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Abstract: Silica fume (SF) is a mineral additive that is widely used in the construction industry when
producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement
has several evident benefits, including reduced CO2 emissions, cost-effective concrete, increased
durability, and mechanical qualities. As environmental issues continue to grow, the development
of predictive machine learning models is critical. Thus, this study aims to create modelling tools
for estimating the compressive and cracking tensile strengths of silica fume concrete. Multilayer
perceptron neural networks (MLPNN), adaptive neural fuzzy detection systems (ANFIS), and genetic
programming are all used (GEP). From accessible literature data, a broad and accurate database
of 283 compressive strengths and 149 split tensile strengths was created. The six most significant
input parameters were cement, fine aggregate, coarse aggregate, water, superplasticizer, and silica
fume. Different statistical measures were used to evaluate models, including mean absolute error,
root mean square error, root mean squared log error and the coefficient of determination. Both
machine learning models, MLPNN and ANFIS, produced acceptable results with high prediction
accuracy. Statistical analysis revealed that the ANFIS model outperformed the MLPNN model in
terms of compressive and tensile strength prediction. The GEP models outperformed all other models.
The predicted values for compressive strength and splitting tensile strength for GEP models were
consistent with experimental values, with an R2 value of 0.97 for compressive strength and 0.93
for splitting tensile strength. Furthermore, sensitivity tests revealed that cement and water are the
determining parameters in the growth of compressive strength but have the least effect on splitting
tensile strength. Cross-validation was used to avoid overfitting and to confirm the output of the
generalized modelling technique. GEP develops an empirical expression for each outcome to forecast
future databases’ features to promote the usage of green concrete.

Keywords: green concrete; industrial waste; predictive modeling; machine learning; cross-validation;
sensitivity analysis

1. Introduction

Global warming is widely believed to be the primary contributor to greenhouse
gas (GHG) emissions, with CO2 being the most abundant and strongest influence of all
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GHGs [1,2]. Around 5–7 percent of global CO2 emissions are attributed to the cement
industry [3]. Due to its mechanical and durability features, concrete is a widely used
building material [4]. Around 8% of CO2 emitted during the concrete making process
contributes to global warming [4,5]. Concrete is expected to be manufactured at a rate of 20
billion tons per year, making it the second most frequently utilized substance on the planet
after fresh water. Apart from its benefits, concrete is harmful to the Earth and human health
and has long-term negative consequences on the natural environment and atmosphere [6].
It expands the human footprint by creating living space out of thin air, spreading across
fertile topsoil, and impeding biodiversity. The biodiversity crisis is the primary focus of
research, as it is one of the most serious dangers to a sustainable ecosystem and is mostly
caused by urbanization. For hundreds of years, humans have longed for the dubious
benefits of concrete to overlook this environmental drawback. However, the balance is
currently shifting in the opposite direction. At times of unsettling transition, solidity is an
alluring quality that can create more problems than it can resolve [7].

The most energy-intensive stage of the cement manufacturing process is clinker
production, which accounts for half of all CO2 emissions from concrete (produced by
calcareous and clay minerals in the kiln). Nearly 900 kg of CO2 is emitted during the
manufacturing of a ton of cement. It must be heated to extremely high temperatures during
the cement manufacturing process to generate clinkers. Cement is made by grinding
clinker to a fine powder and then mixing it with gypsum (Ca3SiO5), sometimes called
alite. It is generated during the clinker production process and gives an excessive early
strength. Alite must be maintained at a temperature of 1500 ◦C during this process [8,9].
According to some studies, alite can be replaced by various naturally occurring minerals
that require a lower roasting temperature than alite. Carbon emissions from concrete have
long been a source of concern for both the academic and industrial sectors [10]. Numerous
techniques have been proposed to address this issue, one of which asserts that we can
achieve sustainability by completely or partially replacing cement with readily available
natural materials [11–13]. Extra cementitious materials such as silica fume (SF) have been
employed to partially replace cement in concrete mixtures to offset the cement industry’s
CO2 emissions [14–17]. SF is a significant by-product of the silicon metal manufacturing
sector. Silicon metal is a semi-metallic element that exhibits various metal-like properties.
After oxygen, silica is the second most abundant element in the Earth’s crust, occurring
primarily in the form of silicon dioxide or silicates but also in its pure state [18].

SF is a toxic substance that has a deleterious effect on the atmosphere and its surround-
ings. Until the mid-1970s, nearly all silica fume was released into the environment. As
environmental worries about SF grew, it was being used in a variety of applications. SF
is composed of extremely small particles and a high concentration of amorphous silicon
dioxide, making it a highly pozzolanic material. Due to its amorphous structure, it is
extremely reactive. They are spherical and possess a substantial surface area. Because
SF particles are 100 times smaller than cement particles, they are entirely packed with
cement grains and also react with calcium hydroxide to generate more CSH, resulting in
the earlier strength [16,19–21]. Due to its small size, it enhances the packing density of
concrete. They are also significantly more advantageous in terms of strength. Addition-
ally, due to its superior qualities, SF concrete has been widely employed in high-strength
and high-performance concrete for highway bridges, maritime structures, and parking
decks [14,22,23]. Figure 1 represents the advantages of silica fume in concrete.

