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Abstract: Open-cell solid foams are rigid skeletons that are permeable to fluids, and they are used as
direct heaters or thermal dissipaters in many industrial applications. Using susceptors, such as dielec-
tric materials, for the skeleton and exposing them to microwaves is an efficient way of heating them.
The heating performance depends on the permittivity of the skeleton. However, generating a rigorous
description of the effective permittivity is challenging and requires an appropriate consideration of
the complex skeletal foam morphology. In this study, we propose that Platonic solids act as building
elements of the open-cell skeletal structures, which explains their effective permittivity. The new,
simplistic geometrical relation thus derived is used along with electromagnetic wave propagation
calculations of models that represent real foams to obtain a geometrical, parameter-free relation,
which is based only on foam porosity and the material’s permittivity. The derived relation facilitates
an efficient and reliable estimation of the effective permittivity of open-cell foams over a large range
of porosity.

Keywords: open-cell ceramic foams; microwave heating; effective permittivity; Platonic structures;
complex permittivity

1. Introduction

Open-cell foams are use in thermal engineering as heaters and thermal dissipa-
ters [1–3]. When they are used as heaters, energy has to be used to heat them. A promising
approach for heating such foams is by using microwave radiation. This can be achieved
with skeletons made of susceptor materials, such as dielectric ceramics. In this context, their
permittivity is important, since it is a key aspect of the polarization and electromagnetic
energy dissipation of the material that is exposed to an incident electromagnetic wave
(e.g., microwaves). The dissipation of electromagnetic energy, which is responsible for
the material heating, is caused by the imaginary part of the permittivity, known as the
dielectric loss. The complex permittivity is defined as:

ε = ε′ − jε′′ with ε′′ = ε′ tan δ, (1)

where ε′ is the dielectric constant, ε′′ is the dielectric loss, and tan δ is the loss tangent.
Open-cell foams are heterogeneous mixtures, composed of a skeleton that is confined

in a continuous medium (e.g., air, water, or even vacuum). The skeleton of open-cell solid
foams is a continuous grid of struts, which are interconnected via vertices (as shown in
Figure 1). Their morphology depends on the number, shape and spatial arrangement of
these struts and junctions, which result from the manufacturing technique that is applied.
As the structural elements (e.g., pores, cells, struts and joints; see Figure 1) of foams are
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much smaller than the wavelength of the incident microwave radiation, the foams tend to
behave similarly to a homogeneous media. Consequently, the mixture can be considered,
from a macroscopic perspective, to be an effective medium. This consideration is known as
the effective medium approximation (EMA). A mixture following the EMA is characterized
via its effective permittivity. This effective permittivity εeff depends on the porosity P (ratio
of the volume of voids to the total volume of the foam), the permittivities of the solid
structure εc (i.e., ceramic skeleton) and the surrounding continuous medium (i.e., fluid) εf,
as well as on the morphology of the skeletons. However, given the complex morphology
of skeletons (see Figure 1), it is hardly possible to fully describe the skeletons with simple
geometrical models. As a result, exact equations for calculating the effective permittivity of
porous materials are currently not available.
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Figure 1. SiSiC open-cell foam with characteristic structural elements (reconstructed µCT image).

Instead, the following two approaches are used the most to estimate the εeff of
complex mixtures:

1. Relations, such as the EMA relations [4,5] or probability distribution relations of the
micromechanical bounds (e.g., Wiener bounds) [4], have been derived. Phenomeno-
logically, these relations consider inclusions to be spherical (or quasi-spherical, e.g.,
ellipsoids) particles that are embedded in a continuous medium. Reliable predictions
can only be obtained if the real microstructure resembles features of the one from
which the relation had been derived.

2. Numerical approaches consider the real 3D structure of the skeleton, which is, for
example, reconstructed from tomographic scans. The real foam structures are sub-
sequently recreated in a 3D simulation environment [6] to help perform numerical
electromagnetic calculations to obtain their scattering parameters [7] and the corre-
sponding εeff. Here, the accuracy depends on the spatial resolution of the scanned 3D
volume and the refinement of the simulation mesh. The superiority of this method
for estimating the εeff comes at the expense of imaging and simulation costs.

In this work, we propose a modified approach to determine the effective permittivity of
real open-cell solid foams using simplified structures for electromagnetic wave propagation
simulations. For that, we model the skeleton of the foam based on a multitude of Platonic
solids, which enables an approximation of the complex foam morphology. A new relation
for the effective permittivity of open-cell foams is derived and compared with other
relations outlined in the literature and experimental data.

2. Materials and Methods
2.1. Sintered Open-Cell Ceramic Foams

In this work, two samples of open-cell ceramic foams with pore densities of 20 and
30 ppi (pores per inch), both made of silicon-infiltrated silicon carbide (SiSiC), were used
(manufactured by IKTS Fraunhofer, Dresden, Germany, via the replication sintering tech-
nique). Note that the pore density is a measure of the interface density, which corresponds
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to the inverse of the chord length [8]. It is commonly given in form of a ppi by value manu-
facturers. The skeletons of these samples were replicated numerically as explained below.

Image acquisition and processing. Slices of the foam cross-sections were obtained via
X-ray microcomputed tomography (IKTS Fraunhofer, Dresden, Germany) (µCT). The recon-
structed 2D cross-sectional images were compiled into stacks (size: 40 mm× 40 mm× 25 mm)
with a voxel size of 56 µm × 56 µm × 56 µm. These 3D stacks were then post-processed to
correct undesirable defects and aberrations as described elsewhere [8].

Construction of the model. To construct representative foam models for the numeri-
cal simulations, the size of the 3D stacks was reduced to avoid a high computational burden
while preserving the porosity. The stacks were cut to mean representative cubic volume
elements (MRCV) with an edge length LMRCV = 10 mm, at which the porosity still agrees
with the original sample porosity. The skeleton morphology was then reconstructed as a
3D mesh by applying the marching cube algorithm (a computer graphics algorithm that
calculates triangle vertices from volumetric data by using linear interpolation to render
isosurfaces and generate polygonal meshes [9]) to the stacks, followed by post-processing
steps, such as mesh smoothing and simplification [10]. Eventually, the reconstructed mod-
els of the “sintered foams” (Figure 2) attained porosities of 89.3% (20 ppi) and 89.8% (30 ppi),
which agree well with those reported by the manufacturer (88% and 89%, respectively).
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Figure 2. Illustration of the mean representative cubic volume element (MRCV) of the sintered foams
(left: 20 ppi, right: 30 ppi).

