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Abstract: Titanium and its alloys exhibit numerous uses in aerospace, automobile, biomedical and
marine industries because of their enhanced mechanical properties. However, the machinability
of titanium alloys can be cumbersome due to their lower density, high hardness, low thermal
conductivity, and low elastic modulus. The wire electrical discharge machining (WEDM) process is
an effective choice for machining titanium and its alloys due to its unique machining characteristics.
The present work proposes multi-objective optimization of WEDM on Ti6Al4V alloy using a fuzzy
integrated multi-criteria decision-making (MCDM) approach. The use of MCDM has become an
active area of research due to its proven ability to solve complex problems. The novelty of the
present work is to use integrated fuzzy analytic hierarchy process (AHP) and fuzzy technique for
order preference by similarity to ideal situation (TOPSIS) to optimize the WEDM process. The
experiments were systematically conducted adapting the face-centered central composite design
approach of response surface methodology. Three independent factors—pulse-on time (Ton), pulse-
off time (Toff), and current—were chosen, each having three levels to monitor the process response
in terms of cutting speed (VC), material removal rate (MRR), and surface roughness (SR). To assess
the relevance and significance of the models, an analysis of variance was carried out. The optimal
process parameters after integrating fuzzy AHP coupled with fuzzy TOPSIS approach found were
Ton = 40 µs, Toff = 15 µs, and current = 2A.

Keywords: wire electric discharge machining (WEDM); analytical hierarchy process (AHP); TOPSIS;
response surface methodology (RSM); optimization

1. Introduction

Titanium and its alloys possess a high strength-to-weight ratio which can be retained
at high temperatures [1]. Owing to very high corrosion and erosion resistance, these metals
are versatile in nature and they find applications in the pharmaceutical, aerospace, marine,
chemical engineering, and food industries [2,3]. They have excellent bio-compatibility and
as a consequence, they have been broadly utilized in biomedical applications and surgical
implants [4]. Ti6Al4V alloy is used as an armor material for military vehicles, which require
excellent ballistic performance. The titanium implants in a patient’s body permit exam-
ination with MRIs and NMRIs due to their non-ferromagnetic property [5,6]. However,
titanium has very poor thermal conductivity, which leads to the localization of heat at
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the point of contact of the tool with the chip, resulting in high thermal gradients within
the machining zone [7,8]. This in turn leads to increased tool wear rate and eventually
tool failure. Moreover, titanium is chemically reactive at elevated temperatures, which
may cause the tool to weld with the metal, leading to its premature failure [9]. Titanium
has a low elastic modulus responsible for the deflection of job, chatter, and vibrations
while machining. Given these limitations of conventional machining of titanium, there
is a crucial need to explore the machinability of titanium with non-traditional processes,
and wire electrical discharge machining (WEDM) is one of the process to investigate for
effective machining.

The WEDM process is used to machine materials that are electrically conductive
despite their mechanical properties [10–12]. The material removal in WEDM occurs with
the input of the pulsating DC power supply, which discharges the electric current along
the narrow inter-electrode gap between the workpiece and the tool [13–15]. The fine, clean,
and precise cuts on the workpiece are possible because the wire, which acts as a cutting
tool, possesses a small diameter and significant mechanical properties [16,17].

For sustainable manufacturing, the selection of optimum process parameters is indeed
important. Several researchers worked on the optimization of the WEDM parameters
for the machining of the Ti6Al4V alloy. The systematic design of experiments is essential
to extract information from the experiments with minimal loss of resources in terms of
time, money, raw materials, etc. Response surface methodology (RSM), Taguchi tech-
niques using an orthogonal array, and fractional factorial are some of the methods for
experimental design. The recorded output from the various experiments using one of
the above methods is further used to optimize input process parameters. Multi-response
optimization is needed in contemporary manufacturing. Various methods such as gray
relational analysis (GRA) [11,15,18], heat transfer search (HTS) algorithm [2,19], teacher
learning-based algorithm [20], particle swarm algorithm [21], genetic algorithm [22], artifi-
cial neural networks [23], etc., have been attempted to check their feasibility in finding the
tread-off solution in terms of optimized process parameters.

Developing mathematical models of the WEDM process using various techniques is
discussed in several studies. Mathematical models are helpful in predicting responses with-
out performing extensive experiments. Sharma et al. [24] investigated WEDM parameters’
effect on dimensional deviation and cutting speed using a high-strength, low-alloy steel
workpiece. They developed a mathematical relation of response surface using second-order
CCD of RSM. Based on the mathematical model of cutting speed, they revealed that Ton,
Toff, spark gap voltage, peak current, Ton × Toff, Ton × IP, Ton × wire tension, and spark
gap voltage × wire tension have significant effects on cutting speed. Furthermore, a math-
ematical model of dimensional deviation suggests that the main effects of Ton, Toff, SV, IP,
and WT, and interaction effects between Ton and SV, Ton and IP are statistically significant
for the analysis. Kavimani et al. [25] proposed a mathematical model for predicting the
response data of MRR and surface roughness by using regression analysis with orthogonal
array. The mathematical model proposed by Bose and Nandi [26] is based on two factors
and four levels design of experiments on output response, such as surface roughness. They
used desirable gray relational analysis algorithm for optimization of the WEDM process
and model building. Daniel et al. [27] analyzed the effects of several WEDM process
parameters on MRR and developed a mathematical model using regression analysis for
predicting the response.

Arikatla et al. [28] optimized the parameters during the WEDM of titanium (Ti6Al4V)
alloy using “RSM” method. The effects of pulse-on time (Ton), wire tension, servo voltage,
and pulse-off time (Toff) were studied on the kerf width, surface roughness (SR), and MRR
of the material. An analysis of variance (ANOVA) was conducted to check the impact of the
process variables on the desired responses. Chaudhari et al. [29] attempted machining of
Ni55.8Ti super-elastic shape memory alloy with the WEDM process. To exhibit the viability
for industrial applications, a scientific approach consisting of RSM and HTS algorithm was
planned and prepared for optimization. Saedon et al. [30] studied optimization of kerf
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and MRR during cutting of titanium (Ti6Al4V) alloy using WEDM. The experiments were
performed with varying peak current, Toff, wire tension, and wire feed. The design of the
process parameters for the experiment was determined using Taguchi’s L9 design. The GRA
approach was utilized for emphasizing the study for multiple performance characteristics.
Payal et al. [31] employed the Taguchi fuzzy integration for parametric optimization of
EDM process with multiple response measures. A fuzzy model was formed through which
the optimal blend of parameters was obtained on the basis of multi-performance fuzzy
index values.