Numerous experimental studies have been conducted to determine concrete’s short-
and long-term mechanical characteristics when various quantities of fine aggregate or
cement are replaced with SF [24,25]. According to the literature, replacing 15% of the SF
content improves the mechanical properties of SF, including compressive strength, initial
strain owing to creep, and modulus of elasticity. However, higher concentrations result in a
reduction in concrete creep over time [26]. The strength development of SF-based concrete
is temperature-dependent, material size-dependent, and silica content-dependent. Between
3 and 28 days is when the majority of the strength contribution occurs at a typical curing
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temperature. After 28 days, the additional strength conferred by SF is negligible. The
substitution of SF for cement in the range of 5–25% with a water to binder ratio of 0.26–0.42
increases compressive strength by approximately 6–30% [13]. The compressive strength
of silica fume concrete (SFC) can be greatly enhanced by adjusting the water–cement
ratio between 10% and 20% [26]. Increases in the water–cement ratio of SFC resulted in
a decrease in the overall strength of concrete. The compressive strength of concrete is
reduced by 27% after 28 days when the water–cement ratio increases by 0.05% with a
15% SF concentration [27]. Numerous factors affect the qualities of concrete, including the
proportions of cement, sand, aggregate, and water. The proportion of these components
in concrete impacts its strength and durability. The mechanical characteristics of concrete
exhibit anomalous behavior at various mix ratios incorporating additives including silica
fume. To accommodate this behavior and to facilitate the widespread use of SF in concrete,
a link between the mechanical properties of SF and the proportion of materials used in
concrete is required to support sustainable development. To develop this link, various
artificial intelligence modelling approaches are used, and empirical models are constructed
to promote sustainable growth. SFC design must take into account fundamental mechanical
qualities such as compressive strength and splitting tensile strength.

Figure 1. Silica fume benefits in concrete.

Additionally, SFC mixtures must be cost-optimized to attain desired attributes by the
effective proportioning of SFC components. Traditionally, laboratory-prepared test batches
have been used to ensure that these criteria are met, and that building specifications are
followed [28]. Because a laboratory can only produce a finite number of tests, experimen-
tal procedures can generate well-performing, rather than best-performing, quantities of
SFC combinations. Computational modelling approaches may be a viable alternative to
laboratory-based mixture optimization due to their time-saving nature. These approaches
begin by developing objective functions between the inputs (concrete ingredients) and
outputs (properties), and then employ optimization algorithms to determine the optimal
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concrete mixes. Traditionally, goal functions have been developed for linear or nonlinear
models [29]. However, because the relationships between concrete properties and control-
ling factors are highly nonlinear, the coefficients of these models cannot be determined
exactly [5]. As a result, researchers are employing machine learning (ML) approaches to
predict concrete qualities.

Historically, various machine learning techniques have been used to predict con-
crete qualities such as the modulus of elasticity, compressive strength, splitting tensile
strength, and so on. Among machine learning algorithms, multilayer perceptron neural
networks (MLPNNs) [30–34], support vector machines (SVMs) [35], genetic engineering
programming (GEPs) [36–40], and deep learning (DL) [41–43] were the most often utilized.
Ling et al. [44] used SVM in conjunction with k-Fold cross-validation, an artificial neural
network (ANN), and a decision tree (DT) to forecast concrete strength degradation in a
marine environment. SVM anticipated the expected results with greater accuracy and
demonstrated superior performance compared to the other two approaches. Additionally,
Motamedi et al. [45] extended the SVM-based analysis to a more sophisticated screen
and determined the unrestricted compression capacities of cement-sand cockle-coated
combinations. Chithra et al. [46] developed an ANN technique for predicting the strength
of copper slag and nano-silica concrete. Tanyildizi et al. [47] used SVM and ANN to predict
lightweight concrete’s compressive and flexural strengths reinforced with carbon fiber. The
ANN approach achieves a higher level of accuracy, with R2 values of 0.99 and 0.96 for
compressive and flexural strength, respectively. Naderpour et al. [48] used ANN to forecast
the compressive strength of recycled aggregate concrete and building waste concrete.

Similarly, Kadir et al. [49] predicted compressive strength using ANN, DT, SVM, and
linear regression approaches. It was discovered that the DT approach accurately predicted
compressive strength values and outperformed others. Awoyera et al. [50] used GEP and
ANN to construct models to forecast the strength properties of geopolymer self-compacting
concrete made from raw ingredients. The author found that the GEP model outperformed
the ANN model by providing an empirical relationship for predicting output parameters.
Similarly, Ziolkowski et al. [51] investigated the role of ANNs in forecasting concrete’s
compressive strength. Mathematical equations for creating the aforementioned output
were generated. Chopra et al. [52] used DT, RF, and ANN to forecast the compressive
strength of concrete for 28, 51, and 90 days. Statistical parameters including the coefficient
of determination (R2) and root mean square error (RMSE) were used for the evaluation
of models. Based on these statistical indicators, it was concluded that RF predicted the
best results, followed by ANN. Han et al. [53] also highlighted the utility of machine
learning algorithms for calculating the strength of reinforced concrete materials with high
accuracy. Similarly, Table 1 outlines research on machine learning conducted by researchers
employing waste materials.

The novelty of this study is two-fold. First of all, the compressive and tensile strengths
of SFC were predicted using MLPNN and ANFIS. Secondly, a GEP model was constructed
for each outcome, comprising equations and an expression tree. Then, machine learn-
ing techniques were compared to the GEP model. According to the authors, there is
no comparable study in the literature that uses ensemble machine learning and GEP for
SFC. Numerous statistical variables were employed to evaluate the predictive accuracy
of machine learning algorithms. This project aims to promote the use of SF in concrete
and to perform investigations focusing on carbon footprint reduction. We want to make
concrete more environmentally friendly by employing computational tools to optimize
the use of SF as an additive or a replacement material in concrete for more sustainable
development. This article discusses the use of advanced machine learning algorithms to in-
vestigate the behavior of SFC and how they were used to develop the most environmentally
friendly concrete.
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Table 1. Prediction of Concrete Properties by using Waste Material.

