deal with 
exceptions, incorrect expressions, and division by zero. The gene is in charge of creating 
an exception, after which it changes to an arbitrary terminal symbol, resulting in no 
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infertile learner entering the following generation. Moreover, MLPNN and ANFIS were 
employed in this research for the prediction of desired outcomes and employed single 
learners in anticipating the results. The authors recommend using ensemble ML methods 
where various sub-models are developed, and the best sub-model is selected using 
statistical parameters.  
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