Nowadays, multi-criteria decision making (MCDM) mechanisms are emerging in
the manufacturing field. These are powerful tools for solving problems with multiple
criteria. Some MCDM techniques help in assigning systematic weights to the criteria and
some assign hierarchy of the alternatives [32]. Ananthakumar et al. [33] used the MCDM
method, namely Technique for Order Preference by Similarity to Ideal Solution (TOPSIS),
to determine the desired cutting conditions of plasma arc cutting. They defined the arc
current of 45A, standoff distance of 2 mm, gas pressure of 3 bar, and cutting speed of
2400 mm/min as the best conditions for superior quality. Prabhu et al. [34] revealed that
multiple quality characteristics of friction stir welded aluminum matrix composite can
be improved using the TOPSIS approach. Tamjidy et al. [35] selected the best optimal
solution in friction stir welding (FSW) of AA7075-T6 and AA6061-T6 using TOPSIS and
Shannon entropy method. Sudhagar et al. [36] compared the ranking performance of
TOPSIS and GRA for FSW of Al2024 aluminum alloy. The analytical hierarchy process
(AHP) is an MCDM technique used to assign systematic weights to the criterion. Gaidhani
and Kalamani [37] selected the most influential processing parameters in abrasive water
jet machining based on weights obtained with the help of the AHP technique of MCDM.
Babu and Venkataramaiah [38] optimized input parameters in WEDM of Al6061/SiCP
composite using the AHP-TOPSIS approach. They performed experiments using Taguchi’s
L18 design considering sensitivity, Ton, wire feed rate (WF), Toff, and wire type as input
parameters. A similar study was performed using the AHP–TOPSIS hybrid approach
during WEDM by Nayak and Mahapatra [39]. The current research on optimization is
focused on developing a hybrid approach of optimization by integrating different MCDM
techniques with a fuzzy approach. The fuzzy approach is a method of solving problems
that are associated with uncertainty and vagueness. Different types of uncertainty can
be observed in different optimization and decision-making problems. Chou et al. [40]
used the fuzzy AHP and fuzzy TOPSIS to assess the performance of human resources in
science and technology (HRST) in Southeast Asian countries. A fuzzy AHP approach was
implemented to decide the preference weights for various performance measures while
fuzzy TOPSIS was used to identify the best tread-off alternatives to accomplish the ideal
HRST levels. They concluded that countries such as Singapore, South Korea, and Taiwan
have better HRST performances compared to other Southeast Asian countries. Sirisawat
and Kiatcharoenpol [41] employed the fuzzy AHP and fuzzy TOPSIS techniques to classify
the reverse logistics barriers and also to prioritize and rank the solutions to implementing
reverse logistics in the electronics industry. A hybrid decision-making method with a fuzzy
approach was also found effective in deciding the best alternative in the manufacturing
field. Roy and Dutta [42] studied the working of the EDM process considering duty cycle,
current, Ton, and gap voltage as controllable parameters. They used Taguchi’s L9 technique
for experimental design and used integrated fuzzy AHP and fuzzy TOPSIS methods to
determine the optimal set of controllable parameters. Furthermore, ANOVA analysis of
closeness coefficient index (CCi) revealed that the current was the highest contributing
factor among the selected parameters.

Previous studies suggest that many researchers attempted different MCDM techniques
such as TOPSIS, AHP, fuzzy TOPSIS, and fuzzy AHP separately or in combination in
different fields, including logistics, electronic industries, additive manufacturing, abrasive
water jet machining, plasma arc cutting, etc. However, a study about investigating the use
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of response surface methodology using fuzzy AHP and fuzzy TOPSIS hybrid approach for
WEDM machining of Ti6A4V has not yet been explored.

The present work intended to optimize the process parameters of Ton, Toff, and current
during the WEDM of Ti6Al4V alloy. Cutting speed (VC), MRR, and SR were considered for
the analysis as output response variables. The experiments were systematically designed
using central composite design (CCD) of RSM and mathematical models were developed
between responses and input parameters. The appropriateness of developed models was
checked using ANOVA by analyzing the R-Seq values, lack-of-fit, and residual plots. Fur-
thermore, the weights were assigned to considered criterion using fuzzy AHP, and optimal
process parameter conditions were predicted using fuzzy TOPSIS. The confirmatory study
was performed to verify the results of optimization.

2. Materials and Methods
2.1. Experimental Methodology

In the present study, a WEDM machine (Concord WEDM, DK7732, Concord Limited,
Bangalore, India) was used to perform the experiments using Ti6Al4V as the work material
(with a dimension of 90 × 50 × 6 mm3) and molybdenum wire (180 µm diameter) as
the tool electrode. The dielectric fluid utilized was deionized water. Table 1 shows the
chemical composition of the selected work material of Ti6Al4V. Ton, Toff, and current were
selected as input process parameters based on recent literature to investigate their effects on
WEDM machining in terms of cutting speed, MRR, and SR. Full factorial CCD of RSM was
selected to design the experimental plan. CCD is very popular amongst multiple variants
of RSM approaches because it offers great flexibility and allows sequential operations and
effectiveness by providing the optimum solution in a minimum number of iterations. CCD
design of RSM for three factors at three levels was implemented to prepare the experimental
matrix. The levels of factors were selected based on preliminary trials and literature study.
Table 2 shows the input parameters of the WEDM process at the three levels. Table 3 shows
the full factorial CCD composed of the six axial and central points, and eight factorial
points. During each experimental run, the wire was fed along a width direction of the work
material. Each experiment was repeated three times; the average values of the three trials
were reported and considered for the analysis. Minitab 17 software was utilized for the
RSM design and analyzing the experimental data.

