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Abstract: Porous TiAl3 intermetallics were prepared by the thermal explosion (TE) and space holder
method with different particle sizes of Ti and Al powders, and their reaction behaviors were investi-
gated. The results showed that with the increase in the particle size of the Ti and Al powders, the
interfacial contact between the particles decreased, resulting in low interfacial energy and reaction
activity, making the process difficult to initiate. Meanwhile, the heat flow rose from 358.37 J/g to
730.17 J/g and 566.74 J/g due to the extension of the solid–liquid diffusion time. The TiAl3 structures
obviously expanded, and the formation of connected pore channels promoted the porosity. Only
when the Ti and Al particle sizes were both small did the solid–solid diffusion significantly appear.
At the same time, the TE reaction weakened, so the product particles had no time to fully grow. This
indicates that the particle size of the raw materials controlled the TE reaction process by changing
the solid–liquid diffusion reaction time and the degree of solid-phase diffusion.

Keywords: porous TiAl3; intermetallics; thermal explosion; particle size; reaction behavior

1. Introduction

Porous materials refer to a network material of interconnected or closed voids that can
control the shape, size, and uniformity of porous space. A pore boundary is composed of a
columnar or planar structure, which has special dual characteristics of function and struc-
ture, and it is regarded as a new type of structural and functional integrated material [1–3].
In recent years, porous intermetallic compounds such as Ti-Al, Ni-Al, and Nb-Al have been
developed rapidly due to their advantages as porous metals and porous ceramics [4–6].
Ti-Al intermetallic compounds (α2-Ti3Al, γ-TiAl, and TiAl3) are the most widely studied
porous intermetallic compounds. Compared with γ-TiAl and α2-Ti3Al, TiAl3 has the high-
est specific modulus (220 GPa), the lowest density (3.4 g/cm3), the best high-temperature
oxidation resistance, and an open pore structure [7,8]. In addition, TiAl3 can be used as a
porous structure material due to the formation of open connected pore structures during
sintering. Therefore, TiAl3 is accepted as the best porous material because of the excellent
properties mentioned above and could be well applied in thermal insulation, filtration,
catalytic conversion, and other industrial fields [9–13].

Combustion synthesis (CS), including self-propagating high-temperature synthesis
(SHS) and thermal explosion (TE), has attracted the attention of a large number of re-
searchers due to its advantages of rapid reaction, simple conditions, and time savings [5,14].
SHS is a process of heating one end of the reactant compact and promoting the continuation
of self-reaction by virtue of the heat released during the reaction between materials [15,16].
Shen et al. [17] prepared materials by SHS, staged sintering, and found that the com-
pact prepared by SHS was prone to cracking due to uneven heating. However, thermal
explosion (TE) heats the compact as a whole, and when it reaches the ignition point, a
rapid exothermic reaction occurs. The temperature rises sharply in a short time, and the
whole process is similar to an explosion. TE has the strengths of a fast reaction and low
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energy consumption, and it can effectively avoid cracking in the sintering process. It is
considered an excellent mode to fabricate Ti-Al intermetallic compounds [18–20]. Xiong
et al. [21] first reported that the combustion reaction of the Ti-Al intermetallic compounds
was related to the powder particle size of the raw materials. Jiang et al. [11,22] explained
that the Kirkendall effect controlled the pore formation of the porous Ti-Al intermetallic
compounds by solid–solid diffusion, and the powder particle size directly affected its
average pore size. Nevertheless, in the sintering process of the Ti-Al intermetallic com-
pound, the occurrence of TE requires the presence of liquid Al, and the pore-forming
mechanism was no longer the Kirkendall effect but intense solid–liquid diffusion [23,24].
Jiao et al. [18,24–27] studied the pore-forming process under the thermal explosion reaction
and successfully manufactured a porous TiAl3 intermetallic compound by adding space
holders. Che et al. [28] showed that the reaction mechanism under solid–liquid diffusion
was connected with the diffusion rate and diffusion distance of Ti and Al. This means that
the particle size of the powder probably impacts the reaction process under solid–liquid
diffusion. Following the insights of previous work, the influence of particle sizes on the
reaction behavior of material processed by thermal explosion in combination with NaCl
space holders are quantified. Understanding the reaction behavior of porous TiAl3 in TE
mode under different particle sizes can provide a new approach for the preparation of
porous TiAl3 intermetallic compounds.