S. No Algorithm Name Notation Dataset Prediction Properties Year Waste Material
Used References

1 Artificial neural
network ANN 300 Compressive strength 2009 FA [54]

2 Artificial neural
network ANN 80 Compressive strength 2011 FA [55]

3 Artificial neural
network ANN 169 Compressive strength 2016 THE [56]

4 Artificial neural
network ANN 69 Compressive strength 2017 FA [33]

5 Artificial neural
network ANN 114 Compressive strength 2017 FA [57]

6
An adaptive

neuro-fuzzy inference
system

ANFIS 55 Compressive strength 2018 [58]

7 Random Kitchen Sink
algorithm RKSA 40

V-funnel test
J-ring test
Slump test

Compressive strength

2018 FA [59]

8 Multivariate adaptive
regression spline

M5
MARS 114

Compressive strength
Slump test
L-box test

V-funnel test

2018 FA [60]

9 Artificial neural
network ANN 205 Compressive strength 2019

FA
GGBFS

SF
RHA

[61]

10 Random forest RF 131 Compressive strength 2019
FA

GGBFS
SF

[62]

11

Intelligent rule-based
enhanced multiclass

support vector
machine and fuzzy

rules

IREMSVM-FR
with
RSM

114 Compressive strength 2019 FA [63]

12 Support vector
machine SVM Compressive strength 2020 FA [64]

13 Multivariate MV 21 Compressive strength 2020 Crumb rubber
with SF [65]

14
Biogeographical-

based
programming

BBP 413 Elastic modulus
SF
FA

SLAG
[66]

15 Support vector
machine SVM 115

Slump test
L-box test

V-funnel test
Compressive strength

2020 FA [67]

16 Adaptive neuro fuzzy
inference system

ANFIS with
ANN 7 Compressive strength 2020 POFA [68]

17 Data envelopment
analysis DEA 114

Compressive strength Slump
test

L-box test
V-funnel test

2021 FA [69]

2. Algorithms for Machine Learning

Machine learning (ML) is a relatively new topic of artificial intelligence that is com-
monly utilized in the construction industry to forecast the behavior of materials [5]. As
indicated in Figure 2, the current work applied machine learning techniques to estimate
the compressive and split tensile strengths of SFC by applying MLPNN, ANFIS, and GEP.
These approaches are deemed to be the most effective data prediction algorithms and were
chosen based on their widespread use in similar research. The next section provides an
overview of the AI and machine learning methodologies used in this research.
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Figure 2. Machine learning algorithms.

Machine learning models are extremely efficient in terms of computation and pro-
cessing time. When compared to traditional models, it reduces error rates to virtually
insignificant levels. The research establishes an empirical model between the mechanical
properties of SFC and the mix proportions using various machine learning approaches
and then compares the findings to forecast the best model among them. Among the major
machine learning techniques, this article discusses MLPNN (a kind of ANN), ANFIS, and
GEP. The following section briefly discusses the various modelling strategies employed in
this study.

2.1. Multilayer Perceptron Neural Network (MLPNN)

The MLPNN algorithm consists of neurons, which are called the perceptron. These
networks are based on a single output from multiple inputs by producing nonlinear
mapping among input and output vectors. The complex neural networks are based on the
basic multilayer perceptron (MLP) model. The capacity to predict neural networks derives
from the hierarchical or multi-layered network structure [70].

These networks consist of three steps; in the forward pass, the model input is for-
warded and multiplied by weight, the bias is applied to each sheet, and the measured
model output is determined. Predicted outputs are evaluated that match the given inputs.
Loss is determined after the forward exit. The output model provides predicted results
after taking the input parameters. The failure can be compared with predicted results by
means of the back-propagation algorithm. Different loss functions are used depending on
our performance and requirements. The backward pass propagates partial derivatives of
the cost function concerning the various parameters back into the network. In this process,
there is back-propagation loss and the weights of the model are updated using gradient
descent. An MLP contains a minimum of three layers of nodes: an input, hidden, and
output layer. This network has three layers: the input layer on the left side with three
neurons, the hidden layer in the middle with three neurons with nonlinear mapping, and
the output layer on the right with one neuron, as seen in Figure 3.



Materials 2021, 14, 7531 7 of 28

Figure 3. Typical neural network architecture.

2.2. Adaptive Neural Fuzzy Detection System (ANFIS)

Jang was the first to introduce the adaptive network-based fuzzy inference technology.
It is a remarkable computational intelligence model that combines the learning capabilities
of ANNs with the reasoning capabilities of fuzzy logic. ANFIS has a better estimating
ability and is a better approach for computing nonlinear complicated problems with greater
precision. ANFIS uses input–output sets and a series of IF–THEN fuzzy rules to incorporate
the human-like reasoning style of fuzzy inference systems (FIS). FIS contains structured
knowledge in which each fuzzy rule defines the system’s local behavior, but it lacks the
adaptability to deal with a changing external environment. As a result, FIS has been
updated to include neural network learning techniques, resulting in ANFIS. The basic
learning method of the network, back propagation, tries to reduce the prediction error.
The learning skills of a neural network and the reasoning capabilities of fuzzy logic were
integrated in ANFIS for the reasons stated above. The ANFIS model is especially effective
in a variety of engineering applications when data is inconsistent or nonlinear, where
conventional methods fail or are too complicated to employ. Various adjustments were
done in order to produce the most efficient ANFIS model with the minimum possible
error size.