Table 1. Chemical composition (wt.%) of Ti6Al4V.

C Fe Al N2 Cu V Ti

0.05 0.20 6.20 0.04 0.001 4.0 Balanced

Table 2. Input parameters with working range and their levels.

Parameter Symbol Unit Level 1 Level 2 Level 3

Pulse-on
time (Ton) A µs 40 70 100

Pulse-off
time (Toff)

B µs 15 20 25

Current C A 2 3 4
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Table 3. Input parameters using a central composite design of RSM.

Std. Order Run Order Ton Toff Current

14 1 2 2 3
3 2 1 3 1
9 3 1 2 2
15 4 2 2 2
11 5 2 1 2
18 6 2 2 2
6 7 3 1 3
13 8 2 2 1
17 9 2 2 2
12 10 2 3 2
16 11 2 2 2
5 12 1 1 3
1 13 1 1 1
19 14 2 2 2
10 15 3 2 2
7 16 1 3 3
4 17 3 3 1
8 18 3 3 3
2 19 3 1 1
20 20 2 2 2

In total, 20 experiments were run randomly to avoid an experimental error. The
output characteristic cutting speed refers to the speed in mm/min at which the wire cuts
the workpiece. It is calculated using Equation (1):

Vc = L/t (1)

where L is the distance of 50 mm width of the workpiece which was cut in each pass and
t is the machining time in minutes.

The material removal rate is considered as the volumetric material removed per unit
time, which is calculated using Equation (2):

MRR = (wt.initial − wt.final)/(ρ ∗ t) (2)

where wt.initial is the weight of the workpiece measured before the cut and wt.final is
the weight of workpiece measured after the cut. ρ is the density of the titanium alloy,
4.42 gm/cm3. t is the cutting time measured for a particular cut in one minute.

Surface roughness is an important parameter that defines the quality of the ma-
chined surfaces. The SR of the WEDM part was determined with the use of the Surftest
SJ-410 model. The arithmetic average roughness (Ra) value was determined in µm from
cut specimens in the current study. The cutoff length of 0.8 mm and the evaluation length
of 20 mm were used for the measurement of SR.

2.2. Fuzzy Analytical Hierarchy Process

To use fuzzy TOPSIS for ranking of alternatives, each response needs to provide
priority values or weights. These weights may vary from person to person. To overcome
this limitation, T. L. Saaty [43] developed a technique called the analytic hierarchy process
(AHP). This technique decomposes the decision-making situation into a systematic hierar-
chy of objectives, attributes, and alternatives. AHP is a compelling tool for complicated
decision-making situations and helps decision makers define objectives and reach the
best possible choice. By simplifying the complex choices to a progression of pairwise
observations, and then integrating the outcomes, the AHP catches both abstract and target
parts of a decision [44]. The limitation of conventional AHP is that it works with crisp
information derived from linguistic responses. The scale of converting linguistic responses
into crisp data in AHP is very unbalanced. The judgment of decision makers largely affects
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the result of conventional AHP due to aleatory uncertainty present in the natural language.
This attracted researchers to integrate fuzzy theory with AHP and hence, fuzzy AHP was
developed. The steps of fuzzy AHP in this research are as follows [42]:

Step 1: Construct the various leveled structure of objective, criterion, and alternatives of
the problem.

Step 2: Construct a pairwise comparison matrix from the criteria/options available. Fur-
thermore, assign linguistic terms using Figure 1 to the pairwise comparisons
collected from decision makers. Convert linguistic terms into fuzzy numbers using
Table 4. The generalized pairwise comparison matrix will be of the form shown in
Equation (3).

Ã =

 1 . . . ỹ1n
...

. . .
...

1
ỹ1n

· · · 1

 (3)

where ỹij = 1; i = j.

Step 3: Fuzzification is used to convert the linguistic term into a membership term. The
fuzzification of the linguistic term can be possible using various functions such
as triangular, bell-shaped, and trapezoidal functions. For this study, we used
the triangular membership function, as shown in Figure 2. The assumed fuzzy
numbers are shown in Equations (4) and (5).

X = (r, s, t) (4)

Y = (l, m, n) (5)

where r, s, and t denote the lower, middle, and upper bounds of fuzzy number X,
respectively, and l, m, and n denote the lower, middle, and the upper bounds of
fuzzy number Y, respectively. Fuzzy weights can be found using fuzzy addition
and multiplication [45]. The generalized fuzzy addition and fuzzy multiplication
formulas are expressed by Equations (6) and (7). Fuzzy addition:

X̃⊕ Ỹ = (r, s, t)⊕ (l, m, n) = (r + l, s + m, t + n) (6)

Fuzzy multiplication:

X̃⊗ Ỹ = (r, s, t)⊗ (l, m, n) = (r× l, s×m, t× n) (7)

Step 4: Determine the fuzzy mean geometric value (FMGV) of each criteria using the
geometric mean method. Equation (8) can be used for calculating FMGV. The fuzzy
weights can be determined by using Equation (9).

r̃j = (ỹj1 ⊗ ỹj2 ⊗ . . .⊗ ỹjn)
1
n (8)

w̃j = r̃j ⊗ (̃r1 ⊕ r̃2 ⊕ . . .⊕ r̃n)
−1 (9)

where ỹij is the comparison of fuzzy value from criterion i to j; r̃j is the geometric
mean value for comparison of the fuzzy value of criterion j to every other criterion;
w̃j is the fuzzy weight of each criterion.
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Table 4. Membership function [44].