Additionally, 3D dilation and erosion filters [11,12] were applied to the original image
stacks that were obtained by µCT for adjusting the porosities, followed by the reconstruc-
tion process described above. Resulting mean cell diameters dcell and mean strut diameters
dst that were determined using the 3D thickness method [13] are summarized in Table 1.

Table 1. Cell and strut diameters of the sintered foams (mean ± standard deviation).

20 ppi
P 0.89 0.72 0.55 0.37 0.25

dcell (mm) 2.65 ± 0.51 2.10 ± 0.49 1.85 ± 0.33 1.58 ± 0.28 1.33 ± 0.44
dst (mm) 0.64 ± 0.20 0.95 ± 0.21 1.03 ± 0.42 1.41 ± 0.52 1.93 ± 0.23

30 ppi
P 0.89 0.70 0.52 0.34 0.18

dcell (mm) 1.68 ± 0.54 1.22 ± 0.20 1.13 ± 0.19 0.92 ± 0.14 0.70 ± 0.17
dst (mm) 0.37 ± 0.12 0.53 ± 0.13 0.70 ± 0.30 0.84 ± 0.20 1.22 ± 0.26

2.2. Open-Cell Foams Modeled with Platonic Skeletons

Platonic solids are regular polyhedrons with identical faces and equal vertex angles.
The polyhedrons that were used in this work were hexahedrons, octahedrons, icosahedrons
and dodecahedrons [14]. An important feature of these solids is that they can be inscribed
in a cube enclosure, whose outer faces can be considered to be periodic boundaries (see
Figure 3). This guarantees that these cubes, when juxtaposed, repeat the Platonic solids with
the same spatial arrangement. In the case of octahedrons, two arrangements satisfy their
periodicity: octahedron1 (the struts cross at the center of the cube faces) and octahedron2
(the struts cross at the center and corners of the cube faces). Throughout this article,
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these arrangements of Platonic solids will be referred to as the periodic cubic enclosure
arrangement (PCA) of Platonic inclusions.
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The cylinders at the edges of the Platonic solids form an interconnected network that
is equivalent to the skeleton of open-cell foams with their struts and joints. However, such
a simplification adds a geometrical defect (gap) at the vertices where the cylinders come
across each other. These gaps can be easily filled using Boolean operations with a spherical
triangle, as shown in Figure 4. In this way, a PCA of interconnected Platonic networks is
obtained, which—upon replication in any direction (x, y or z)—forms the open-cell foams of
Platonic skeletons that are referred to as “Platonic foams” (see Figure 3, bottom row). Their
cylinders represent—by analogy—the struts of sintered foams. A sphere inscribed in the
Platonic network—by analogy—is the equivalent of the cell of sintered foams. Moreover,
since the geometries of these foams are regular, both their cylinders and spheres have
constant diameters, dcyl and dsp, respectively, as shown in Figure 5.
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Since Platonic foams are composed of equal geometric elements, the volume of the
Platonic skeleton VP can be calculated using the diameter dcyl and length Lcyl of the
cylinders. As Table A1 in the Appendix A shows, Lcyl is related to the side length of the PCA
LPCA. The porosity (P = 1 − skeleton volume fraction) of Platonic foams can be expressed
as a function of their structural geometric elements (see Table 2 and Appendix A.1 and
Table A1 in the Appendix A). It should be noted that the Platonic foams have an existence
limit, since the struts would overlap if dcyl exceeds a certain size, causing the open-cell
faces to close, meaning that the Platonic geometry is no longer preserved.

Table 2. Porosity of the Platonic foams and corresponding limits, where the Platonic geometry is no
longer preserved.

Platonic Skeleton Porosity Limits for Strut Diameter
and Porosity

Hexahedron P = 1−
[

3π
4

dcyl
2

LPCA
2 −
√

2 dcyl
3

LPCA
3

] dcyl ≤ LPCA
P ≥ 0.058

Octahedron1 P = 1−
[

3π√
2

dcyl
2

LPCA
2 − 7.73 dcyl

3

LPCA
3

] dcyl ≤ LPCA√
6

P ≥ 0.415

Octahedron2 P = 1−
[

6π√
2

dcyl
2

LPCA
2 − 19.31 dcyl

3

LPCA
3

] dcyl ≤ LPCA√
6

P ≥ 0.093

Dodecahedron P = 1−
[

27π
2(3+

√
5)

dcyl
2

LPCA
2 − 9.07 dcyl

3

LPCA
3

] dcyl ≤ 2LPCA

(3+
√

5)

√
1 + 2√

5
P ≥ 0.078

Icosahedron P = 1−
[

27π
2(1+

√
5)

dcyl
2

LPCA
2 − 20.60 dcyl

3

LPCA
3

] dcyl ≤ 2LPCA

(
√

3+
√

15)
P ≥ 0.267
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2.3. Calculation of the Effective Permittivities

Sintered and Platonic foam models with different porosities were generated (see
Figure 6) to analyze the influence of the morphology on the εeff. For the Platonic foams, the
diameter of the struts was varied to adjust their porosity so that it was similar to the values
of the sintered foams, as shown in Table 1. All of the Platonic foam models were adjusted
to a total length L of 10 mm to match LMRCV of the sintered foams.

Materials 2021, 14, x FOR PEER REVIEW 6 of 25 
 

 

Table 2. Porosity of the Platonic foams and corresponding limits, where the Platonic geometry is no 
longer preserved. 

