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Abstract: Based on the actual hot zone structure of an AlN crystal growth resistance furnace, the
global numerical simulation on the heat transfer process in the AlN crystal growth was performed.
The influence of different heater structures on the growth of AlN crystals was investigated. It
was found that the top heater can effectively reduce the axial temperature gradient, and the side
heater 2 has a similar effect on the axial gradient, but the effect feedback is slightly weaker. The
axial temperature gradient tends to increase when the bottom heater is added to the furnace, and
the adjustable range of the axial temperature gradient of the side 1 heater + bottom heater mode
is the largest. Our work will provide important reference values for AlN crystal growth by the
resistance method.

Keywords: AlN crystal; temperature field; crystal growth; numerical simulation

1. Introduction

In recent years, ultra-wide bandgap semiconductor materials represented by alu-
minum nitride (AlN) have been widely used in different fields due to their excellent
high-frequency power characteristics, stable high-temperature performance, low energy
loss, and good UV transmittance [1–3]. Therefore, it has great application prospects in the
fields of high-efficiency optoelectronic devices, high-power high-frequency electronic de-
vices, ultra-high voltage power electronic devices, deep ultraviolet warning and guidance,
and deep ultraviolet light-emitting diode (DUV LED) disinfection [4–8]. At the same time,
AlN crystal is also an ideal substrate material for the Al-rich epitaxial growth of group III
nitrides [9]. Especially in the field of power electronics, AlN has a very high critical break-
down electric field, and the fabricated power devices have high off-state blocking voltage,
ultra-low on-resistance, and ultra-fast switching time. The comprehensive performance is
10–15 times that of SiC and GaN power devices. So far, a variety of methods have been
developed to prepare AlN crystals, which mainly include hydride vapor phase epitaxy
(HVPE) [3], molecular beam epitaxy (MBE), metal organic compound vapor deposition
(MOCVD), solution growth, physical vapor transport (PVT) [2,10], and so on. The PVT
method has the advantages of a simple growth process, fast growth rate, low dislocation
density, good crystal integrity, and high safety, and has been proven to be one of the most
effective methods for the preparation of AlN bulk single crystals [10–14]. In recent years,
AlN crystal growth has mainly focused on the following three strategies [2,10]: (1) spon-
taneous nucleation, (2) homoepitaxial growth on AlN substrates, and (3) heteroepitaxial
growth on SiC substrates. For spontaneous nucleation growth, the AlN extension angle
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is small (10–15◦), and it is difficult and time-consuming to extend the diameter. The lack
of large-size AlN single crystal substrates limits the development of AlN seed crystal
homogeneous growth technology. An SiC substrate can be used as a seed to provide the
possibility to obtain large-size AlN crystals. However, there are often cracks in the AlN
single crystals grown on SiC seeds. The concentration of Si and C impurities seriously
affects the performance of the device. Regardless of the strategy, the use of AlN seeds for
homoepitaxial growth is the ultimate way to obtain high-quality, large-sized AlN crystals.
For different growth strategies, thermal field materials, thermal field design, and growth
processes are the core for AlN crystal growth. Since the growth temperature of AlN crystals
is usually 1800–2350 ◦C, the maintenance of a stable growth environment for a long time
under extreme high-temperature conditions, the selection of thermal field materials, and
the design of thermal field structures are particularly important.

At present, there are two growth strategies commonly used to prepare AlN crystals by
the PVT method, including (1) radio frequency induction heating + a graphite insulation
system and (2) resistance heating + a tungsten molybdenum insulation system. The radio
frequency induction heating + graphite insulation system uses graphite felt as insulation
material. It is reported that C impurity usually exists in the form of CN in AlN crystals,
and thus it is easy to form an ultraviolet absorption peak at about 265 nm (4.7 eV) [15].
The resistance heating + tungsten and molybdenum insulation system has very little C
impurity content, and the O impurity content can be further reduced by improving the raw
material sintering process, so it is easy to grow AlN crystals with high UV transmittance.