Fuzzy Number Linguistic Scale Fuzzy Number

9 Perfect 8 9 10
8 Absolute 7 8 9
7 Very good 6 7 8
6 Fairly good 5 6 7
5 Good 4 5 6
4 Preferable 3 4 5
3 Not bad 2 3 4
2 Weak advantage 1 2 3
1 Equal 1 1 1
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2.3. Fuzzy TOPSIS

Hwang and Yoon developed a multi-criteria decision analysis technique in 1981 called
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). It was
further modified by Yoon in 1987, and in 1993, it was further improved by Hwang Lai
and Liu [46]. TOPSIS helps in choosing the best alternative with the least proximity from
the positive ideal solution and the furthest from the negative ideal solution [47]. It is the
strategy that compares the set of responses by identifying the contribution (weights) of each
criterion. As the criteria are generally of random measurements, this might create problems
in assessments. To avoid this situation, the need for fuzzy numbers is fundamental.
Utilizing the fuzzy numbers in TOPSIS for multi-criteria decision making makes it easy for
assessment [48]. The proposed steps for fuzzy TOPSIS implementation in this research are
given below:

Step 1: Normalization of response: The normalization is important for converting mea-
sured outputs into the fuzzy number. The process of normalization was carried
out considering the output based on the benefit criteria or the cost criteria. The VC
and MRR were normalized using the benefit criteria using Equation (10), whereas
SR was normalized using the cost criteria using Equation (11).

For benefit criteria:
rij(x) =

xij − xmin

xmax − xmin
(10)

For cost criteria:
rij(x) =

xmin − xij

xmin − xmax
(11)

where rij(x) is the normalized value of output, xmax is the maximum of xij and
xmin is the minimum of xij.

After normalization of the ratings, the responses of experiments were converted to
fuzzy linguistic variables using Table 5. The five-level fuzzy linguistic variables
are represented using a triangular fuzzy number [49].

Step 2: Fuzzification of normalized decision matrix: The decision matrix normalized in
Step 1 can be converted to a fuzzified normalized decision matrix by assigning a
sub-criteria grade to each alternative using Table 5 of the K membership function
scale. Additionally, assign the weights to each sub-criteria grade.

The weight of criteria:
w̃k

j = (w̃k
j1, w̃k

j2, w̃k
j3) (12)

Step 3: Calculate the weighted normalized fuzzy decision matrix: The weights obtained
from fuzzy AHP are required to construct this matrix. The weighted normalized
values can be calculated as:

Ṽ = (ṽij) Where ṽij = r̃ij × wj (13)

Step 4: Identify the positive ideal (V+) and negative ideal (V−) solutions: The fuzzy posi-
tive ideal solutions (FPIS, V+) and the fuzzy negative ideal solutions (FNIS, V−)
must be calculated using Equations (14) and (15).

V+ = (ṽ+
1 , ṽ+

2 , ṽ+
3 ), where:

ṽ+j = max
i

{
vij3
}

(14)

V− = (ṽ−1 , ṽ−2 , ṽ−3 ), where:
ṽ−j = min

i

{
vij1
}

(15)
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Consideration of the maximum and minimum of Vij does not necessarily result
in triangular fuzzy numbers, but we can obtain the ideal solutions as the fuzzy
numbers using Equation (16).

d( p̃, q̃) =

√
1
3

{
(p1 − q1)

2 + (p2 − q2)
2 + (p3 − q3)

2
}

(16)

where p̃ = (p1, p2, p3) and q̃ = (q1, q2, q3).

Step 5: Calculate separation measures: The separation measure d+i is the summation
of the distance of each response to the FPIS and d−i is the summation of the
distance of each response to the FNIS. The distance can be calculated by using the
following equations.

d+i =
n

∑
j=1

d(ṽij,ṽ
+
j ); i = 1, 2, . . . , m (17)

d−i =
n

∑
j=1

d(ṽij,ṽ
−
j ); i = 1, 2, . . . , m (18)

Step 6: Calculate the similarities to the ideal solution: To solve the similarities, compute
the closeness coefficient CCi for each alternative [48].

CCi =
d−i

d+i + d−i
; CCi ∈ [0, 1] ∀i = 1, 2, . . . , n (19)

Table 5. Transformation of fuzzy membership function [49].

Rank Sub-Criteria Grade Membership Function

Very Low (VL) 01 (0.00, 0.10, 0.25)
Low (L) 02 (0.15, 0.30, 0.45)

Medium (M) 03 (0.35, 0.50, 0.65)
High (H) 04 (0.55, 0.70, 0.85)

Very High (VH) 05 (0.75, 090, 1.00)

3. Results and Discussions
3.1. Regression Equations

Evaluated values of the selected output response variables such as cutting speed, MRR,
and SR are mentioned in Table 6. These measured response variables are then normalized
using Equations (10) and (11) for further analysis. Table 6 shows the uncoded actual
values of input process parameters as per “RSM” design. Minitab 17 software was used
to find regression coefficients, and subsequently, ANOVA was assessed. The significance
of the coefficients was tested at a 95% confidence level which is essential to recognize the
most influencing model terms [50]. With the help of regression analysis, a mathemati-
cal relationship was obtained for VC, MRR, and SR in terms of input process variables.
Equations (20)–(22) show the regression equations for VC, MRR, and SR, respectively.
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Table 6. Experimental results and normalized values of the output responses.

Run
Order

Ton
(µs)

Toff
(µs)

Current
(A)

Experimental Values Normalized Values

VC
(mm/min)

MRR
(mm3/min)

SR
(µm) VC MRR SR

1 70 20 4 2.715 3.730 5.80 0.6632 0.7597 0.5498
2 40 25 2 1.234 1.580 3.27 0.0000 0.0000 0.0249
3 40 20 3 2.012 2.560 3.15 0.3484 0.3463 0.0000
4 70 20 3 2.360 3.000 5.55 0.5043 0.5018 0.4979
5 70 15 3 2.917 3.710 5.89 0.7537 0.7527 0.5685
6 70 20 3 2.441 3.109 5.20 0.5405 0.5403 0.4253
7 100 15 4 3.467 4.410 7.97 1.0000 1.0000 1.0000
8 70 20 2 1.779 2.260 4.01 0.2441 0.2403 0.1784
9 70 20 3 2.444 3.110 5.33 0.5419 0.5406 0.4523
10 70 25 3 2.033 2.580 5.22 0.3578 0.3534 0.4295
11 70 20 3 2.477 3.150 5.83 0.5567 0.5548 0.5560
12 40 15 4 3.013 3.830 3.96 0.7967 0.7951 0.1680
13 40 15 2 2.114 2.690 2.98 0.3941 0.3922 0.1037
14 70 20 3 2.486 3.170 5.00 0.5607 0.5618 0.3838
15 100 20 3 2.731 3.500 6.10 0.6704 0.6784 0.6120
16 40 25 4 1.890 2.400 4.20 0.2938 0.2898 0.2178
17 100 25 2 1.673 2.100 4.83 0.1966 0.1837 0.3485
18 100 25 4 2.490 3.170 5.70 0.5625 0.5618 0.5290
19 100 15 2 2.381 3.080 4.71 0.5137 0.5300 0.3237
20 70 20 3 2.477 3.210 5.60 0.5567 0.5760 0.5083

