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Abstract: The C* integral for the compact tension (CT) specimen is calculated using the estimation
equation in ASTM E1457-15. This equation was developed based on the assumption of material
homogeneity and is not applicable to a welded CT specimen. In this paper, a modified equation for
estimating the C* integral for a welded compact tension (CT) specimen under creep conditions is
proposed. The proposed equation is defined on the basis of systematically conducted extensive finite
element (FE) analyses using the ABAQUS program. A crack in the welded CT specimen is located in
the center of the heat-affected zone (HAZ), because the most severe type IV cracks are located in the
HAZ. The results obtained by the analysis show that the equation for estimating the C* integral in
ASTM E1457-15 can underestimate the value of the C* integral for creep-soft HAZ and overestimate
for creep-hard HAZ. Therefore, the proposed modified equation is suitable for describing the creep
crack growth (CCG) of welded specimens.

Keywords: creep; C* integral; mismatched weld; CT specimen; finite element analysis

1. Introduction

Welding technology is one of the most common ways of joining metals in the chemical
and petrochemical industries. However, welds may contain imperfections such as lack
of fusion, under-cuts, porosity, and slag inclusion of certain height and length at certain
locations in the weld [1,2]. Such irregularities in welds usually act as crack initiation
sites. The failure of any of the welded joints in the process industry is uncomfortable
at best and can lead to catastrophic accidents at worst. For safe and reliable operation
of welded structures, periodic non-destructive testing and appropriate assessment of
structural integrity should be performed.

There are increasing demands for reducing CO2 emissions in the chemical and petro-
chemical industries and in thermal power plants. Increasing the operating temperatures of
the plant increases the energy efficiency, thus reducing CO2 emissions. Higher operating
temperatures and higher stresses increase the risk of welded structure failure due to creep
conditions. It is therefore necessary to develop a method to predict the CCG in welded
joints [3].

It is most likely that failure due to creep of high-temperature components begins in
welded joints. The most severe cracks in welded joints are type IV cracks in the HAZ. These
cracks occur due to multi-axial stresses caused by the material constraint effect between the
welding constituents and large creep strain of the soft HAZ [4]. Many previous studies [5–8]
have shown that material constraint plays an important role in CCG in welded joints. The
material constraint is due to the mismatch effect of creep properties in the welded joint
components. There are a number of experimental and numerical studies on the influence
of the mismatch effect on the fracture mechanics parameter C* and the CCG rate in welded
joints [9–14].

Many studies have shown that in addition to material constraint, the CCG behavior of
welded joints is also influenced by geometric constraint [15–17]. Li et al. [18] investigated
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the effect of the interaction of material constraint and geometry constraint on the CCG rate
in welded joints. A FE method based on the ductility exhaustion model was used in this
study. A FE method was applied to two specimen types (the compact tension and middle
crack tension specimen) with different material mismatches. The research established the
existence of the effect of the interaction between material and geometry constraints on the
CCG rate. Under the condition of low geometry constraint, the effects of material constraint
on the CCG rate become more obvious [18].

Creep crack growth under widespread steady-state creep conditions is characterized
by the C* integral. The C* integral for the compact tension (CT) specimen is calculated using
the estimation equation in ASTM E1457-15 [19]. However, this equation was developed
based on the assumption of material homogeneity. As the above studies have shown, the
influence of material and geometry constraints on C* and the CCG rate of welded joints
cannot be ignored. Therefore, the C* estimation equation according to ASTM E1457-15
needs to be modified for application to welded CT specimens. Xuan et al. [3] proposed
a model of equivalent material and developed a modified equation for the C* integral
applying limit load solutions. However, the HAZ was not taken into consideration in
this study.

In this paper, extensive elastic-creep two-dimensional finite element analysis was
performed for welded CT samples with different crack lengths located in the HAZ. The
general purpose finite element program ABAQUS [20] was used to calculate the C* inte-
gral. A systematic parametric study of the dependence of the C* integral on the mismatch
of material properties, HAZ width and crack length was performed. Based on the per-
formed analyses, a modified equation for estimating the C* integral for welded CT samples
is proposed.