Q. K. Wang et al. simulated the influence of thermal stress and crucible shape on the
AlN crystal quality and the transport of vapor species for a resistance heating furnace and
found that the distribution and magnitude of stress in AlN crystals are closely related to
the temperature gradient and growth direction of the growing crystal [15,16]. The parasitic
polycrystalline grains around the crystal are reduced and suppressed by designing different
conical confinement rings. Z.H. Wang et al. used FEMAG software to perform a global
quasi-steady-state numerical simulation of the AlN crystal growth thermal field [17]. The
influences of the size of the induction heater, the thickness of the crucible, the tungsten
heat shield, etc. on the thermal field were simulated. Z. Y. Qin et al. investigated the
relationship between the hot zone structure and the temperature distribution of the growth
chamber [18]. The simulation results showed that the thickness of the crucible, the size
of the induction heating furnace, and the number of tungsten heat shields have a great
influence on the temperature gradient. Y. Yu et al. investigated the effect of adding a
tungsten sink to the top of the AlN growth crucible on the temperature filed. This structure
makes the radial temperature gradient on the growth cavity uniform [19].

Although researchers have performed a lot of simulation work on the thermal field
and thermal stress for PVT AlN crystal growth, there are no reports on the influence of
different heater structures on the growth of AlN crystals by the resistance method. In
this paper, the COMSOL Multiphysics software is used to simulate the thermal field of
the self-designed resistance method AlN crystal growth furnace under different heater
structures. The optimal heater structure suitable for AlN crystal growth is obtained, which
provides a theoretical basis for the design and parameter optimization of the hot zone
structure for an AlN crystal growth resistance furnace.

2. Simulation Model and Physical Parameters
2.1. Subsection Physical Model and Physical Parameters

Based on the actual hot zone structure and crystal growth process parameters, the
finite element method is used to perform global numerical simulation on the heat transfer
process in the crystal growth. The calculation model couples all structural units in the
crystal growth furnace, so that the global temperature distribution and gas flow in the entire
growth furnace can be accurately predicted. For the energy control equation, continuity
equation, fluid momentum control equation, etc. used by COMSOL software 5.3, refer to
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related literature [20–22]. The physical parameters of the materials used in the simulation
are shown in Table 1.

Table 1. Physical properties of the materials.

AlN W Mo Al Stainless Steel

Thermal conductivity,
k (W m−1k−1) 220 175 138 138 44.5

Isobaric specific heat,
Cp (J kg−1K−1) 1197 132 250 900 475

Density, ρ (kg m−3) 2702 17,800 10,200 2700 7850
Emissivity, ε 0.08 0.04 0.08 0.07 0.85

It should be noted that (1) the quasi-steady-state model is used to carry out the global
calculation of the thermal field in the growth furnace. (2) A large number of studies
have shown that the main heat transfer types in the high-temperature growth furnace are
radiation heat transfer and heat transfer (especially radiation heat transfer). However, the
effect of convective heat transfer on the thermal field in the furnace is very limited [23,24].
Therefore, all calculations in this paper ignore the influence of gas flow in the growth
cavity. (3) It is considered that the heater itself has no heat consumption, and all the heat is
consumed in the heating system. (4) It is assumed that the outermost temperature of the
system is constant (300 K).

2.2. Thermal Field Geometric Model and Simulation Parameters

Figure 1 is a schematic diagram of a home-made AlN crystal growth furnace by the
PVT method. The furnace is mainly composed of a resistance heater, a multi-layer high-
purity tungsten screen, and a high-purity tungsten crucible. In order to flexibly adjust the
thermal field, the upper, lower, and side heater structures are designed. The influences of
different heaters (side heating mode, side heater + bottom heater mode, side heater + top
heater mode, side 1 heater + side 2 heater mode) on the thermal field in the tungsten
crucible and the growth of AlN crystals are investigated by numerical simulation. In the
simulation process, the inner diameter of the tungsten crucible is set to 60 mm, and the
pre-sintered raw material is placed at the bottom of the crucible, with the size set to 56 mm
× 40 mm. The crucible lid can be placed on the seed, tungsten sheet, or other substrates
according to the process requirements. In the simulation process, the insulation materials
are the same, the assembly conditions are the same, and the crucible is set to a constant
pressure of 50 kPa of high-purity nitrogen atmosphere. The material property parameters
used in all the calculations can be referred to in the literature [13,17,19].
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Figure 1. (a) Schematic diagram of different heater structures for AlN crystal growth resistance
furnace. (b) Schematic diagram of tungsten and molybdenum thermal field structure for AlN crystal
growth resistance furnace. 1—Top heater; 2—side heater 2; 3—side heater 1; 4—bottom heater;
5—growth chamber; 6 and 7—tungsten and molybdenum insulation screen; 8—tungsten crucible;
9—AlN raw materials.