In the present work, porous TiAl3 intermetallics were prepared by Ti-75%Al intro-
ducing 60% NaCl space holders, with three different average initial powder sizes (10, 40,
and 70 µm). The thermal response, phase composition, expansion behavior, and product
morphology of the alloy were studied. Importantly, the influence of the powder particle
size on the reaction process of TiAl3 synthesis by TE was expounded and provided a
theoretical basis for selecting raw materials in the preparation process of TiAl3, according
to various industrial demands.

2. Materials and Methods

The elements Ti (99.9% purity) and Al (99.9% purity) with different particle sizes (10,
40, and 70 µm) were mixed in a planetary ball mill at a ratio of 1:3. The ball milling process
took place in a ball milling tank containing alumina balls. Before adding powder, the
ball milling tank and alumina balls were cleaned with alcohol and blow-dried to avoid
pollution in the experiment. After completion, a 60% volume ratio of NaCl (99.9% purity)
space holders was added to blend with the dried Ti-75%Al powder. The particle size of
NaCl ranged from 200 to 400 µm. Then, the mixture was cold pressed in the powder tablet
press at a pressure of 300 MPa to form cylindrical green compacts with a diameter of 14
mm and height of 4 mm. The green compacts were dissolved in room temperature water
for 64 h to completely remove the NaCl space holder. Subsequently, the green compacts
were placed in a vacuum sintering furnace (pressure 10−3 MPa) and were kept for 30 min
after heating to 700 ◦C at a heating rate of 15 ◦C/min, and then the furnace cooled to the
room temperature.

In order to evaluate the heat absorption and release process in the sintering process,
differential scanning calorimetry (DSC) was used to measure the heat absorption and
release of the sintered discs with a heating rate of 15 ◦C/min from 20 to 800 ◦C. The phase
composition of the sintered discs was determined by X-ray diffraction (TD-3500, Tongda,
Liaoning, China) with Cu Kα radiation operated at a voltage of 30 kV, a tube current
of 20 mA, step size of 0.04◦, and a scanning rate of 10◦/min. In order to describe the
change in the expansion ratio, expansion ratio tests were carried out five times on the
samples before and after sintering. The porosity was measured according to Archimede’s
principle. The mercury injection method was used to determine the average micropore
size. A Scanning Electron Microscope, SEM (Sigma-300, ZEISS, Oberkochen, Germany),
was used to examine the morphology of the produced samples.
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3. Results and Discussion
3.1. Reaction Process

Figure 1a,b shows the DSC results of adding a different powder size for titanium or
aluminum when the size of the other powder was 10 µm, revealing the thermal response
of the entire sintering process at the heating rate of 15 ◦C/min. No matter how the particle
size of the powder changed, there were two exothermic peaks and one endothermic
peak in the DSC curve. The first mild exothermic peak occurred at temperatures slightly
below the melting point of aluminum, illustrating a weak solid–solid diffusion reaction
prior to aluminum melting due to the difference in the diffusion coefficients of the two
elements [29]. Subsequently, a slight endothermic peak appeared near the melting point
temperature of aluminum, representing the beginning of aluminum melting. The last
sharp exothermic peak corresponded to the thermal explosion. At this time, the aluminum
powder completely melted and rapidly diffused around the Ti powder, resulting in a
violent solid–liquid diffusion thermal explosion reaction to form the TiAl3 intermetallic
compounds and released a large amount of heat. These observations fit the description
provided by Jiao et al. [24,30]. Peng et al. [31] confirmed that solid titanium and liquid
aluminum would have a strong heating reaction, and the reaction rate was swift.
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Figure 1. DSC results of samples under different titanium and aluminum particle sizes (Diamonds represent solid–solid
exothermic peaks, circles represent Al melting endothermic peaks, and crosses represent the thermal explosion exothermic
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different aluminum particle sizes.