ANFIS is made up of various layers, as shown in Figure 4. ANFIS structure with two
inputs and one output is shown in this diagram, which is made up of four membership
functions and four rules. According to the ANFIS structure shown in Figure 4, the layer
structure of ANFIS is detailed below. The first layer is known as the fuzzification layer. To
generate fuzzy clusters from input values, the fuzzification layer employs membership
functions. The rule layer is the second layer. The rules’ firing strengths are calculated using
membership values derived in the fuzzification layer. The normalizing layer is the third
layer. It determines the normalized firing strengths of each rule. The ratio of the ith rule’s
firing strength to the total of all firing strengths is the normalized value. The fourth layer is
known as the defuzzification layer. In each node of this layer, weighted values of rules are
determined. The summation layer is the fifth layer. The actual output of ANFIS is obtained
by summing the outputs obtained for each rule in the defuzzification layer.
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Figure 4. Flow chart of ANFIS.

2.3. Genetic Algorithm and Gene Expression Programming

Genetic algorithms (GA) were first introduced by John et al. and are known as genetic
expression [71]. The introduction of GA in the field of artificial intelligence is evolutionary
and has overcome many limitations. GA are computer-based models that work on the
evolution mechanism of nature. GEP consists of two primary parts known as tree expres-
sion (ET) and chromosomes [71]. The mathematical information or function is encoded in
the chromosome and then this information is used to build the initial chromosome which
is then converted into ETs [72]. These expression tree values are translated by means of
language used and written in the form of mathematical expression [73]. The GA starts with
the random creation of the chromosome based on individual programs [74]. Subsequently,
the fitness of each chromosome is evaluated; based on fitness results, the procedure of
reproduction is applied until the best chromosome is obtained. This chromosome is then
extracted to pass them to the next generation. This process is continued unless the chromo-
some with the best survival and the best fitness value is obtained. The GEP model contains
five parameters having the same analogy to GP, including terminal set, fitness function,
control parameters, function set, and terminal conditions. The basic steps and parameters
are represented in Figure 5.
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Figure 5. Flow chart of the GEP [73].

3. Modeling Dataset and Model Development

The silica fume concrete (SFC) database was constructed using data from 22 interna-
tionally published investigations [26,28,75–88]. Figures 6 and 7 illustrate the frequency
distribution and statistical description of the database, which contains 283 compressive tests
(fc) and 149 split tensile strength tests (fst). The mean, standard deviation, median skew-
ness, maximum and minimum ranges of metrics, as well as the maximum and minimum
ranges of parameters, are reported in Tables 2 and 3. Gandomi et al. [89] recommended that
the minimal ratio between the input variables and the database be three, and that it should
be greater than five for reliable models. The ratios are substantially higher in this work
using 283 databases for compressive strength and 149 databases for split tensile strength
with six input factors, i.e., 47.17 and 24.83, respectively. Prior to constructing a model, the
primary process that influences the SFC’s attributes is input selection. The constituents
with the greatest influence on the properties of concrete are isolated in order to construct a
generalized function. Concrete properties are studied as a function of Equation (1).

fc, fst (MPa) f(C, FA, CA, W, SF, SP) (1)

These variables have an effect on the model’s strength forecast. With the intended
output (f’c and fst), the relationship between these input variables is calculated. Tables 4
and 5 list the lowest and maximum ranges of input variables that are functions of outputs,
along with their ranges. Other variables also affect the characteristics of concrete, although
their effect on the desired output of SFC is minor. Machine-learning empirical models
were developed using training data (80% of total data) and then applied to validation data
(20% of total data) to determine the model’s precision and accuracy [90]. The database,
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which was compiled from the literature, provides data on the % of SF replacement, water-
to-binder ratios, the specific gravity of fine aggregate and SF, the fineness modulus of SF,
and the superplasticizer fractions used to preserve workability. A database’s training set
is utilized to build a model, whereas the built-in model is evaluated using test data or a
validation set [5].

Table 2. Statistical Description of Data in the Model for Compressive Strength (Kg/m3).

Parameters Cement Fine Aggregate Coarse
Aggregate Water Silica Fume Superplasticizer

Statistical Description

Mean 393.48 702.90 1062.41 185.15 38.25 2.56
Std error 3.92 13.44 10.88 1.84 2.27 0.35
Median 383.15 653.00 1040.00 175.00 26.25 0.00
variance 4359.48 51,138.84 33,530.89 963.29 1469.97 34.80
Std. dev 66.02 226.13 183.11 31.03 38.34 5.89
Kurtosis −0.15 −0.51 0.20 3.66 0.57 30.00

Skewness 0.15 0.11 0.61 1.50 1.11 4.97
Range 376.00 985.36 728.00 178.87 150.00 43.00
Min 224.00 184.63 702.00 135.00 0.00 0.00
Max 600.00 1170.00 1430.00 313.87 150.00 43.00
Sum 111,354.90 198,941.50 300,663.20 52,397.59 10,827.33 726.11

Count 283.00 283.00 283.00 283.00 283.00 283.00

Training Dataset

Mean 393.14 697.76 1067.67 185.80 36.78 2.65
Std error 4.41 14.67 11.94 2.15 2.56 0.42
Median 382.82 653.00 1040.00 176.00 26.25 0.00
variance 4404.11 48,659.21 32,197.86 1045.27 1483.09 40.60
Std. dev 66.36 220.59 179.44 32.33 38.51 6.37
Kurtosis −0.14 −0.38 0.28 3.70 0.52 27.05

Skewness 0.13 0.11 0.65 1.57 1.11 4.83
Range 376.00 985.37 728.00 178.88 150.00 43.00
Min 224.00 184.63 702.00 135.00 0.00 0.00
Max 600.00 1170.00 1430.00 313.88 150.00 43.00
Sum 88,848.53 157,693.90 240,1294.40 41,990.32 8313.19 599.42