Platonic Skeleton Porosity 
Limits for Strut Diameter 
and Porosity  

Hexahedron 𝑃 = 1 − ቈ3𝜋4 𝑑ୡ୷୪ଶ𝐿୔େ୅ଶ − √2 𝑑ୡ୷୪ଷ𝐿୔େ୅ଷ቉ 
𝑑ୡ୷୪ ≤ 𝐿୔େ୅  𝑃 ≥  0.058 

Octahedron1 𝑃 = 1 − ቈ3𝜋√2 𝑑ୡ୷୪ଶ𝐿୔େ୅ଶ − 7.73 𝑑ୡ୷୪ଷ𝐿୔େ୅ଷ቉ 
𝑑ୡ୷୪ ≤ 𝐿୔େ୅√6  𝑃 ≥ 0.415 

Octahedron2 𝑃 = 1 − ቈ6𝜋√2 𝑑ୡ୷୪ଶ𝐿୔େ୅ଶ − 19.31 𝑑ୡ୷୪ଷ𝐿୔େ୅ଷ቉ 
𝑑ୡ୷୪ ≤ 𝐿୔େ୅√6  𝑃 ≥ 0.093 

Dodecahedron 𝑃 = 1 − ቈ 27𝜋2൫3 + √5൯ 𝑑ୡ୷୪ଶ𝐿୔େ୅ଶ − 9.07 𝑑ୡ୷୪ଷ𝐿୔େ୅ଷ቉ 𝑑ୡ୷୪ ≤ 2𝐿୔େ୅൫3 + √5൯ ඨ1 + 2√5 𝑃 ≥ 0.078 

Icosahedron 𝑃 = 1 − ቈ 27𝜋2൫1 + √5൯ 𝑑ୡ୷୪ଶ𝐿୔େ୅ଶ − 20.60 𝑑ୡ୷୪ଷ𝐿୔େ୅ଷ቉ 
𝑑ୡ୷୪ ≤ 2𝐿୔େ୅൫√3 + √15൯ 𝑃 ≥ 0.267 

 

2.3. Calculation of the Effective Permittivities 
Sintered and Platonic foam models with different porosities were generated (see Fig-

ure 6) to analyze the influence of the morphology on the 𝜀ୣ୤୤. For the Platonic foams, the 
diameter of the struts was varied to adjust their porosity so that it was similar to the values 
of the sintered foams, as shown in Table 1. All of the Platonic foam models were adjusted 
to a total length 𝐿 of 10 mm to match 𝐿୑ୖେ୚ of the sintered foams. 

 

 
Figure 6. Visual representation of sintered (30 ppi) and Platonic (hexahedral) foams for different 
porosities. 

These models were then imported into CST Microwave Studio Suite (Version 2018, 
Dassault Systemes, Velizy-Villacoublay, France) to perform electromagnetic wave propa-
gation simulations with the transient domain solver. This commercial software uses the 
finite-difference time-domain method to solve the integral formulation of the Maxwell 
equations. A frequency of 2.45 GHz was chosen for the pulse excitation signal of the mi-
crowaves. 

The simulation setup is shown in Figure 7. This approach is identical to the one re-
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magnetic (𝐻௧௔௡௚௘௡௧௜௔௟ = 0) walls for the x- and y-axes, respectively; input (1) and output 

Figure 6. Visual representation of sintered (30 ppi) and Platonic (hexahedral) foams for differ-
ent porosities.

These models were then imported into CST Microwave Studio Suite (Version 2018, Das-
sault Systemes, Velizy-Villacoublay, France) to perform electromagnetic wave propagation
simulations with the transient domain solver. This commercial software uses the finite-
difference time-domain method to solve the integral formulation of the Maxwell equations.
A frequency of 2.45 GHz was chosen for the pulse excitation signal of the microwaves.

The simulation setup is shown in Figure 7. This approach is identical to the one
reported elsewhere [7,10]. The boundary conditions are: normal electric (Etan gential = 0)
and magnetic (Htan gential = 0) walls for the x- and y-axes, respectively; input (1) and
output (2) are open boundaries with added space and non-reflective waveguide ports and
a distance to the models equal to λ/4 for the z-axis.
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The loss tangent and dielectric constant of the skeleton were assigned as:

1. tan δc = 0.23 with ε′c = 10;
2. tan δc = 0.46 with ε′c = 20;
3. tan δc = 0.91 with ε′c = 40;

which are doubles of each other. The parameters of the continuous medium were
assigned as:

I. tan δf = 0 with ε′f = 1 (corresponding to the air permittivity);
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II. tan δf = 0.14 with ε′f = 2.6 (as an alternative to air).

The higher εf was not chosen to match a particular fluid but rather to evaluate its
effect on the effective permittivity.

By moving the reference planes of the ports to the faces of the models, the reflected
S11 and transmitted S21 scattering parameters were acquired. These scattering parameters
are used in the retrieval method [15] to calculate the effective permittivity of each model.
This is achieved by calculating the impedance z and the refractive index n as:

z = ±

√√√√ (1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

, (2)

n =
1

k0L

Im

ln

 S21

1− (z−1)S11
(z+1)

+ 2mπ − i·Re

ln

 S21

1− (z−1)S11
(z+1)


, (3)

where L is the model length between the reference ports, k0 is the wavenumber in free
space, and m is the fundamental branch of the sinusoidal function periodicity (m = 0 for
L < λ/4, otherwise m = ±1, ±2, . . . , ±∞). Impedance and refractive index are then used
to calculate the effective permittivity εeff = n/z and the effective permeability µeff = nz.
Since the models have no magnetic properties, µeff was only used to validate whether
the impedance and refractive index yield the permeability of a non-magnetic sample, i.e.,
µeff = 1.0− j0.0± (0.10− j0.02).

For the numerical simulations, hexagonal meshes were used. The mesh size for
the Platonic foams was defined based on a sensitivity study that was performed for
the hexahedral foam. The objective was to achieve a mesh size for which the εeff does
not change more than 1% and which produces a tolerable computational burden. Cell
sizes < 133 µm (with at least 3.4× 106 cells) were assigned for all Platonic foam meshes.
Meshes with at least 1× 107 cells were considered for the sintered foams based on the
results of a previous study [16]. Note that the PCA is a unit periodic structure, and
simulations carried out on one PCA model with periodic boundaries produce results that
are consistent (i.e., do not differ by more than 0.5%) to the results that were obtained from
the models that are presented in Figure 7.