The developed regression models consist of linear, quadratic, and interaction terms.
It becomes is essential to study the significance of these terms on the output parameters.
This can be executed by performing ANOVA. Thus, the ANOVA investigation was fur-
ther studied to predict the significant terms of the proposed study. ANOVA tests the
hypothesis based on the equality of means when several factors are considered. It is a
statistical inference technique used to determine the influence of the hypothesis made
for the model [51]. The study of the influence of input parameters at various levels is
important for single-objective optimization. The main effect plots of the response highlight
the optimum factor-level combinations for a given response. A detailed discussion is
provided on mathematical model development, model adequacy checking, and the main
effect plot in the following section for each response.

VC = 1.429 + 0.00567(Ton) − 0.166(Toff) + 1.613(Current) − 0.00005(Ton × Ton) + 0.00233(Toff × Toff) −
0.1699(Current × Current) + 0.000265(Ton × Toff) + 0.001450(Ton × Current) − 0.01280(Toff × Current) (20)

MRR = 1.37 + 0.0153(Ton) − 0.118(Toff) + 1.552(Current) − 0.000111(Ton × Ton) + 0.00062(Toff × Toff) −
0.1345(Current × Current) + 0.000267(Ton × Toff) + 0.00183(Ton × Current) − 0.01450(Toff × Current) (21)

SR = −1.48 + 0.1273(Ton) − 0.341(Toff) + 2.66(Current) − 0.000664(Ton × Ton) + 0.0133(Toff × Toff) −
0.318(Current × Current) − 0.00167(Ton × Toff) + 0.01204(Ton × Current) − 0.0443(Toff × Current)

(22)

3.2. Analysis of Cutting Speed

ANOVA was carried out for cutting speed assuming a 95% confidence level. The
ANOVA results are summarized in Table 7. F-value of the model (112.30) is much larger
than the F-stat value (3.02). This suggests that the model is largely significant. There is just
a 0.01% probability that a model F-value this large could be due to noise. The lack of fit
F-value of 3.38 implies there is a 10.4% chance that a lack of fit F-value this large could be
due to noise. For a confidence level of 95%, the p-value for any input parameter should
be less than 0.05 to consider that parameter as significant [52,53]. It can be observed from
Table 7 that all the input process variables have a p-value less than 0.05, which shows that
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all input process parameters are significant for VC. Toff shows the highest significance
for obtaining higher value of VC followed by current and Ton. The p-value of the model
is also less than 0.05, highlighting that the model is significant and best fitted for the
selected range of process parameters. Insignificant lack-of-fit reveals the adequacy and
fitness of the model [10]. The value of R2 indicates that 99.02% of the variation of cutting
speed is contributed by the control factors and only 0.98% of total variation cannot be
described by the quadratic model. The adjacent R-squared’ and predicted R-squared values
of 98.14% and 94.04%, respectively, are in reasonable agreement. Figure 3 shows the normal
probability plot of residuals for VC. ANOVA results are considered to be valid depending
on the analysis of these plots. We observed that the developed regression model fit well
with the observed values.

Table 7. ANOVA for cutting speed.

Source Sum of
Squares Df

Mean Sum
of

Square
F Value p-Value Contribution Significance

Model 4.83875 9 0.53764 112.30 0.000 99.02% significant
Ton 0.61454 1 0.61454 128.37 0.000 12.58% significant
Toff 2.09032 1 2.09032 436.63 0.000 42.78% significant

Current 1.93072 1 1.93072 403.29 0.000 39.51% significant
Ton × Toff 0.01264 1 0.01264 2.64 0.135 0.26%

Ton ×
Current 0.01514 1 0.01514 3.16 0.106 0.31%

Toff ×
Current 0.03277 1 0.03277 6.84 0.026 0.67% significant

Ton × Ton 0.00566 1 0.00566 1.18 0.302 0.12%
Toff × Toff 0.00929 1 0.00929 1.94 0.194 0.19%
Current ×

Current 0.07935 1 0.07935 16.57 0.002 1.62% significant

Residual 0.04787 10 0.00479 0.98%
Lack of Fit 0.03694 5 0.00739 3.38 0.104 0.76% Insignificant
Pure Error 0.01093 5 0.00219 0.22%

Total 4.88662 19 100.00%
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Figure 4 shows the influence of the three parameters at various levels on cutting speed.
The increase in current elevates the discharge energy, which causes the rise in VC. The
increase in the value of Ton signifies a rise in the duration of a spark, which causes the
discharge energy to increase [2]. An increase in Ton and current significantly increases
the spark intensity, which in turn escalates the melting and vaporization of the material
from workpiece [7]. Hence, an increase in both Ton and current increases VC. However, a
continuous decrease in the value of VC has been observed with an increase in the value of
Toff due to the absence of the spark during the machining [10].

Materials 2021, 14, x FOR PEER REVIEW 12 of 23 
 

 

Figure 4 shows the influence of the three parameters at various levels on cutting 
speed. The increase in current elevates the discharge energy, which causes the rise in VC. 
The increase in the value of Ton signifies a rise in the duration of a spark, which causes the 
discharge energy to increase [2]. An increase in Ton and current significantly increases the 
spark intensity, which in turn escalates the melting and vaporization of the material from 
workpiece [7]. Hence, an increase in both Ton and current increases VC. However, a con-
tinuous decrease in the value of VC has been observed with an increase in the value of Toff 
due to the absence of the spark during the machining [10]. 