2. Numerical Analysis
2.1. Geometry and Loading

A two-dimensional (2D) high crack-tip constrained plain-strain CT specimen of
welded joints was considered. This specimen consists of three materials, as described
in Figure 1. The general geometric dimensions of the CT specimen are also shown in
Figure 1. The width of specimen was selected to be W = 25 mm. The crack is located in
the center of HAZ. For the purpose of the investigation, the relative crack length a/W was
varied from 0.5 to 0.9 with a step of 0.1. Additionally, the relative width of the HAZ W/h
was varied from 6 to 12 with step 2. All considered specimens were initially loaded with
the same stress intensity factor K = 460 Nmm−3/2.
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2.2. Material Properties

The elastic-creep material model was used in FE analysis. Generally, the power law
relationship is appropriate for modeling the stress–strain response under steady-state creep.
Elastic-creep constitutive relation is as follows:

.
ε =

.
σ

E
+ Aσn , (1)

where
.
ε. is the uniaxial strain rate,

.
σ. is the uniaxial stress rate, and E is Young’s modulus.

A and n are the creep constant and exponent, respectively. Young’s modules and Poisson’s
ratio for HAZ and WM are assumed to be the same as those of BM. These values are as
follows: E = 175 GPa and ν = 0.3. The power law for the three materials (BM, WM, and
HAZ) is as follows:

.
εBM = ABMσnBM ,

.
εWM = AWMσnWM ,

.
εHAZ = AHAZσnHAZ , (2)

The selected power law parameters for BM are: ABM = 1 × 10−20 (MPa)−nh−1 and
nBM = 7. To investigate the influence of material constraints on the C* integral in welded
joints, different configurations of material mismatch in creep strain rate of BM, WM
and HAZ were designed. The material creep properties for HAZ and WM were cho-
sen so that the creep strain rate was lower or higher than that of BM. This was achieved
by varying the constant A. The creep exponent n for BM, WM and HAZ was identical
(nBM = nWM = nHAZ = 7). The effect of the mismatch in the creep properties for WM and
HAZ relative to BM is expressed by the mismatch factor. These mismatch factors are
defined as follows [18]:

MFWM =
AWM

ABM
, MFHAZ =

AHAZ

ABM
(3)

The selected values of MFWM and MFHAZ factors are 10, 1 and 0.1, respectively. Thus,
in order to investigate the effect of material constraints on the C* integral, nine possible
combinations of material mismatch were considered, as shown in Table 1.

Table 1. Considered material mismatches.

MFWM MFHAZ

10 0.1
10 1
10 10
1 0.1
1 1
1 10

0.1 0.1
0.1 1
0.1 10

2.3. Finite Element Analysis

Extensive elastic-creep FE analyses for welded CT specimens were performed in this
study. The general purpose FE program ABAQUS (2016, Dassault Systemes Simulia Corp.,
Johnston, RI, USA) [20] was used to calculate the C* integral. A seam crack is included
in a 2D CT specimen model. The selected crack front is equivalent to the crack tip. The
direction of crack propagation at the crack tip is defined using the virtual crack extension
direction. A small geometry change continuum FE model was applied. In order to avoid
problems associated with incompressibility, 8 node reduced integration elements for 2D
plain-strain problems (CPE8R) were used [3]. The elements of innermost ring at the crack
tip are degenerated into triangles. The three nodes along one side of the eight-node element
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are defined so that they share the same geometrical place. Each of the three collapsed nodes
can be displaced independently [21]. Figure 2 shows a typical FE mesh for the CT specimen
a/W = 0.5 and W/h = 6. The crack-tip zone is meshed finely. The mesh size at crack-tip
region is selected so as to eliminate mesh-sensitivity in determining the stress fields and C*
integral. Therefore, the element size selected in all further analyses was 0.05 mm.
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The load was applied in the center of the upper hole using the reference point RP-1
and the multi-point constraint (MPC) option within ABAQUS. The direction of the load
at the reference point was in the y direction. The displacement of the center of the upper
hole was constrained in x direction [18]. Additionally, the displacement of the center of
the lower hole was constrained in x and y directions [18]. Initially, the model was stress
free. The above load was firstly applied instantaneously to the FE model using an elastic
calculation at time t = 0 [3]. Then, the load was kept constant and a subsequent time-
dependent creep calculation was performed. In order to achieve better numerical efficiency
for time-dependent creep calculation, a combined implicit and explicit method within
ABAQUS was selected. Keeping the load constant, subsequent creep deformation causes
stress relaxation at the crack-tip region until a steady-state stress distribution is achieved.
The steady-state stress is characterized by path-independent integral C*. Five different
integral paths around the crack tip were considered and the average value of calculated
C*-integrals was taken as final result [21].