2.4. Expressions for Discussion of Results

The foams that are composed of mixtures of both skeleton and continuous medium
materials are analyzed in the discussion section using the real and imaginary susceptibility
ratios of the permittivity, expressed as:

SRRe =
Re(εeff)− Re(εf)

Re(εc)− Re(εf)
, (4)

SRIm =
Im(εeff)− Im(εf)

Im(εc)− Im(εf)
, (5)

and the complex dielectric contrast:

εc

εf
=

ε′cε′f + ε
′′
c ε
′′
f

ε′f
2 + ε

′′
f

2 − j
ε
′′
c ε′f − ε′cε

′′
f

ε′f
2 + ε

′′
f

2 . (6)

Accordingly, the complex dielectric contrasts of the foam mixtures are:

1. Skeleton: tan δc = 0.23 with ε′c = 10, continuous medium: tan δf = 0 with ε′f = 1,
εc/εf = 10− j2.3.

2. Skeleton: tan δc = 0.46 with ε′c = 20, continuous medium: tan δf = 0 with ε′f = 1,
εc/εf = 20− j9.2.
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3. Skeleton: tan δc = 0.91 with ε′c = 40, continuous medium: tan δf = 0 with ε′f = 1,
εc/εf = 40− j36.4.

4. Skeleton: tan δc = 0.46 with ε′c = 20, continuous medium: tan δf = 0.14 with ε′f = 2.6,
εc/εf = 8− j2.4.

3. Results

The results of the numerical calculations for the estimated effective permittivity of the
sintered and Platonic foams are shown in Figure 8. Note that due to the different methods
that were used to obtain both the sintered and Platonic foams (Sections 2.1 and 2.2), the
models do not have the same porosities.
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Figure 8. Estimated effective dielectric constants (left) and effective dielectric losses (right) from
numerical calculations for sintered and Platonic foams. The mixtures of the foams from Section 2.2
are identified by their corresponding properties (ε′c, ε′f, ε′′c , ε′′f ).

In general, the difference in ε′eff and ε
′′
eff for each foam is observed as a result of their

different microstructures. Consequently, the microstructures of the Platonic foams that
better represent sintered foams would provide more accurate estimations of the εeff. A
more detailed discussion of the results is provided in Section 4.

4. Discussion
4.1. Analysis of the Effective Medium Approximation Applied to Sintered Foams

As shown in Figure 9, the effective permittivities of the sintered foams (20 and 30 ppi)
are practically the same, despite the difference in the size of their struts and cells. Such
results provide evidence that the EMA consideration is plausible and that it can be veri-
fied through the inclusion size condition. This condition uses an inclusion parameter x
expressed as:

x =
πdincl

λ
, (7)

λ =
λ0√
ε′eff

, (8)

where the inclusion diameter dincl = dcell (by analogy) and λ0 is the wavelength in the air
(λ0 ∼= 12.2 cm at 2.45 GHz) of the incident radiation. Then, x is compared with a threshold
value that is known to meet the standards for EMA behavior. Using the inclusion size
parameter (Equations (4) and (5)) and the threshold value x = 0.15, as implied from the
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results of Mishchenko et al. [17], it is possible to validate the EMA consideration in terms
of the ε′eff as:

ε′eff <<

(
0.15λ0

πdcell

)2
. (9)Materials 2021, 14, x FOR PEER REVIEW 10 of 25 
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The value of x = 0.15 relates to the particle size at which the dispersion matrix (of
the refractive index) of the host-inclusion mixture differs from the dispersion matrix that
is calculated using the Lorenz–Mie computations that are based on EMA relations [17].
Figure 9 (left) shows the effective permittivity (marked with symbols) that was obtained
from the numerical simulations for the sintered foams compared to the predicted thresholds
for the EMA assumption (represented as lines) in accordance with the inclusion size
condition. The obtained data illustrate that the EMA assumption is valid except for some
points of the skeletons with tan δc = 0.91 (ε′c = 40) and a 20 ppi pore density. As the pore
size increases, the inclusion size parameter approaches the threshold value. For those
points that have already exceeded the threshold value (at the given effective permittivity),
the scattering matrix of the foam no longer accurately reproduces the scattering matrix of
an EMA mixture. Therefore, it is expected that the EMA assumption slightly begins to lose
its validity, and therefore the εeff of those samples may deviate slightly from the trend of
the others.

Figure 10 shows the effect of the porosity on the susceptibility ratios from the numerical
simulations for the sintered foams. These data reveal the contribution of the interactions
between the inclusion and the background constituents of the system. For a given porosity
(except for εeff(P = 0) = εc and εeff(P = 1) = εf), the effective dielectric constant and
complex dielectric contrast do not increase proportionally [5]. When one half-wavelength
of the radiation approaches the inclusion size where resonance occurs [18], the propagating
fields gradually decrease due to originated evanescent and near fields, which decrease the
possible value of ε′eff as shown for SRRe. The fact that the increase in the dielectric contrast
affects SRRe only (and not SRIm) is related to the shortened wavelength that propagates
inside the foam, which depends only on the ε′eff (see also Equation (5)).



Materials 2021, 14, 7446 10 of 24

Materials 2021, 14, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 9. Effective dielectric constants (left) and effective dielectric losses (right) as a function of 
porosity, obtained from numerical simulations for the sintered foams with pore densities of 20 ppi 
(black symbols) and 30 ppi (red symbols). Predicted thresholds (left) for the EMA assumption are 
shown for 20 ppi (black line) and 30 ppi (red line). 

Figure 10 shows the effect of the porosity on the susceptibility ratios from the numer-
ical simulations for the sintered foams. These data reveal the contribution of the interac-
tions between the inclusion and the background constituents of the system. For a given 
porosity (except for 𝜀ୣ୤୤(𝑃 = 0) = 𝜀ୡ  and 𝜀ୣ୤୤(𝑃 = 1) = 𝜀୤ ), the effective dielectric con-
stant and complex dielectric contrast do not increase proportionally [5]. When one half-
wavelength of the radiation approaches the inclusion size where resonance occurs [18], 
the propagating fields gradually decrease due to originated evanescent and near fields, 
which decrease the possible value of 𝜀ୣ୤୤ᇱ  as shown for 𝑆𝑅ୖୣ. The fact that the increase in 
the dielectric contrast affects 𝑆𝑅ୖୣ only (and not 𝑆𝑅୍୫) is related to the shortened wave-
length that propagates inside the foam, which depends only on the 𝜀ୣ୤୤ᇱ  (see also Equation 
(5)). 