3. Simulation Results and Discussion

In order to obtain high-quality AlN crystals, a reasonable thermal field distribution
must be established in the crystal growth system. In the process of crystal growth by the
PVT method, the inflow and outflow heat of the crystal growth interface should reach
thermal equilibrium, as shown in Equation (1):

Qoutflow = Qinflow = Q1 + Q2 + Q3 + . . . . . . (1)

The Qoutflow is the heat that flows out from the crystal growth interface through the
grown crystal, and the Qinflow is the heat flowing into the crystal growth interface. Q1 is
the heat of the growth species flowing into the growth interface. Q2 is the heat of radiation
flowing into the crystal growth interface during the growth process. Q3 is the latent heat of
crystallization. The conditions for the stable growth of crystals in the PVT method is that
the heat of the growth cavity gas flowing into the growth interface is positive (Q1 > 0) and
cannot be too large. If the above conditions are not met, when Q1 < 0, there will be defects
such as dendrites, polycrystalline, etc. If Q1 is too large, polycrystalline defects will appear
in the crystal [22]. As mentioned above, the conditions for the stable growth of crystals
must be Q1 > 0, that is, there must be a positive temperature gradient during the crystal
growth process. The importance of the thermal field and temperature gradient to crystal
growth can thus be seen.

According to our previous reports, for the radio frequency heating AlN crystal growth
furnace, when the crucible is at a relative position of 16%, the radial temperature gradient
at the seed is about 4.6 K/cm, and the axial temperature gradient from the seed to the
material surface is about 7.29 K/cm [13]. The temperature gradient reaches a maximum
value at this time. According to the actual growth results, the large radial temperature
gradient at this position is beneficial to the diameter expansion of the small seed. Therefore,
we want to adjust the thermal field of the AlN crystal growth resistance furnace to the
most optimal status. If a diameter expansion growth process for a small seed is realized, a
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slightly larger radial temperature gradient has to be used. If a large-sized seed crystal is
used for growth in the later stage, the radial temperature gradient can be adjusted to be
small. This work mainly simulates the following heating modes: (1) side heater 1 as model
1, (2) side 1 heater + bottom heater as model 2, (3) side 1 heater + top heater as model 3,
and (4) side 1 heater + side 2 heater as model 4.

Figure 2 shows the temperature distribution of the growth chamber and the crucible
under different segmented heating modes calculated by simulation. It can be seen from
Figure 2a–d that when the auxiliary heater is added, the temperature at the corresponding
position of the auxiliary heater will increase accordingly. For example, by adding a bottom
heater, the overall temperature at the bottom rises greatly, and the highest temperature
at the bottom of the crucible reaches 2310 ◦C. When the top heater is added, the overall
temperature of the top rises greatly. When the temperature at the seed position is the same,
the inner temperature of the upper insulation increases from 700 ◦C to about 2000 ◦C.
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The effect of adding the auxiliary side heater 2 is similar to the effect of adding the
top heater. With the addition of the bottom heater, the axial temperature gradient tends
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to increase. The isotherms at the surface of the raw material and the growth cavity are
relatively smooth. In the case of other heating modes, there is a vertical isotherm at the
junction of the surface of the raw material and the growth area of the crucible, as shown in
Figure 2e,f.