To gain confidence in the present FE analysis, elastic and elastic-creep analyses of a
homogeneous CT specimen were performed. Figure 3 shows the distribution of von Mises
stresses obtained by elastic-creep analysis (deformation scale factor is 10). Table 2 compares
the values of fracture mechanics factors KI and C* obtained by FE analyses with analytical
solutions for CT specimen [22,23]. It is evident that the FE results provide confidence in
the FE analyses for elastic and steady-state creep conditions.
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Table 2. Ratios of the FE KI and C* with analytical solutions.

KI(FE)/KI 1.005

C*(FE)/C* n = 5 0.978
n = 10 0.982

3. Results and Discussion

C* is estimated experimentally from measurements of creep load line displacement
rate according from tests carried out on CT specimens based on the recommendations of
ASTM E1457-15. The value of C* integral is determined using the following Equation [3]:

C∗ = η
n

n + 1
F

.
Vc

B(W − a)
, (4)

where F denotes the applied constant load, B is the specimen thickness,
.

Vc. is the creep load
line displacement rate, and η is an experimental calibration factor. The geometrical factor η
depends only on the specimen geometry and the crack length a. For the CT specimen, the
geometric factor η is determined according to the following expression:

η = 2 + 0. 522
(

1 − a
W

)
(5)

It is worth noting that Equation (4) is developed for homogeneous materials. This
means that this equation is not applicable to heterogeneous materials such as welded joints.
A directly measured

.
Vc value from the welded CT specimen reflects a partial influence of

material and geometry constraints. It is therefore necessary to extend the expression for
estimating the C* integral (Equation (4)) that will take these constraints into account. It
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can be assumed that the modified equation for estimating the C* integral for a welded CT
specimen has the following form:

C∗ = η
n

n + 1
F

.
Vc

B(W − a)
ϕ , (6)

where ϕ denotes the calibration factor dependent on material and geometry constraints. It
can be written as follows:

ϕ = ϕ(MFWM, MFHAZ, W/h, a/W) , (7)

This functional dependence will be found based on the results of extensive elastic-
creep FE analyses performed. Factor ϕ values were calculated as the ratio of the C* integral
of the heterogeneous (welded) CT specimen and the C* integral for the homogeneous
CT specimen:

ϕ =
(C∗)HET
(C∗)HOM

, (8)

Figure 4a–c show the influence of MFHAZ, MFWM and W/h on the factor ϕ for the
ratio a/W = 0.5. It can be seen that MFHAZ has a strong influence on the factor ϕ for
the considered values of MFWM and W/h. Values of ϕ are highest for creep-soft HAZ
(MFHAZ = 0.1). It can be seen that these values are significantly higher than one, meaning
that the C* integral is lower than the C* integral for a homogeneous CT specimen. A larger
C* integral causes a higher rate of CCG. For a given value of MFHAZ, the factor ϕ is higher
if MFWM is lower. For creep-hard HAZ (MFHAZ = 10), the values of ϕ are mostly lower
than one, meaning that the C* integral is less than the C* integral for a homogeneous CT
specimen. The influence of W/h on the ϕ factor is significant for creep-soft HAZ. The factor
ϕ is higher for the larger HAZ width h (lower W/h ratio).
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A similar analysis can be performed for the other a/W values considered. However,
for easier analysis, Figure 5a–c show the dependence ϕ factor on the a/W ratio for the
considered values of MFHAZ and MFWM at the ratio W/h = 6.
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It can be seen that effects of MFHAZ on ϕ are quite complex. For creep-hard HAZ
(MFHAZ = 10), the values of ϕ are lower than one for all considered values of a/W. The
value of ϕ becomes lower and asymptotically approaches a constant value as a/W increase.
The value of MFWM has almost no effect on ϕ when a/W ≥ 0.7.