 

 
Figure 10. Estimated real (left) and imaginary (right) susceptibility ratios from numerical simula-
tions for the sintered foams with pore densities of 20 ppi (black symbols) and 30 ppi (red symbols). 

4.2. Comparison of Effective Permittivity Estimates with Mixing Relations from the Literature 

Figure 10. Estimated real (left) and imaginary (right) susceptibility ratios from numerical simulations
for the sintered foams with pore densities of 20 ppi (black symbols) and 30 ppi (red symbols).

4.2. Comparison of Effective Permittivity Estimates with Mixing Relations from the Literature

Practically, two approaches are applicable for deriving the relations for the permit-
tivity of the effective media, i.e., the effective model approximation (EMA) [5] and the
weighted means of bounds [4] (e.g., the Wiener or Hashin-Shtrikman bounds). Below,
the predictive capabilities of relations for open-cell solid foams that are outlined in the
literature are analyzed.

The EMA mixing relations are derived from the homogenization theory, where ho-
mogeneously distributed inclusions in a quasi-uniform continuous medium are consid-
ered. Here, the effective permittivity is estimated based on the porosity and the con-
stituents of the system, using different EMA relations to those given in Table 3 (please note
relation abbreviations).

Table 3. EMA and probability distribution relations.

EMA Relations Expression

Maxwell Garnett (M-G) (Maxwell-type
relation, non-symmetric) [5]

εeff−εc
εeff+2εc

= (P) εf−εc
εf+2εc

Bruggeman–Landauer (B-L) (self-consistent
relation, symmetric) [5] (1− P) εc−εeff

εc+2εeff
= −(P) εf−εeff

εf+2εeff

Differential effective medium (DEM)
(Bruggeman relation, non-symmetric) [5]

εf−εeff
εf−εc

(
εc
εeff

)1/3
= 1− P

Probability distribution relations

Weighted arithmetic (Ar) mean of upper
and lower Wiener bounds [4] εeff = (1−Ψarithm)ε+W + Ψarithmε−W

Weighted harmonic (Hr) mean of upper
and lower Wiener bounds [4] εeff =

[
(1−Ψharm)

ε+W
+ Ψharm

ε−W

]−1

Weighted geometric (Ge) mean of upper
and lower Wiener bounds [4] εeff = exp

[(
1−Ψgeom

)
ln
(
ε+W
)
+ Ψgeom ln

(
ε−W
)]

General sigmoidal (Sg) mean of upper and
lower Wiener bounds [4]

εeff = (1− δ0,N)
[
(1− P)

(
ε+W
)N

+ P
(
ε−W
)N
] 1

N

+δ0,N
{

exp
[
(1− P) ln

(
ε+W
)
+ P ln

(
ε−W
)]}

where δ0,N =

{
1
0

if N = 0
otherwise



Materials 2021, 14, 7446 11 of 24

In turn, in probability distribution relations that are based on the weighted means
of bounds, the εeff of homogeneous media with arbitrary microstructures is restricted by
micromechanical limits. The Wiener bounds [4]:

ε+W = (1− P)εc + Pεf (upper bound = top restriction), (10)

ε−W = [(1− P)/εc + P/εf]
−1 (lower bound = bottom restriction) (11)

are considered to be appropriate for any mixture, and thus they are applied here to
ensure that the effective permittivity lies between the upper and lower bound. Since
there is no rigorous model on which these relations are based, weighting parameter Ψ
and exponential parameter N are fitted to the experimental data using a non-linear least
squares solver [19,20].

Figure 11 shows the susceptibility ratios of the estimated effective permittivity for
sintered foams (marked with symbols) compared to those that were obtained using the
EMA relations (continuous data shown by lines), as well as the root mean square errors
(RMSE) that have been averaged for the dielectric constant and the loss factor as RMSE =
(RMSEε′ + RMSEε′′ )/2. From the obtained data, it can be deduced that the DEM relation
best estimates the simulated permittivity of the sintered foams, followed by the M-G
relation. This is not unexpected, given that, in general, both of the mixing relations provide
very close estimations of the effective permittivity [17]. Unlike the M-G relation, the DEM
relation is symmetrical to all of the medium components and therefore treats them all
equally. Thus, the DEM relation can produce significantly better estimations in cases where
the volume fraction of the inclusions is considerably large, as it is for sintered foams.

4.3. Comparison of Effective Permittivity Estimates from Sintered and Platonic Foams

The effective permittivities that have been obtained from the electromagnetic wave
propagation simulations for the Platonic foams, along with the sintered foams, are shown
in Figure A1 of the Appendix A. The effect of the different Platonic solids that were used
as building elements of the open-cell skeletal structures is low. However, a general order
can be observed for the dielectric loss, i.e., octahedron1 > icosahedron > dodecahedron >
octahedron2 > hexahedron. This coincides with the order in which the Platonic shapes are
preserved (from Table 2), i.e., there is a decrease in the size of the faces of the open cells of
the Platonic solids by increasing the struts. This suggests that as the open-cell faces become
more closed, the resistivity decreases and, in turn, the loss increases.

4.4. Analysis of Proposed Relations for the Estimation of the Permittivity of Platonic and
Sintered Foams

The mixing relations for the εeff of the Platonic and sintered foams that are based on
the analysis of their simulated permittivities were derived in Appendices A.3 and A.4 of
the Appendix A. The proposed relation (Equation (A12) of the Appendix A) for Platonic
solids, such as the hexahedron, octahedron, icosahedron and dodecahedron, is:

εeff =
−2P

(1 + P2)
(εc − εf) +

(
εc + εf

[[
Re(εc/εf)g′m + g′0

]
+ j
[
Im(εc/εf)g′′m + g′′0

]])
, (12)

where g′0, g′′0 , g′m and g′′m are given by a polynomial of degree 6 in terms of their porosity
(Equation (A13) from Appendix A), and whose coefficients are summarized in Table A2
of the Appendix A. Figure 12 shows an exemplarily εeff that has been estimated using
Equation (12), which represents a fair agreement with the Platonic foam calculations.