 
Figure 4. Main effect plot of cutting speed. 

3.3. Analysis of MRR 
The ANOVA results for the quadratic model developed between considered inputs 

and MRR at a 95% confidence level are shown in Table 8. The results indicate that the F-
value of the model is 63.96 with a corresponding p-value of 0.000, which is less than 0.05, 
implying that the quadratic model is significant at the considered confidence level. A lack 
of fit of 4.46 with a corresponding p-value of 0.063 implies that it is not significant and 
suggests the fitness of the model. All the input process parameters (Ton, Toff and current) 
show p-values of less than 0.05, suggesting that all are having a significant effect on MRR. 
The regression equation and ANOVA results of MRR revealed that MRR is significantly 
dependent on Toff. Toff is most contributing factor (41.73%) on MRR followed by Ton and 
current. Saedon et al. [30] also reported Toff as the most significant factor (58%) while in-
vestigating WEDM machining on Ti-6Al-4V alloy. The R2 value of 98.29% indicates that 
98.29% of the variation of MRR can be explained by the empirical model and only 1.71% 
of total variation cannot be described by the developed model. When predicted R2 and 
adjusted R2 values are in reasonable agreement, this confirms a strong correlation between 
observed and predicted values. Here, adjusted R2 is 96.76%, and the predicted value of R2 
is 88.69%. The closeness of the values depicts a strong correlation between them. Figure 5 
shows the residual plots for MRR in terms of normal probability plot versus residual, re-
sidual versus fitted values, histogram, and residual versus observation order. All the re-
sidual plots indicate that the regression model fits well with the observed values. 

Table 8. ANOVA for MRR. 

Figure 4. Main effect plot of cutting speed.

3.3. Analysis of MRR

The ANOVA results for the quadratic model developed between considered inputs
and MRR at a 95% confidence level are shown in Table 8. The results indicate that the
F-value of the model is 63.96 with a corresponding p-value of 0.000, which is less than 0.05,
implying that the quadratic model is significant at the considered confidence level. A lack
of fit of 4.46 with a corresponding p-value of 0.063 implies that it is not significant and
suggests the fitness of the model. All the input process parameters (Ton, Toff and current)
show p-values of less than 0.05, suggesting that all are having a significant effect on MRR.
The regression equation and ANOVA results of MRR revealed that MRR is significantly
dependent on Toff. Toff is most contributing factor (41.73%) on MRR followed by Ton and
current. Saedon et al. [30] also reported Toff as the most significant factor (58%) while
investigating WEDM machining on Ti-6Al-4V alloy. The R2 value of 98.29% indicates that
98.29% of the variation of MRR can be explained by the empirical model and only 1.71%
of total variation cannot be described by the developed model. When predicted R2 and
adjusted R2 values are in reasonable agreement, this confirms a strong correlation between
observed and predicted values. Here, adjusted R2 is 96.76%, and the predicted value of R2

is 88.69%. The closeness of the values depicts a strong correlation between them. Figure 5
shows the residual plots for MRR in terms of normal probability plot versus residual,
residual versus fitted values, histogram, and residual versus observation order. All the
residual plots indicate that the regression model fits well with the observed values.
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Table 8. ANOVA for MRR.

Source Sum of
Squares

Degree
of Free-

dom

Adjusted Mean
Sum of
Square

F Value p-Value Contribution Significance

Model 8.17084 9 0.90787 63.96 0.000 98.29% significant
Ton 1.02400 1 1.02400 72.14 0.000 12.32% significant
Toff 3.46921 1 3.46921 244.39 0.000 41.73% significant

Current 3.39889 1 3.39889 239.44 0.000 40.89% significant
Ton × Toff 0.01280 1 0.01280 0.90 0.365 0.15%

Ton × Current 0.02420 1 0.02420 1.70 0.221 0.29%
Toff × Current 0.04205 1 0.04205 2.96 0.116 0.51%

Ton × Ton 0.02723 1 0.02723 1.92 0.196 0.33%
Toff × Toff 0.00066 1 0.00066 0.05 0.834 0.01%

Current × Current 0.04975 1 0.04975 3.50 0.091 0.60%
Residual 0.14195 10 0.01420 1.71%

Lack of Fit 0.11597 5 0.02319 4.46 0.0626 1.40% Insignificant
Pure Error 0.02598 5 0.00520 0.31%

Total 8.31279 19 100.00%
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From Figure 6, it is inferred that with the rise in Ton and current, the influence of
clearance form on MRR exhibits an increasing tendency. An increase in Ton and current sig-
nificantly increases the spark intensity which in turn escalates the melting and vaporization
of the material from the workpiece [10]. This further increases the MRR by a large amount.
Saedon et al. [30] attributed increasing MRR with increasing Ton and current to the reduced
dynamic shear strength of Ti alloy due to higher thermal influence in the machining region.
The outcome of Toff on MRR shows a decreasing trend with a rise in Toff because of reduced
spark ejection time and less MRR [9,54]. Thus, with an increase in Toff, MRR is decreasing.
Moreover, the slope indicates that it has a great effect on MRR; a slight increase in Toff leads
to a decrease in MRR [9]. The positive dependency/correlation/relationship of MRR with
Ton and negative dependency with Toff is also reported by Arikatla et al. [28].
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3.4. Analysis of SR

The ANOVA results for the quadratic model developed between considered inputs
and machining time at a 95% confidence level are shown in Table 9. The results indicate
that the F-value of the model is 11.67 with a corresponding p-value of 0.000, which is less
than 0.05, implying that the quadratic model is significant at the considered confidence
level. Ton and current were found to be the significant input process parameters for SR,
with a higher contribution of Ton followed by current. The ANOVA results of SR revealed
Ton as the main contributing factor (50.09%). Similarly, the largest contributing effect of
Ton on SR was also reported by Arikatla et al. [28] A lack of fit of 3.73 with a corresponding
p-value of 0.087 implies that it is not significant. The value of R2 of 0.9131 indicates that
91.31% of the variation of surface roughness can be explained by the empirical model and
only 8.69% of total variation cannot be described by the developed model. When predicted
R2 and adjusted R2 values are in reasonable agreement, it indicates strong relationship in
observed and predicted values. Here, adjusted R2 is 0.9842 and the predicted value of R2

is 0.9473. Table 10 shows the model summary for all the responses. The closeness of the
values depicts a strong correlation between them. Figure 7 shows the normal probability
plot of residuals for SR. The plots highlight that that developed regression model fits well
with the observed values.