Count 226.00 226.00 226.00 226.00 226.00 226.00

Testing Dataset

Mean 394.85 723.64 1041.56 182.58 44.11 2.22
Std error 8.64 32.84 26.13 3.36 4.96 0.46
Median 390.00 653.00 990.00 175.00 29.62 0.00
variance 4255.64 61,470.40 38,931.08 642.77 1399.90 11.97
Std. dev 65.24 247.93 197.31 25.35 37.42 3.46
Kurtosis −0.17 −0.93 0.05 0.46 1.07 9.21

Skewness 0.28 0.09 0.57 0.73 1.24 2.55
Range 302.00 932.82 728.00 125.70 150.00 19.00
Min 238.00 237.19 702.00 135.20 0.00 0.00
Max 540.00 1170.00 1430.00 260.90 150.00 19.00
Sum 22,506.35 41,247.52 59,368.84 10,407.28 2514.14 126.69

Count 57.00 57.00 57.00 57.00 57.00 57.00
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Table 3. Statistical Description of Data in the Model for Split Tensile Strength (Kg/m3).

Parameters Cement Fine Aggregate Coarse
Aggregate Water Silica Fume Superplasticizer

Statistical Description

Mean 386.48 756.67 1102.91 186.36 55.33 3.57
Std error 4.64 23.17 18.24 3.05 12.57 0.18
Median 375.00 912.00 980.00 169.53 26.25 3.90
variance 3212.04 79,963.57 49,589.84 1388.00 23,545.85 4.98
Std. dev 56.67 282.78 222.69 37.26 153.45 2.23
Kurtosis −0.12 −1.07 −0.83 2.72 30.06 1.27

Skewness 0.73 −0.39 0.28 1.68 5.49 0.40
Range 234.60 985.37 728.00 178.68 953.98 10.48
Min 289.49 184.63 702.00 135.20 0.00 0.00
Max 524.09 1170.00 1430.00 313.88 953.98 10.48
Sum 57,586.23 112,744.40 164,334.20 27,766.94 8244.31 531.91

Count 149.00 149.00 149.00 149.00 149.00 149.00

Training Dataset

Mean 388.13 749.54 1109.50 187.36 57.08 3.55
Std error 5.79 28.83 22.72 3.85 16.18 0.22
Median 375.00 912.00 980.00 169.53 26.25 3.90
variance 3212.04 79,963.57 49,589.84 1388.00 23,545.85 4.98
Std. dev 57.92 288.26 227.22 38.52 161.78 2.22
Kurtosis −0.32 −1.10 −0.87 2.35 27.33 1.29

Skewness 0.60 −0.33 0.18 1.61 5.25 0.38
Range 234.60 985.37 728.00 178.68 953.98 10.48
Min 289.49 184.63 702.00 135.20 0.00 0.00
Max 524.09 1170.00 1430.00 313.88 953.98 10.48
Sum 38,813.39 74,954.21 110,950.07 18,736.21 5707.68 354.82

Count 100.00 100.00 100.00 100.00 100.00 100.00

Testing Dataset

Mean 383.12 771.23 1089.47 184.30 51.77 3.61
Std error 7.78 39.08 30.69 4.97 19.48 0.32
Median 375.00 920.00 980.00 165.00 26.25 3.90
variance 2966.32 74,850.46 46,145.30 1212.64 18,596.89 5.17
Std. dev 54.46 273.59 214.81 34.82 136.37 2.27
Kurtosis 0.63 −0.97 −0.61 4.14 42.05 1.47

Skewness 1.08 −0.54 0.51 1.89 6.29 0.46
Range 201.59 985.37 728.00 178.68 953.98 10.48
Min 322.50 184.63 702.00 135.20 0.00 0.00
Max 524.09 1170.00 1430.00 313.88 953.98 10.48
Sum 18,772.84 37,790.19 53,384.14 9030.73 2536.63 177.09

Count 49.00 49.00 49.00 49.00 49.00 49.00
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Table 4. The Maximum and Minimum Range of Silica Fume Concrete Data for Compressive Strength.

Parameters Abbreviation Minimum Maximum

Input Variables

Binder C 224 600

Fine Aggregate
Coarse Aggregate

FA
CA

184.6
702

1170
1430

Water W 135 313.9

Silica Fume
Superplasticizer

SF
SP

0
0

150
43

Output Variable

Compressive Strength fc’ 5.66 95.9

Table 5. The Maximum and Minimum Range of Silica Fume Concrete Data for Split Tensile Strength.

Parameters Abbreviation Minimum Maximum

Input Variables

Binder C 289.5 524.1

Fine Aggregate
Coarse Aggregate

FA
CA

184.6
702

1170
1430

Water W 135 313.9

Silica Fume
Superplasticizer

SF
SP

0
0

954
10.5

Output Variable

Split Tensile Strength fst’ 6.97 0.66

Figure 6. Relative frequency distribution of parameters to compressive strength; (a) cement, (b) sand, (c) gravel, (d) water,
(e) silica fume, (f) super plasticizer.
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Figure 7. Relative frequency distribution of parameters to tensile strength; (a) cement, (b) sand, (c) gravel, (d) water, (e)
silica fume, (f) super plasticizer.

4. Models Evaluation Criteria

The performance of the developed model on a training or testing set can be quantified
using statistical errors such as mean absolute error (MAE), root mean square error (RMSE),
root mean squared logarithmic error (RMSLE), and root square value (R2). However, the
R2 value, also known as the coefficient of determination, is considered the best of these
for model evaluation. With advancements in the field of artificial intelligence, several
modelling techniques have been used to construct prediction models for the resulting
concrete’s mechanical properties. To promote the use of SF in concrete on an industrial
scale, we attempted to develop regression and GEP models between compressive strength
and split tensile strength with a mixed proportion of SFC and then compared them to
determine the model that best predicts the output with the least or no deviation. The
models are tested in this work using statistical analysis and the computation of error
metrics. These metrics can provide a variety of insights regarding the flaws in your model.
Additionally, the coefficient of variance and standard deviations are used to evaluate the
model’s performance. The correctness and validation of the model are justified in this study
by its coefficient of determination. R2 values between 0.65 and 0.75 indicate satisfactory
findings, whereas values less than 0.50 indicate disappointing results. R2 can be determined
using Equation (2).