On the other hand, the proposed relation (Equation (A15) of the Appendix A) for
open-cell foams (referred to as OCF) is given by a simpler equation as:

εeff =
−2P

(1 + P2)
(εc − εf) + εc

(
1 + P(1− P)3/2

)
. (13)
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Figure 13 shows the susceptibility ratios of the estimated effective permittivity for the
sintered foams (marked with symbols) compared to that obtained using the OCF relation
(continuous data shown by lines), including the RMSE. Figure 13, as well as Figure 11,
illustrates the agreement between the data that were obtained from the simulations and
relations, which for the OCF relation even exceeds the estimations that were obtained with
the DEM relation (RMSEOCF < RMSEDEM) and thus also for all of the other EMA relations
and Platonic foams (see Figure A1).
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propagation simulations for the Platonic foams, along with the sintered foams, are shown 
in Figure A1 of the Appendix. The effect of the different Platonic solids that were used as 
building elements of the open-cell skeletal structures is low. However, a general order can 
be observed for the dielectric loss, i.e., octahedron1 > icosahedron > dodecahedron > octa-
hedron2 > hexahedron. This coincides with the order in which the Platonic shapes are pre-
served (from Table 2), i.e., there is a decrease in the size of the faces of the open cells of the 

Figure 11. Real (left) and imaginary (right) susceptibility ratios of the EMA relations (upper row)
and the probability distribution relations (lower row) compared with the calculated ratios from
the numerical simulations for sintered foams for 20 ppi (black symbols) and 30 ppi (red symbols).
The figure symbol corresponds to the complex dielectric contrasts of the foam mixtures introduced
in Section 2.4, while lines illustrate the EMA relations predictions. The curves derived from the
relations follow a descending order as εc/εf increases (as illustrated in the upper right figure for the
B-L relation).
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The OCF and Platonic relations were also compared with the experimental data.
Unfortunately, the data in the literature are scarce and no records for the variation of the
porosity and εeff are available for open-cell foams (keeping their temperature and the
frequency of the incident radiation constant). Thus, series of previous εeff measurements
(at 2.45 GHz using the cavity perturbation technique) of cordierite (cord) samples with 30,
45 and 60 ppi [10] and polyurethane (poly) with different moisture (mois) content were used
for evaluation. The εeff of cordierite and polyurethane, along with the dodecahedron (due
to its good fit to the numerical results of the sintered foams) Platonic relation, OCF, M-G
and DEM estimations, are shown in Figures 14 and 15, respectively.
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In Figure 14, εc (unknown bulk permittivity) is obtained from the mixing relations that
were fitted to the experimental data using an iterative least-squares estimation. The dodec-
ahedron, M-G and DEM relations show similar estimates but do also have a remarkably
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different trend compared with the OCF relation. This is due to the different approaches
that are used to describe the microstructure of the mixtures (e.g., foams) between rela-
tions. All of the relations provide an acceptable estimate 5− j0.04± (0.2− j0.004) of the
cordierite bulk permittivity (εcord,max = 6− j0.06 at P = 0 for 20 ◦C and 1 MHz [21] and
εcord,min = 4.77− j0.008 at P = 0 for 20 ◦C and 8.52 GHz [22]), assuming that the value
must be between εcord,min and εcord,max and that this range remains practically constant
with the same conditions that were applied in the previous study (100 ◦C, 2.45 GHz). A
better estimation would be obtained by using more points that are equally distributed
within the porosity.

Figure 15 shows the εeff of the polyurethane samples (P = 0.978± 0.007) that were
adjusted with different water volume fractions. To estimate the εeff, εmois was calculated us-
ing the DEM relation with εair = 1.00− j0.00 and εwater = 80.36− j14.57 [23] (at 2.45 GHz).
Next, εmois and εpoly = 2.0− j3.2 (at 2.45 GHz) [24] were used for the mixing relations. For
the polyurethane foams, mixing relations were not used (as in Figure 14) to estimate εc,
and thus a different trend of the relations is observed. All of the used relations show a
good agreement with each other. The differences to the experimental points may be caused
firstly by the fact that water (inclusion) is not homogeneously distributed in the foam voids,
and secondly because the most polar polymers, such as polyurethane [25], exhibit a high
level of moisture adsorption. Both factors in combination produce a significant variation to
an EMA mixture, whereby overestimated values for the effective permittivity are expected.
Moreover, at the porosity of P = 0.97, εeff is more dependent on εmois than on the foam’s
morphology. Finally, it can be concluded that OCF relations provide good estimates that
are comparable to those from the EMA relations for εeff.

5. Conclusions

In this work, we compared the effective permittivities of fabricated foams (created
using the sintering technique) and virtually constructed foams using Platonic skeletons
that were calculated using electromagnetic wave propagation calculations. A new relation
for evaluating the permittivity of Platonic foams was presented, which can be used for the
design of customized foams with desired dielectric properties.

In addition, a new empirical relation was also proposed for estimating the effective
permittivity of sintered foams. The relation was obtained through an analysis of the effec-
tive permittivity of the sintered foam skeletons. The relation is only based on porosity and
bulk material permittivities and does not require any additional empirical or experimental
parameters. It has been demonstrated that the new relation for the prediction of the effec-
tive permittivity of simulated open-cell foams outperforms any other relation available in
the literature. However, more experimental data is still required for validation, especially
at a high permittivity contrast where the EMA approach loses its validity.
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Appendix A

Appendix A.1. Skeletal Volume Calculation Sequence for Platonic Foams

The following points summarize the calculation sequence for the volume of the
skeletons of the studied Platonic foams (an example is presented below in Appendix A.2).
The following parameters are known about the Platonic foam: the number of intersecting
cylinders at each side Ncyl, the interior angle of the face polygon θP, the cylinder length
Lcyl, and the cylinder diameter dcyl.