For creep match HAZ (MFHAZ = 1), the values of ϕ in the range 0.5 ≤ a/W ≤ 0.7
are higher than one if WM is creep-soft material (MFWM = 0.1). On the other side, for
creep-hard WM (MFWM = 10) and range 0.5 ≤ a/W ≤ 0.7 the values of ϕ are lower than
one. In both cases, for values of a/W > 0.7, the value of ϕ asymptotically approaches one.
For creep match WM the value of ϕ is one for all considered values of a/W. This is expected
because it is in fact a homogeneous material.

For creep-soft HAZ (MFHAZ = 0.1), the values of ϕ are significantly higher than one for
all considered values of a/W. The value of ϕ becomes higher and asymptotically approaches
a constant value as a/W increase. The value of MFWM has almost no effect on ϕ when
a/W ≥ 0.7.

A similar analysis can be performed for the other W/h values considered. Figure 6a–c
show the dependence ϕ factor on the a/W ratio for the considered values of MFHAZ and
MFWM at the ratio W/h = 8. Thus, for a/W = 0.5 and MFHAZ = 10, the corresponding values
of ϕ for W/h = 8 are higher than those for W/h = 6. Likewise, for a/W = 0.5 and MFHAZ = 0.1,
the corresponding values of ϕ for W/h = 8 are lower than those for W/h = 6. In both cases,
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the value of ϕ asymptotically approaches a constant value as a/W increase. For a/W = 0.5
and MFHAZ = 1 and if WM is creep-soft material (MFWM = 0.1), the value of ϕ for W/h = 8
is higher than this for W/h = 6. For a/W = 0.5 and MFHAZ = 1 and if WM is creep-hard
material (MFWM = 10), the value of ϕ for W/h = 8 is lower than this for W/h = 6. In the case
where WM and HAZ are creep match materials, the value of ϕ is one for all considered
a/W ratios.
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Considering the dependence of the factor ϕ on MFHAZ, MFWM and a/W for all W/h
ratios, it can be generally concluded that there is a strong and complex influence of material
and geometry constraints on the CCG rate. If the HAZ creep is a soft material, which
is often the practice [18], the factor ϕ will have values higher than one. This means that
the C* integral will be higher than the C* integral for homogenic material, so the CCG
rate will also be higher. It is clear that a higher CCG rate means a shorter lifetime of the
welded structure.

There is a unique relationship between the C* integral and the crack-tip stress and
strain rate fields as follows [24]:

σij =

(
C∗

In Ar

) 1
1+n

σ̂ij(θ, n) , (9)

.
εij =

(
C∗

In Ar

) n
1+n

ε̂ij(θ, n) , (10)

where r is distance from the crack tip, In is quantity that depends on exponent n and the
stress condition, σ̂ij. and ε̂ij are angular functions. Analyzing the diagrams in Figures 4–6, it
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can be clearly concluded that the values of ϕ change with different combination of MFHAZ,
MFWM, W/h and a/W. Different combinations of these parameters change the crack-tip
constraint effect, and thus the magnitude of the crack-tip stress and strain rate. A higher
magnitude of crack-tip stress and strain rate means a higher value of the C* integral, and
thus a higher value of ϕ.

Using the results of the analyses performed and applying the software package
TuringBot [25], an equation was found which can satisfactorily estimate ϕ values for the
considered values of MFHAZ, MFWM, a/W and W/h. This is the following expression:

ϕ =
a/W

MFHAZ
+

2
MFHAZ + MFWM(W/h)

, (11)

The R-squared for this model is 0.96 and the RMS error is 0.74. This confirms the high
goodness-of-fit of the selected model.

4. Conclusions

Based on systematic FE analyses, a modified equation was proposed to estimate the
C* integral for the welded CT specimen with a crack located in the center of the HAZ.
Compared to a homogeneous CT specimen, creep-soft HAZ gives higher values of the C*
integral while creep-hard HAZ reduces the value of the C* integral. This means that the
existing equation for the C* integral in ASTM E 1457 may underestimate or overestimate
the actual value of the C* integral for the welded CT sample. The influence of W/h on
the C* integral is significant for creep-soft HAZ. The C* integral is higher for the larger
HAZ width h (lower W/h ratio). Finally, an expression for estimating the C* integral for the
mismatched welded CT specimen is proposed.
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