R2 =
∑n

i=1
(
Mi −Mi

)
(Pi − Pi)√

∑n
i=1 (Mi −Mi)

2
∑n

i=1 (Pi − Pi)
2

(2)

MAE is the mean of absolute error when all input entities have the same weight; it is
the difference between prediction and observed value. To remove the negative sign, the
absolute value is used. It calculates the absolute size of the errors and uses the same units
as the result. A model with an MAE value inside a range can have extremely large errors at
times. It is determined using Equation (3).

MAE =
1
n ∑ n

i=1|Pi −Mi| (3)
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The RMSLE algorithm takes into account the relative inaccuracy between the antici-
pated and actual values. It is defined as the discrepancy between the expected and actual
logarithms of a value. RMSLE is calculated using Equation (4), where x is the predicted
value and y denotes the actual value. This is advantageous when dealing with right-skewed
outputs, as the log transform restores the target spread to its original state.

RMSLE =

√√√√ 1
N

N

∑
i=1

(log(yi + 1)− log(ŷ + 1))2 (4)

The root mean square error (RMSE) is the average of the squared differences between
estimation and actual measurement. It quantifies the error’s mean square magnitude. It
is the expected error’s standard deviation. Large exceptions, such as outliers, are given
greater weight in this approach, resulting in larger squared differences and smaller squared
differences. The root mean square error quantifies the model’s average prediction error
while predicting the output for a given input. The lower the root mean square error, the
more accurate the model. The RMSE score of 0.5 indicates that the model is unable to
reliably predict the data. The root mean square error (RMSE) can be calculated using
Equation (5). Table 6 summarizes the various statistical parameters.

RMSE =

√
∑n

i=1 (Pi −Mi)
2

N
(5)

Table 6. Range of Errors for Statistical Parameters [91]

Assessment Criteria Range Accurate Model

MAE [0, ∞) The Smaller the Better
RMSE [0, ∞) The Smaller the Better
MSLE [0, ∞) The Smaller the Better

R2 Value (0,1] The Bigger the Better

5. Results and Discussion
5.1. Formulation of the Compressive Strength and Split Tensile Strength of SFC

By integrating and combining several inferior analytical models, machine learning tech-
niques tend to alleviate excessive training concerns (sub-models). By carefully altering training
data, the development of multiple sub-models/classification components (1, 2, . . . , m) will aid in
the development of a more proficient learner. More precisely, the optimal parametric/predictive
model can be created by combining qualifying sub-models with averaging/voting procedures.
Compressive and split tensile strength models were built and assessed in this study using
determination coefficient (R2) values. R2 values for several models are shown in Table 7 for
each outcome.

Table 7. R2 Values of Models.

Output Parameter Approach Employed R Value

Compressive Strength
MLPNN 0.85
ANFIS 0.91

GEP 0.97

Split Tensile Strength
MLPNN 0.90
ANFIS 0.92

GEP 0.93
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5.1.1. Model Outcome of MLPNN

Figure 8a depicts the compressive strength prediction of the compressive strength
MLPNN model of SFC with R2 = 0.85. The error distribution of the targeted values with the
model values is shown in Figure 8b. The MLPNN compressive model shows an average
error of 5.28 MPa, with the maximum and minimum errors of 19.34 MPa and 0.048 MPa.
Moreover, data indicate imprecision of 57.90% below 5 MPa, 24.56% between 5–10 MPa,
12.28 percent between 10–15 MPa, and 5.26 % between 15–20 MPa.

The MLPNN split tensile strength model depicts R2 = 0.90 as shown in Figure 8c. The
error distribution of the models obtained is depicted in Figure 8d. The MLPNN tensile
strength model shows an average error of 0.41 MPa with maximum and minimum error
values of 1.05 MPa and 0.02 MPa, respectively. In addition, 96.67% of error is below 1
MPa, and only 3.34% of the error lies in between 1 to 2 MPa. The results of the model are
satisfactory and can be used to predict the split tensile strength of the model. Based on the
above stats, the MLPNN is capable of predicting the compressive strength and split tensile
strength of SFC with appreciable accuracy.

Figure 8. MLPNN model for; (a) compressive strength and (b) its error distribution between; (c) splitting tensile strength
and (d) its error distribution.
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5.1.2. Model Outcomes of ANFIS

Figure 9a shows the relation of predicted values with the target values with R2 = 0.91
for ANFIS compressive strength. Figure 9b depicts maximum and minimum errors of
22.94 MPa and 0.001 MPa, respectively, with an average error of 4.18 MPa for the ANFIS
compressive strength model. Moreover, data indicates an error of 71.93% below 5 MPa,
21.05% between 5–10 MPa, 5.26% between 10–15 MPa, 0% between 15–20 MPa and 1.75 %
between 20–25 MPa. The error distribution of MLPNN shows a higher peak in comparison
to the ANFIS model but the overall performance of both models gives approximately the
same results.

Figure 9. ANFIS model for (a) compressive strength and (b) its error distribution between actual and target values; (c) split
tensile strength model and (d) its error distribution between actual and target values.