I. Calculate the volume of all cylinders at each intersection: VA = Ncylπdcyl
2Lcyl/4.

II. Calculate the volumes of two intersecting cylinders at θP: VB = 2dcyl
3/(3 sin θP).

III. Calculate the sum of the volumes of VB: VC = NcylVB.
IV. Calculate the volume of all symmetrical intersections of the right circular cylinders

at the vertex VD. Refer to [26] or use cylindrical algebraic decomposition [27].
V. Calculate the volume of the total solid by using the inclusion-exclusion principle:

VE = VA − VC + VD.
VI. Calculate the percentage NPer of VE enclosed in the PCA. Use symmetry (e.g., hexa-

hedral or octahedral skeleton) or modeling software (e.g., computer-aided design).
VII. Calculate the total polyhedron volume inside the PCA: VF = NPerVE.
VIII. Calculate the volume of all inserted spherical triangle segments: VG = nsegdcyl

3E/24,
where E is the spherical excess, which is solved by L’Huilier’s theorem [28], and
nseg is the number of segments added to the skeleton.

IX. Calculate the volume of the Platonic skeleton: VP = VF + VG.

Appendix A.2. Example of Skeletal Volume Calculation of Hexahedral Foams

The volume of the hexahedral foam (Nc = 3, θP = 90◦) is obtained from:

I. VA = 3/4πdcyl
2Lcyl

II. VB = 2dcyl
3/3

III. VC = 2dcyl
3

IV. VD =
(

2−
√

2
)

dcyl
3

V. VE = 3/4πdcyl
2Lcyl −

√
2dcyl

2

VI. NR = 1 (by symmetry, the whole solid can be arranged to give the PCA)
VII. VF = VE
VIII. VG = 0 (for the hexahedral foam, a non-spherical pyramid segment is needed)
IX. VP = 3/4πdcyl

2Lcyl −
√

2dcyl
2

The result from (IX) for VP is given in Table A1 for the hexahedral foam.

Appendix A.3. Deriving the Permittivity Mixture-Relation for Platonic Foams

We propose a mixing relation for the εeff of Platonic foams that is based on the analysis
of their permittivities. The amplitude of the polarizability α of a single scatterer dipole is:

α = p/Ee, (A1)

where p is the induced dipole moment of a single inclusion in a uniform local electric field
with the magnitude Ee. In previous calculations [29,30], it was shown that for inclusions
with minimal symmetry defects—which holds for Platonic solids—their α is a simple
dyadic (a scalar for ε(ε′′ = 0)), which is obtained by solving its electrostatic field. Note
that to consider the dielectric loss (ε′′ 6= 0), the polarizability has to be represented as a
complex number. Physically, this description may occur in an oscillating electric field (e.g.,
microwaves) with a damping velocity response (relaxation time [31]) of the induced dipole
moment. This methodology is accurate but requires significant numerical effort for complex
geometries, such as the Platonic foams. Thus, it was better to start from the macroscopic
domain (assuming that the loss mechanism was the same in bulk and foam materials), in
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search of a complex-valued correlation parameter g that contained the topological details of
the micro-geometry in terms of an expression of the volume fraction of the skeleton (1− P)
and fluid (P), as well as the effective and bulk permittivities. Observe that at P < 0.5 the
fluid corresponds to the inclusion medium and the skeleton to the guest medium, and
vice versa at P ≥ 0.5. Accordingly, the parameter g for ceramic and fluid properties was
proposed as:

g =
[

αc αf
]
·
[

βc
βf

]
, (A2)

where αc, αf and βc, βf are variable expressions in terms of the permittivity and volume
fraction of the ceramic and fluid phase, respectively. The following expressions were
proposed to assess αc, αf, βc, βf as:

αc =
q0εeff + q2εc

q4εc + q5εf
, (A3)

βc =
∑m1

u=n1 q6(1− P)u

∑m3
k=n3

q8(1− P)k + ∑m4
j=n4

q9Pj
, (A4)

αf =
q1εeff + q3εf
q4εc + q5εf

, (A5)

βf =
∑m2

j=n2
q7Pj

∑m3
k=n5

q8(1− P)k + ∑m4
j=n4

q9Pj
, (A6)

where all q-parameters are real-valued integers. At the porosity limits, P = 0 and P = 1, the
material corresponds completely to the ceramic and the fluid, which have no microstructure
(g = 0). Then, the numerator of the assessed expressions were selected to comply with
the natural bounds εeff(P = 0) = εc and εeff(P = 1) = εf by setting q0 = −q2, q1 = −q3,
n1 6= 0 and n2 6= 0, while for the denominators, the expressions are flexible enough to be
evaluated with any combination of bulk permittivities and volume fractions. For each set
of parameters, several relation equations were deduced, in which g is given as a complex
expression defined as:

g(P, εc, εf) = g′ − jg′′ . (A7)

For isotropic materials g must be proportionally dependent to the permittivities of the
mixture. On this basis, a selection condition was defined for the mixing relation to give a
linear dependence of g to the permittivity contrast as:

g′ = Re
(

εc

εf

)
g′m + g′0, (A8)

g′′ = −Im
(

εc

εf

)
g′′m − g′′0 , (A9)

where g′0, g′′0 are the g values when εc/εf → 0 and g′m and g′′m correspond to the values of
the slopes. Next, an evaluation routine was setup using MATLAB (R2020a, Mathworks,
USA). After some iterations using the effective permittivities that were obtained from
the simulations and limiting k ≤ 2 and j ≤ 2 (due to time and computer resources), an
expression was obtained, which satisfies the selection condition of linearity (R2 > 0.99, see
Figure A2 of the Appendix A) and is given as:

g =
[

(εeff−εc)
εf

(εeff−εf)
εf

]
·

 (1−P)2

((1−P)2+2P)
2P

((1−P)2+2P)

. (A10)
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The equation can be rewritten as:

g =
1
εf

[
2P

(1 + P2)
(εc − εf)− (εc − εeff)

]
or (A11)

εeff =
−2P

(1 + P2)
(εc − εf) + (εc + gεf). (A12)

From Figure A2 of the Appendix A, it is observed that none of the Platonic foams has
a symmetrical inclusion–background morphology, i.e., Re(g(P)) 6= Re(g(1− P)). Most
symmetry is obtained for the hexahedron skeleton (see Figure A2 of the Appendix A),
where the morphology of the skeleton only differs due to the cylindrical struts. Please note
that a full symmetry would be obtained by using rectangular struts.