Figure S1 is a schematic diagram of the Z direction at different positions along the
R direction. R represents the radial direction, z represents the axial direction, the central
position R is 0, and the position R close to the crucible wall is 40 mm. Figure 3a shows the
temperature gradient change in the Z direction at different positions along the R direction
in different heating modes, and the statistical data are shown in Table S1. According to the
analysis of Table S1, the minimum axial temperature gradient is 1.7 K/cm (R = 0.3 mm) at
the side 1 heater + the top heater mode, and the maximum axial temperature gradient is
2.445 K/cm (R = 0.3 mm), which corresponds to the side 1 heater + bottom heater mode.
Figure 3 is the statistical curve of Table S1; it describes the temperature gradient of several
modes in the Z direction at different positions along the R direction. From the analysis
of Figure 3a, it can be seen that the temperature gradient in the Z direction at different
positions of the R direction for the side 1 heater + bottom heater mode is the largest, and
the temperature gradient of the side 1 heater + top heater is the smallest. The temperature
gradients of the other two models are at a moderate level, and it can be analyzed that the
temperature near the wall of the growth chamber is higher.
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The axial temperature gradients of the remaining two models are somewhere in
between. However, the axial temperature gradient for the side 1 heater + side 2 heater is
smaller than that for the side heater 1 mode. Through analysis, it can be concluded that the
top heater has a significant effect on reducing the axial temperature gradient. We speculate
that if the heating power of the top heater is increased, the axial temperature gradient at
the seed position may be reversed, and the problem of the multi-point nucleation of AlN
crystals at the early stage of crystal growth may be suppressed. The influence of the side
heater 2 on the axial temperature gradient is similar to that of the top heater, but the effect
is slightly weaker. The bottom heater causes the increase of the axial temperature gradient,
which can significantly increase the temperature of the bottom of the crucible and increase
the temperature of the raw materials. According to the results in Figure 3b, it is found that
the radial temperature gradient for the side heater 1 mode is the largest (4.27 K/cm), the
radial temperature gradients for the other three heating modes are basically the same, and
the radial temperature gradient for the side 1 heater + bottom heater mode is the smallest
(3.68 K/cm). Based on the simulation results, it can be seen that the radial temperature
gradient required for the diameter expansion of the small seed can be obtained by these
several simulation heating modes. However, the adjustable range of the axial temperature
gradient of the side 1 heater + the bottom heater is the largest.



Materials 2021, 14, 7441 7 of 8

The axial temperature gradient determines the growth rate of the crystal. It is the
driving force for crystal growth. There is a linear relationship between the growth rate
and the axial temperature gradient. A larger radial temperature gradient is beneficial
to reduce the nucleation density and enlarge the crystal size during the initial growth
process, and has a greater impact on the nucleation and morphology of the crystal [13,14].
Model 1 has the largest radial gradient (4.27 K/cm), and the axial temperature gradient
is moderate (1.96 K/cm). Therefore, we believe that model 1 is suitable for the expansion
and growth of small-size crystals. Model 2 has the smallest radial gradient (3.68 K/cm)
and the largest axial temperature gradient (2.445 K/cm), which is suitable for the growth
of large-size crystals. Model 3 has a moderate radial gradient (3.84 K/cm) and minimum
axial temperature gradient (1.7 K/cm), which is suitable for the growth of high-quality
crystals. Model 4 has a moderate radial gradient (3.72 K/cm) and an axial temperature
gradient of 1.87 K/cm. Similar to model 3, it is suitable for the growth of large-size and
high-quality crystals.

4. Summary

In this paper, the thermal field of a self-designed AlN crystal growth resistance furnace
under different heater structures was simulated and the following conclusions were drawn:
(1) the top heater can effectively reduce the axial temperature gradient, and the side heater 2
has a similar effect on the axial gradient as the top heater, but the effect feedback is slightly
weaker. The bottom heater can increase the axial temperature gradient. It obviously
increases the temperature of the bottom of the crucible and the raw materials. (2) The side
heater 1 mode has the largest radial temperature gradient, and the other three models have
moderate radial temperature gradients, which can meet the requirement of crystal growth.
(3) The axial temperature gradient tends to increase when the bottom heater is added to
the furnace, and the isotherm at the junction of the raw material surface and the crystal
growth chamber is relatively smooth. With the combination of other heaters, there is a
vertical isotherm at the junction of the raw material surface and the growth chamber.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14237441/s1, Figure S1: Schematic diagram of the Z direction at different positions along
the R direction, Table S1: The temperature gradient along the Z direction at different positions along
the R direction.
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