Figure 9c shows R2 = 0.92 for the ANFIS tensile strength model. The average, maxi-
mum and minimum errors observed from Figure 9d are 0.26, 1.09, and 0.001 MPa, respec-
tively, for the ANFIS split tensile strength model. Data of the ANFIS tensile strength model
shows an error of 93.33% below 1 MPa, whereas a 6.67% error between 1–2 MPa. The
ANFIS model can predict the targeted results with an ignorable deviation observed by the
value of errors.
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5.2. Evaluation of GEP Models for Compressive Strength and Split Tensile Strength

The prediction and accuracy of compressive strength and split tensile strength is
determined by R2. In this section, genetic expression models are made to predict the
compressive strength and split tensile strength of concrete containing a different amount of
SF. The outcome of both properties was obtained based on expression trees as shown in
Figures 10 and 11.

Figure 10. GEP expression tree for compressive strength (a) sub-ET 1; (b) sub-ET2; (c) sub-ET 3; (d) sub-ET4; (e) sub-ET5;
(f) sub-ET6.
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Figure 11. GEP expression tree for splitting tensile strength (a) sub-ET 1; (b) sub-ET2; (c) sub-ET 3; (d) sub-ET4; (e) sub-ET5.

Moreover, the outcome of both properties can also be represented in the form of
Equations (6) and (7), which are the empirical equations derived from ETs for each output
of SFC. The ETs consist of five arithmetic operators, including. +,-,/,×, 3

√.

fc′(MPa) = A +
B
2
+ C + D + E + F (6)

A = 1−
(

1
0.485 + CA

FA − 2.410

)
(6a)
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B = −11.710 +
SP + SF

2
+

SF
3.954

(6b)

C = 3
√
|−3.337− SF| (6c)

D = 1−
(

1
−5.592 + SP + 12.586

FA − SF−CA+FA
2

)
(6d)

E = − 1
23.111

× (−0.999−min(CA, FA)) (6e)

F =
atan

(
3
√
|1− c|

)
(CA− FA− 0.6) ×

(
W
CA

) (6f)

fsts (MPa) = A + B + C + D + E (7)

A = 1− c +
0.0456

2 × c−FA
CA−32.0932

(7a)

B = 1 +
2.8916

1− FA + CA− 3
√

W + 4.5035
(7b)

C = ATan

 3
√

CA−W × 3
√

9.5013−


(

W+c
2

)
+ 7.434−W

2

 (7c)

D =
SF + c+SP

2
(W−SP−37.0359)

2 − e−0.276
(7d)

E = c × (1− (
1

3W− FA− 10.255
))

2
(7e)

Model Outcomes of Gene Expression Programming (GEP)

GEP model performance yielded a robust relationship between actual and predicted
compressive strength, as depicted in Figure 12a,b. It can be observed that R2, by employing GEP,
is close to 1. Moreover, Figure 12b represents an average of 3.52 MPa, with the maximum and
minimum errors of 4.46 and 2.70 MPa, respectively. The data of the GEP model for compressive
strength indicate that all the errors lie below 5 MPa. A comparison is drawn between the
actual and the predicted compressive strength to evaluate the model accuracy and to measure
the deviation of the model from the experimental results. Figure 12c shows the coefficient of
correlation for the split tensile strength model with R2 = 0.93, whereas Figure 12d shows the
error distribution of predicted results with actual results. The GEP model for fst may show
high error peaks as compared to the models obtained by DT, MLPNN, SVM, but the overall
performance of the model is better comparatively as can be seen in the statistical parameters in
Table 8. Average, maximum, and minimum errors for the tensile strength GEP model are 0.3,
0.4, and 0.23 MPa, respectively. Moreover, the data indicate that 100% of the error lies below
0.5 MPa. The expression tree for the GEP split tensile strength model is shown in Figure 11.
The relationship that developed between tensile strength and input parameters is shown in
Equation (7).
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Figure 12. GEP model for (a) compressive strength and (b) its error distribution; (c) split tensile strength and (d) its
error distribution.

5.3. Comparison between Ensemble Models and the GEP Model

To the author’s knowledge, no model for predicting the mechanical properties of
SFC has been devised. As a consequence of this study, nonlinear regression models were
developed to predict the mechanical properties of SFC, and their results were compared
to gene expression models. The statistical errors between anticipated and actual values
are shown in Table 8. The statistical metrics demonstrate that the actual and anticipated
values are closer for GEP models, confirming their predictive ability in forecasting the
compressive and split tensile strengths of SFC.
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Table 8. Statistical Errors in Validation Stages for the Models.

Models MAE RMSE RMSLE R2 Value

MLPNN

Compressive Strength 5.28 7.25 0.065 0.85
Split Tensile Strength 0.41 0.51 0.059 0.90

ANFIS

Compressive Strength 4.18 5.69 0.056 0.91
Split Tensile Strength 0.26 0.40 0.052 0.92

GEP

Compressive Strength 3.52 3.56 0.046 0.97
Split Tensile Strength 0.31 0.31 0.037 0.93

As shown in Figures 13 and 14, the GEP models outperform other machine learning
models with the same input variables for both compressive and split tensile strengths of
SFC. The GEP model is superior to other machine learning models in that it is capable of
effectively establishing a relationship between nonlinear input and output variables.

Figure 13. Comparison of errors for compressive strength.

Figure 14. Comparison of errors for splitting tensile strength.

5.4. Sensitivity Analysis

Six parameters were employed as inputs: cement, FA, CA, water, SF, and SP. The
contribution of each input parameter to the construction of GEP models is depicted in
Figure 15. Compressive strength is increased more by water and cement than by FA,
CA, and other additives. Although, the least sensitive parameters in the creation of the
tensile strength model are water and cement. The most sensitive factors for splitting tensile
strength are FA and CA. Both SF and SP contributed modestly to the development of
both models.
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Figure 15. Contribution of input parameters to compressive and splitting tensile strength.