Unlike spheres and ellipsoids, which are common structures of the EMA, the micro-
structure of Platonic foams changes with porosity as a result of the interference of the
geometry of the skeleton elements (e.g., joints). This gives g′0, g′′0 , g′m and g′′m an exact
value at a certain porosity. However, to consider the whole porosity range P ∈ [0, 1], these
parameters are expressed as:

Y =
6

∑
k=1

akPk, (A13)

where Y =
{

g′0, g′′0 , g′m, g′′m
}

and their respective coefficients ak are summarized in Table A2
of the Appendix A. Note that the proposed relation can only be applied for the valid
porosity range (which preserves the Platonic structure, as shown in Table 2). The extension
of this approach to derive a relation for sintered foams is illustrated in Appendix A.4 of the
Appendix A.

Appendix A.4. Extending the Proposed Permittivity Mixture Relation for Sintered Foams

Although the new relation was obtained directly from the analysis of the Platonic
foam data, it also presents a linear relation between g and εc/εf for sintered foams (see
Figure A3 of the Appendix A). However, in contrast to the Platonic foams, the real and
imaginary parts of g(P, εc, εf) (Equation (A7) of the Appendix A) at different pore densities
(20 and 30 ppi) are well approximated by a simplified expression as:

g(P, εc, εf) = (εc/εf)P(1− P)3/2. (A14)

Then, substituting Equation (A14) into Equation (A12) gives:

εeff =
−2P

(1 + P2)
(εc − εf) + εc

(
1 + P(1− P)3/2

)
. (A15)

We refer to Equation (A15) as the open-cell foam (OCF) relation since it estimates the
effective permittivity of the open-cell foams.

Appendix A.5. Tables and Figures

Table A1. Formulas to calculate the volume of the Platonic skeletons.

Platonic
Skeleton

Relation between
Lcyl and LPCA. Volume of the Platonic skeleton

Hexahedron Lcyl = LPCA Vp = 3
4 πdcyl

2Lcyl −
√

2dcyl
3

Octahedron1 Lcyl = LPCA/
√

2 Vp = 3πdcyl
2Lcyl −

(
59
8 + 93

100

(√
8−
√

6
))

dcyl
3

Octahedron2 Lcyl = LPCA/
√

2 Vp = 6πdcyl
2Lcyl −

(
2939
155 + 93

100

(√
8−
√

6
))

dcyl
3

Dodecahedron Lcyl =
LPCA

(3+
√

5)
Vp = 27

2 πdcyl
2Lcyl −

(
152

7 sin(108) − 10 tan(54)
)

dcyl
3

Icosahedron Lcyl =
LPCA

2(1+
√

5)
Vp = 27πdcyl

2Lcyl −
(

1
3 π + 15

2 sin
(

151
3

)
− 95√

12

)
dcyl

3
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Table A2. Parameters used to calculate g′0, g′′0 , g′m and g′′0 .

Variable a1 a2 a3 a4 a5 a6

Hexahedron

g′m 0.5229 −0.9951 2.4460 −4.7673 3.9566 −1.1630
g′0 0.2775 4.7271 −14.1449 15.0204 −6.6742 0.7939
g′′m 0.2889 −0.0356 0.8263 −3.3594 3.3200 −1.0402
g′′0 −1.2278 10.1408 −36.4260 63.3016 −52.0799 16.2911

Octahedron1

g′m 0.4008 0.6699 −3.2970 3.9169 −2.2435 0.5528
g′0 2.1613 −7.0162 17.1386 −28.2326 23.5875 −7.6392
g′′m 0.3209 4.0884 −19.4308 33.9140 −27.2604 8.3683
g′′0 −2.0185 26.2707 −105.0485 185.5296 −151.8010 47.0699

Octahedron2

g′m 0.6546 −2.1904 6.0160 −9.7020 7.2485 −2.0266
g′0 0.3698 7.6377 −26.3063 34.1470 −20.6464 4.7987
g′′m 0.7183 −2.8553 8.1037 −12.6555 9.2101 −2.5214
g′′0 0.1978 −2.4611 7.5172 −10.0237 6.2255 −1.4557

Dodecahedron

g′m 0.4617 0.3546 −3.9082 7.6496 −7.0236 2.4661
g′0 1.4799 −10.1720 50.1347 −109.2526 103.7717 −35.9641
g′′m 0.6052 −1.7991 4.9208 −8.1320 5.9922 −1.5869
g′′0 0.1169 −3.0237 12.1921 −20.3098 15.4249 −4.4004

Icosahedron

g′m 0.2213 4.1649 −17.8917 29.0420 −21.8497 6.3132
g′0 2.4320 −21.2239 84.7916 −152.1911 124.4845 −38.2943
g′′m 0.3270 2.8913 −12.9887 20.3933 −14.6653 4.0423
g′′0 −0.1270 0.6904 −2.6267 4.5291 −3.4173 0.9512
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Figure A1. Real (left) and imaginary (right) susceptibility ratios of the numerical simulations of the 
Platonic foams (blue symbols) compared with the numerical simulations for the sintered foams at 
20 ppi (black symbols) and 30 ppi (red symbols). 
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Figure A1. Real (left) and imaginary (right) susceptibility ratios of the numerical simulations of the
Platonic foams (blue symbols) compared with the numerical simulations for the sintered foams at
20 ppi (black symbols) and 30 ppi (red symbols).
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Figure A2. Complex-valued correlation parameter 𝑔 of the Platonic foams vs. complex permittivity 
contrast ratio (all linear regressions are R2 > 0.99). 
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Figure A3. Effect of the permittivity contrast ratio on real (left) and imaginary (right) part of the 
complex-valued correlation parameter 𝑔 of the sintered foams with 20 ppi (black symbols) and 30 
ppi (blue symbols) pore density (all linear regressions are R2 > 0.99). 
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