As shown in Figure 1a,b, with the increase in powder particle size, the exothermic
peaks of the thermal detonation reaction of Ti and Al migrated to higher temperatures
(from 683 ◦C to 735 ◦C and 700 ◦C, respectively), and the exothermic peaks widened
significantly. By calculating the area of the exothermic peak of the solid–liquid diffusion
reaction in the DSC curves, the heat flow increased from 358.37 to 703.17 J/g and 566.74 J/g
with the increase in the powder particle size, as shown in Figure 2. In addition, when the Al
particles were large, the exothermic peak of the solid–solid diffusion was almost invisible.
Only when the Ti and Al particles were small did a relatively obvious solid–solid diffusion
exothermic peak appear. Both large Al or Ti particles reduced the interface contact between
particles, and the interface energy and reaction activity were low, which required a strong
diffusion driving force at the higher temperature, and the exothermic peak shifted to a
higher temperature, increasing the difficulty of the thermal explosion reaction [21]. DSC
results of both particles increased from 10 µm to 70 µm are shown in the Supplementary
Figure S1. It can be seen from the figure that when both particles increased to 40 and 70 µm,



Materials 2021, 14, 7417 4 of 12

there was also no obvious solid–solid diffusion. This also indicated that the larger particle
size caused the reaction change rather than the difference between particles.
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As Al is the main diffusion component in the Ti-Al binary diffusion system, when
the temperature rose to the melting point of Al, the excellent wettability of Ti enabled the
liquid Al to gradually spread inward on the edge of Ti particles under the action of surface
tension, until the Ti particles were completely wrapped, and TiAl3 was formed [28,32]. The
large Ti or Al particles increased the distance of the solid–liquid diffusion and prolonged
the diffusion time, which led to the widening of the exothermic peak and the elevation of
the heat flow. Due to the existence of pores between particles in the cold pressing process
and pores formed by the NaCl space holder, the pressure difference on the pore surface was
the driving force of liquid Al diffusion [33]. Assuming that Al melted completely and the
Ti particles were completely spherical, the pressure difference P of liquid phase spreading
can be obtained as follows [33]:

P =
2γ
r

(1)

where γ is the surface tension, and r is the particle size of Ti. It can be clearly seen from the
above equation that with the increase in Ti particle size, the pressure difference decreases
and the reaction speed declines, which further prolongs the diffusion time and results
in the continuous generation and accumulation of heat in the reaction process, causing
significant heat flow. Because the diffusion rate of Al in Ti is higher than that of Ti in Al,
the contact area between Al and small Ti particles is large, which makes it easier to diffuse
to the Ti surface and conducive to the solid-phase diffusion. This means that the content
of Al in the liquid–phase diffusion process is reduced, resulting in lower heat flow. The
increase in Ti particle size also extends the diffusion distance and reduces the solid phase
diffusion effect. Therefore, only when the particle size of both Ti and Al is small can the
solid phase diffusion be obvious.

Figure 3 shows the XRD patterns of sintered samples with different particle sizes.
Only a TiAl3 peak was found in the XRD pattern. This illustrates that no matter how the Ti
or Al particle size changed, there was no significant effect on phase composition. Although
the increase in particle size makes the reaction harder to initiate, the thermal explosion
reaction does fully finish, and all the products are converted into the TiAl3 phase under
sufficient holding time [30]. In addition, no NaCl peak was found in the sintered sample,
proving that the original NaCl had been completely dissolved.
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Figure 3. XRD pattern of samples with different titanium and aluminum particle sizes.