Figure 8 shows the impact of machining parameters on SR. The effect of Ton is directly
proportional to SR and has a constantly increasing trend because the higher the Ton, the
higher the energy of discharge and spark intensity, resulting in poor surface texture and vice
versa [55]. This indicates that with the increase in Ton, the SR value also increases. The effect
of Toff on SR shows a reducing trend with growth in Toff (inversely proportional) [50,55].
Thus, with the increase in Toff, SR is decreasing as discharge energy falls with the rise in
Toff, leading to the plunging of the crater dimensions and hence reducing SR. The effect
of current on SR shows a growing tendency with a rise in current value and vice versa.
Higher SR with the high current can be explained by the fact that crater sizes are also
dependent on the ionization of the dielectric fluid and ionization takes place at faster rate
with a higher current [50]. Thus, crater size increases with an increase in current value,
resulting in higher SR. The positive dependency of SR on Ton and negative dependency on
Toff was also reported by Arikatla et al. [28].
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Table 9. ANOVA for SR.

Source Sum of
Squares

Degree of
Freedom

Mean Sum
of

Square
F Value p-Value Contribution Significance

Model 22.3776 9 2.4864 11.67 0.000 91.31% significant
Ton 12.2766 1 12.2766 57.65 0.000 50.09% significant

Toff 0.8762 1 0.8762 4.11 0.070 3.58% Not
significant

Current 5.1266 1 5.1266 24.07 0.001 20.92% significant
Ton × Toff 0.5050 1 0.5050 2.37 0.155 2.06%

Ton × Current 1.0440 1 1.0440 4.90 0.051 4.26%
Toff × Current 0.3916 1 0.3916 1.84 0.205 1.60% significant

Ton × Ton 0.9825 1 0.9825 4.61 0.057 4.01%
Toff × Toff 0.3036 1 0.3036 1.43 0.260 1.24%

Current × Current 0.2776 1 0.2776 1.30 0.280 1.13% significant
Residual 2.1297 10 0.2130 8.69%

Lack of Fit 1.6794 5 0.3359 3.73 0.087 6.85% Insignificant
Pure Error 0.4503 5 0.0901 1.84%

Total 24.5073 19 100.00%

Table 10. Model summary for VC, MRR, and SR.

Response Unit Standard
Deviation R-sq R-sq (adj)

VC mm/min 0.0691912 99.02% 98.14%
MRR mm3/min 0.119144 98.29% 96.76%

SR µm 0.461485 91.31% 83.49%
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The ANOVA analysis of all three responses showed that developed mathematical
models are significant for predicting the responses. It indicates that the experimental error
is very minimal and collected output data can be used for multi-objective optimization.

The main effect plots of the considered responses (Figures 4, 6 and 8) can be used
to identify optimum factor-level combinations from a single-objective optimization per-
spective. In the present study, VC and MRR are of the “higher the better” category and
SR falls under the “lower the better category”. Thus, the optimum parameter settings
obtained considering a single objective are shown in Table 11. It can be observed that the
optimum settings are conflicting in nature when all three responses are considered together.
The industry demands process parameter setting, which can result in higher productivity
(higher VC and MRR) with good quality (low SR). This requires an improved means of
optimization which can take care of such conflicting situations.

Table 11. Optimum parameter setting considering single objective optimization.

Response Unit Optimum Parameter Setting Considering Single
Objective Optimization

VC mm/min A3B1C3

MRR mm3/min A3B1C3

SR µm A1B3C1

3.5. Optimization Using Integrated Fuzzy AHP and Fuzzy TOPSIS
3.5.1. Fuzzy AHP

The hierarchical structure of the objective, criterion, and alternatives of the problem
is constructed as per Step 1 of fuzzy AHP. The linguistic data of the pairwise comparison
matrix were collected from domain experts and converted to crisp values using Table 4.
The pairwise comparison matrix with crisp values was prepared using Equation (3) and is
shown in Table 12.
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Table 12. Comparison matrix.

VC MRR SR

VC 1 1/3 1/7
MRR 3 1 1/4

SR 7 4 1

The consistency ratio (CR) was calculated as 0.028. A value of CR less than 0.1 confirms
good consistency in the judgments made by domain experts while assigning values in a
pairwise comparison matrix [56]. Triangular fuzzy numbers from Table 4 were used for
converting crisp values in the pairwise comparison matrix to fuzzy numbers. The obtained
fuzzified comparison matrix is shown in Table 13.

Table 13. Fuzzified comparison matrix.

VC MRR SR

VC (1, 1, 1) (0.25, 0.33, 0.50) (0.13, 0.14, 0.17)
MRR (2, 3, 4) (1, 1, 1) (0.2, 0.25, 0.33)

SR (6, 7, 8) (3, 4, 5) (1, 1, 1)

The fuzzy mean geometric values were calculated using Equation (8) and were used to
find fuzzy weights. The fuzzy weights of the criterion were calculated using Equation (9)
and are shown in Table 14. These weights represent the lower, modal, and upper values of
the fuzzy numbers, respectively.

Table 14. Fuzzy weights.