5.5. Cross-Validation

Cross-validation is a statistical technique for estimating the true performance of
machine learning models. It is vital to understanding the performance of the models
chosen. A validation technique is required to ascertain the accuracy level of the model’s
data for this purpose. The k-fold validation test requires randomly shuffling the data set and
segmenting it into k-groups. The data from the experimental samples are evenly divided
into ten subgroups in the given study. It makes use of nine of ten subsets, whereas the
remaining one is used to validate the model. The identical procedure is then performed ten
times in order to acquire the average accuracy of these ten repeats. It is commonly accepted
that the tenfold cross-validation approach accurately portrays the model’s conclusion and
correctness [92,93].

K-fold cross-validation can be used to check for bias and variance reduction in the
test set. Correlation coefficients (R2), mean absolute error (MAE), mean square logarithmic
error (RMSLE), and root mean square error (RMSE) are used to evaluate the outcomes of
cross-validation, as depicted in Figures 16 and 17 for compressive strength and splitting
tensile strength, respectively. The GEP model shows fewer errors and better R2 as compared
to supervised machine learning techniques. The average R2 for GEP modeling is 0.84 for
a compressive strength of ten folds with maximum and minimum values of 0.97 and
0.61, as shown in Figure 16. Similarly, the average R2 = 0.83 for tensile strength with
a maximum and minimum value of 0.98 and 0.71, respectively, is shown in Figure 17.
Each model shows fewer errors for validation. The validation indicator result shows that
mean values of MAE, RMSE, and RMSLE come to be 5.33, 6.54, and 0.039, respectively,
for the compressive strength GEP model and 0.49, 0.63, and 0.031 for the splitting tensile
strength GEP model. Similarly, the ensemble models show the same trend by showing
comparatively more errors.



Materials 2021, 14, 7531 23 of 28

Figure 16. K-fold cross validation of compressive strength for MLPNN, ANFIS and GEP; (a) Based
on R2; (b) Based on MAE; (c) based on RMSE; (d) based on RMSLE.

Figure 17. K-fold cross validation of tensile strength for MLPNN, ANFIS and GEP; (a) Based on R2;
(b) Based on MAE; (c) based on RMSE; (d) based on RMSLE.

6. Conclusions

Since the last two decades, soft computing approaches have been widely employed to
forecast various properties of concrete using both linear and nonlinear modelling systems.
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This study used MLPNN, ANFIS, and GEP to predict the compressive and split tensile
strengths of SFC. Concrete’s primary feature is compressive strength, and no model has
been created to estimate the compressive strength of SFC. Following a thorough study of
the literature, a substantial and reliable database was compiled from the various studies.
Models were evaluated using statistical measures such as R2, MAE, RMSE, and RMSLE. The
values of statistical parameters indicated that all models are capable of accurately predicting
the compressive and split tensile strengths of concrete. The outcomes of the machine
learning models and the GEP model are compared. External validation and sensitivity
assessments were also done for additional assurance. R2 values of 0.97 for compressive
strength and 0.93 for tensile strength were achieved using the best model (GEP).

The specific outcomes obtained from this study are:

1. The results of this study indicated that GEP models have higher accuracy for the
prediction of data than other ML models.

2. After a detailed study, it was observed that the order of accuracy followed by the
compressive strength and tensile strength models is: GEP > ANFIS > MLPNN.

3. The benefit of GEP is it gives us a new mathematical equation that can be used to
predict the properties for another database.

4. Sensitivity analysis showed that water and cement are the governing factors in the
model development for compressive strength. However, these factors have least effect
in tensile strength model development.

5. Statistical parameters including R2, MAE, RMSE, and RMSLE were used to check
the k-fold validation results. These parameters depicted satisfactory results for all
the models.

6. Accurate expressions and models can be used to increase the industrial-level utiliza-
tion of hazardous SF in concrete in construction procedures, rather than accumulating
it as industrial waste. This research contributes to sustainable development by lower-
ing energy usage, landfill waste, and greenhouse gas emissions.

7. Limitations and Directions for Future Work

Compressive strength and split tensile strength were determined using a comprehen-
sive and dependable database. However, if a more generic expression is sought, adding
additional input parameters and expanding the database may yield the desired results.
Models developed in this study are for the prediction of SFC compressive and split ten-
sile strength. These models provided accurate and reliable results in predicting the SFC
strengths as indicated by statistical parameters. However, MLPNN, ANFIS and GEP mod-
els can be used for the prediction of concrete properties comprising various other concrete
constituents by keeping the same modelling parameters. These models will be modified
on the basis of input parameters and results forecasted rely mainly on the database uti-
lized. Additionally, machine learning approaches can be used in conjunction with heuristic
methods such as the whale optimization algorithm, ant colony optimization, and particle
swarm optimization to achieve optimal outcomes. These strategies can then be compared
to the ones used in this study.

Additionally, multi-expression programming (MEP) is a more advanced and improved
variant of GEP. MEP analysis should be used to circumvent GEP’s restrictions. Compara-
tively, MEP employs basic decoding processes and is given special consideration when the
complexity of the targeted expression is unknown. MEP can deal with exceptions, incorrect
expressions, and division by zero. The gene is in charge of creating an exception, after
which it changes to an arbitrary terminal symbol, resulting in no infertile learner entering
the following generation. Moreover, MLPNN and ANFIS were employed in this research
for the prediction of desired outcomes and employed single learners in anticipating the
results. The authors recommend using ensemble ML methods where various sub-models
are developed, and the best sub-model is selected using statistical parameters.
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