3.2. Expansion Behaviors and Porosity

Figure 4 depicts the macroscopic morphology of samples. The structure of samples
had no damage and showed a porous network. It is worth mentioning that the specimen
after sintering was obviously expanded compared with that before sintering, and the
corresponding expansion ratio is shown in Figure 5. Expansion was related to heat release
and volume exchange contraction during TiAl3 production. In the process of the thermal
explosion reaction, volume exchange in the transformation of Ti + 3Al→ TiAl3 generates
the contraction of the molar volume of TiAl3 system [34]. However, a large amount of
reaction heat is accumulated in the TE reaction process, and the sample is difficult to
completely dissipate to cause thermal expansion. On the other hand, after the TE reaction,
the pore size increases after the dissolution of the space holder, and the residual air inside
the pore of the space holder expands after heating, further promoting the expansion of
sintered discs. Similar behaviors were also reported by Liang et al. [32] The expansion
caused by the above reasons is much higher than the volume contraction of the formation
of TiAl3 structure, so the sintered discs show expansion.
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The variations in the volume expansion ratio, radial expansion ratio, axial expansion
ratio, and porosity of TiAl3 sintered discs with different powder particle sizes are shown
in Figure 5. It can be observed from the figure that with the increase in particle size
of Ti or Al, the variation of the volume expansion ratio of TiAl3 is consistent with the
trend of reaction heat flow, shown in Figure 2, which increased from 55.32% to 116.21%
and 81.51%, respectively. In fact, large particles of Ti or Al powder accumulate a lot of
heat during the reaction process, which enables the latent heat release to be significantly
increased. Nevertheless, the specific surface energy of the small particle raw powder in the
reaction process is higher, and the specific surface energy is the driving force of shrinkage
of the TiAl3 structure in the later stage of the sintering process [22]. The reduction in the
shrinkage driving force and the release of more heat energy enable the expansion caused
by large particles to be more prominent. Furthermore, the porosity and expansion behavior
variation were also very similar, which increased from 68.4% to 77.2% and 73.9%. Large
particle powders had hardly any solid-phase diffusion, and more liquid Al participated in
the reaction. The flow of liquid Al produces a large number of connected pore channels in
the TE process, which significantly increases the porosity [35]. High heat flow and intense
expansion also cause the internal pores to grow and connect, leading to the higher porosity
of the large particle powder samples.
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3.3. Microstructure Evolution

The microstructure of the porous TiAl3 intermetallics is shown in Figure 6. Regardless
of the particle size of Ti or Al, the main structure of the TiAl3 remained unchanged,
consisting of a TiAl3 skeleton, macropores left after the dissolution of the NaCl space
holder, and micropores generated after intense solid–liquid diffusion. Figure 6b,d,f,h,j
shows the morphologies of the product particles with different powder particle sizes. With
the increase in the powder particle sizes, the connection of the product particles gradually
became closer. According to the change of heat flow, as shown in Figure 2, it can be
analyzed that the TE reaction needs continuous heat release, and the product particles
grow completely with the heat release accumulated by the large particle powder sample
in the sintering process. Although an obvious TE process occurred in the short time of
the exothermic reaction of the small particle powder samples, the significant solid–solid
diffusion consumed part of the Al before the occurrence of the TE, resulting in no time for
further growth and cooling of product particles in the TE process [26].
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Figure 7a–f shows the pore wall morphology inside the pores formed by NaCl. Kirk-
endall micropores were obviously seen in the sintered TiAl3 discs with small powder
particle sizes. Jiang et al. [6] proved that Kirkendall micropores are formed by solid–solid
diffusion. Jiao et al. [24,25] explained that the TE reaction pore-forming mechanism was
no longer the Kirkendall effect. This indicates that the sample with small particle sizes
underwent partial solid–solid diffusion before the TE reaction occurred. However, only the
micropores between product particles were found in the pore structure formed by NaCl in
the large Al particle sample, and no cracks or Kirkendall micropores were found. In addi-
tion, cracks appeared in the pore wall of the samples with the larger Ti particle size, and the
pore wall was divided into small islands shaped by the cracks. According to Figures 2 and
5, the large particle Ti sample had severe heat release and significant expansion, concluding
that the external expansion of the pore wall under heat, which led to tensile stress on the
surface of the pore wall. The volume exchange generated by TiAl3 resulted in compressive
stress on the surface of the TiAl3 particles. The large particle Ti caused excessive expansion
in the diffusion process, large enough residual stress to cause the crack. [34]. The formation
of such a cracked structure assists in the communication of large pores with other internal
pores and improves porosity. Figure 7g–j is the skeleton of the TiAl3 with different Al
particle sizes and the micropores formed after TE reaction. It can be seen that with the
increase in the Al particle size, the micropore size also increases significantly. Figure 8
shows the change in average micropore size with Al particle size; when the Al particle size
increases from 10 µm to 70 µm, the average micropore size increases from 7 µm to 42 µm.
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Figure 7. SEM images of the internal microstructure of TiAl3. (a–f) shows the pore wall morphology
formed by NaCl, (a,b): Ti-10 µm–Al-10 µm, (c,d): Ti-70 µm–Al-10 µm, and (e,f): Ti-10 µm–Al-70 µm;
(g–j) represents the micropore morphology of samples’ skeleton with different Al particle sizes, (g,h):
Ti-10 µm–Al-10 µm, and (i,j): Ti-10 µm–Al-70 µm).

Therefore, combining Figures 7 and 8, one can draw the conclusion that the micropores
formed by the thermal explosion are positively correlated with Al particle size. Traces of
molten droplets can be seen at the edges of the pores in Figure 7j. The TE reaction occurred
after Al melting, the Ti particles were gradually wrapped by the melted Al liquid, the
Ti particles were gradually dissolved in the Al liquid, and TiAl3 was precipitated in the
saturated Ti-Al solution. Micropores appeared at the initial position of Al melting, and
the original morphology of Al particles remained. This resulted in an increase in average
micropore size and porosity. The optical microscopic metallographies with different particle
sizes are shown in Figure 9, in which the micropores and cracks formed in the structure can
be intuitively seen. The pores formed by NaCl are connected with other pores by cracks
or micropores, which increases the porosity of the system and forms a series of connected
pore channels.
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Figure 9. Optical microscope images of the skeleton and pores of the TiAl3 sintered discs with
different particle sizes: (a): Ti-10 µm–Al-10 µm, (b): Ti-40 µm–Al-10 µm, (c): Ti-70 µm–Al-10 µm,
(d): Ti-10 µm–Al-40 µm, and (e): Ti-10 µm–Al-70 µm.
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4. Conclusions

Porous TiAl3 intermetallics were successfully fabricated by the thermal explosion
method with 60% NaCl space holders at different powder sizes (10, 40, and 70 µm). The
final products were transformed into the TiAl3 phase, and TiAl3 maintained a porous
network structure with NaCl macropores, micropores, and pore channels. With the increase
in particle size, the interfacial contact between particles decreased, the reaction diffusion
distance of TE increased, and the diffusion time became longer. The exothermic peak
migrated to a higher temperature (683 ◦C to 735 ◦C and 700 ◦C, respectively), raising the
reaction difficulty. The latent heat of the reaction release increased from 358.37 J/g to
730.17 J/g and 566.74 J/g, respectively. Sufficient exothermic heat and long reaction time
caused the final product particles to grow completely. Only when both Ti and Al had a
small particle size was the solid phase diffusion obvious before the TE. The TiAl3 structure
formed by large Ti particles had the highest expansion ratio (116.21%) and porosity (77.2%),
and cracks occurred on the wall of the NaCl pore. The micropore size of the TiAl3 skeleton
after TE reaction was positively correlated with the Al particle size. Both cracks and
micropores formed interconnected pore channels and improved porosity. This provides a
new understanding of the TE reaction process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14237417/s1, Figure S1: DSC results of both particles increased from 10 µm to 70 µm.
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