Weights

VC (0.5286, 0.7049, 0.9312)
MRR (0.1486, 0.2109, 0.2996)

SR (0.0635, 0.0841, 0.1189)

3.5.2. Fuzzy TOPSIS

In fuzzy TOPSIS, the alternative selection criteria were decided from the CCD de-
sign of the response surface methodology. Initially, the response data obtained were
normalized using Equations (10) and (11) and are shown in Table 6. Then, a fuzzified nor-
malized decision matrix was obtained by assigning weights to each sub-criteria grade using
Equation (12). The fuzzified normalized decision matrix obtained is shown in Table 15.

The fuzzy weights obtained from the fuzzy AHP technique (Table 13) were then mul-
tiplied to each performance rating using Equation (13), resulting in a weighted normalized
fuzzy decision matrix as shown in Table 16.

FPIS and FNIS were calculated using Equations (14) and (15). In the present study, VC
and MRR are benefit criteria and SR is cost criteria. Thus, we assumed FPIS V+

j as (1, 1, 1)
for VC, MRR and (0, 0, 0) for SR. Additionally, we assigned FNIS V−j as (0, 0, 0) for VC,
MRR and (1, 1, 1) for SR.

Equations (17) and (18) were used to find FPIS and FNIS separation measures for each
alternative, and the obtained results of separation measures are shown in Table 17. Finally,
the closeness coefficient (CCi) was found for each alternative using Equation (19). The
value of CCi indicates whether the alternative is nearest to theoretical FPIS and furthest
from the theoretical FNIS or vice versa [57]. The highest rank is given to the alternative
with the highest value of the closeness coefficient, as shown in Table 17.

After calculating the closeness coefficient using fuzzy TOPSIS, the optimized process
parameters were determined using a single to noise (S/N) ratio of CCi values. High CCi
values are always preferred. Hence, the (S/N) ratio was calculated using the “higher the
better” strategy in Minitab. The obtained main effect plot of the (S/N) ratio is shown in
Figure 9. The graph indicates the effect of factors’ concerning level. The optimum levels of
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process parameters were picked based on a higher value of the S/N ratio for the levels of
factors. The optimized process parameters based on the highest values S/N ratio were a
Ton of 40 µs, Toff of 15 µs, and current of 2A. The determined optimized process parameters
correspond to alternative 12.

Table 15. Fuzzified normalized data of the output responses.

Alternatives VC (mm/min) MRR (mm3/min) SR (µm)

1 (0.55, 0.70, 0.85) (0.55, 0.70, 0.85) (0.35, 0.50, 0.65)
2 (0.00, 0.10, 0.25) (0.00, 0.10, 0.25) (0.00, 0.10, 0.25)
3 (0.15, 0.30, 0.45) (0.15, 0.30, 0.45) (0.00, 0.10, 0.25)
4 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.35, 0.50, 0.65)
5 (0.55, 0.70, 0.85) (0.55, 0.70, 0.85) (0.35, 0.50, 0.65)
6 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.35, 0.50, 0.65)
7 (0.75, 0.90, 1.0) (0.75, 0.90, 1.00) (0.75, 0.90, 1.00)
8 (0.15, 0.30, 0.45) (0.15, 0.30, 0.45) (0.00, 0.10, 0.25)
9 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.35, 0.50, 0.65)
10 (0.15, 0.30, 0.45) (0.15, 0.30, 0.45) (0.35, 0.50, 0.65)
11 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.35, 0.50, 0.65)
12 (0.55, 0.70, 0.85) (0.55, 0.70, 00.85) (0.00, 0.10, 0.25)
13 (0.15, 0.30, 0.45) (0.15, 0.30, 0.45) (0.00, 0.10, 0.25)
14 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.15, 0.30, 0.45)
15 (0.55, 0.70, 0.85) (0.55, 0.70, 0.85) (0.55, 0.70, 0.85)
16 (0.15, 0.30, 0.45) (0.15, 0.30, 0.45) (0.15, 0.30, 0.45)
17 (0.00, 0.10, 0.25) (0.00, 0.10, 0.25) (0.15, 0.30, 0.45)
18 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.35, 0.50, 0.65)
19 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.15, 0.30, 0.45)
20 (0.35, 0.50, 0.65) (0.35, 0.50, 0.65) (0.35, 0.50, 0.65)

Table 16. Weighted normalized data.

Alternatives VC (mm/min) MRR (mm3/min) SR (µm)

1 (0.034, 0.059, 0.101) (0.082, 0.148, 0.255) (0.185, 0.352, 0.605)
2 (0.000, 0.008, 0.030) (0.000, 0.021, 0.075) (0.000, 0.070, 0.233)
3 (0.010, 0.025, 0.054) (0.022, 0.063, 0.135) (0.000, 0.070, 0.233)
4 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.185, 0.352, 0.605)
5 (0.035, 0.059, 0.101) (0.082, 0.148, 0.255) (0.185, 0.352, 0.605)
6 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.185, 0.352, 0.605)
7 (0.048, 0.076, 0.119) (0.111, 0.190, 0.300) (0.396, 0.634, 0.931)
8 (0.010, 0.025, 0.054) (0.022, 0.063, 0.135) (0.000, 0.070, 0.233)
9 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.185, 0.352, 0.605)
10 (0.010, 0.025, 0.054) (0.022, 0.063, 0.135) (0.185, 0.352, 0.605)
11 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.185, 0.352, 0.605)
12 (0.035, 0.059, 0.101) (0.082, 0.148, 0.255) (0.000, 0.070, 0.233)
13 (0.010, 0.025, 0.054) (0.022, 0.063, 0.135) (0.000, 0.070, 0.233)
14 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.079, 0.211, 0.419)
15 (0.035, 0.059, 0.101) (0.022, 0.063, 0.134) (0.291, 0.493, 0.792)
16 (0.010, 0.025, 0.054) (0.022, 0.063, 0.135) (0.079, 0.211, 0.419)
17 (0.000, 0.008, 0.030) (0.000, 0.021, 0.075) (0.079, 0.211, 0.419)
18 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.185, 0.352, 0.605)
19 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.079, 0.211, 0.419)
20 (0.022, 0.042, 0.077) (0.052, 0.105, 0.195) (0.185, 0.352, 0.605)
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Table 17. Closeness coefficient index.

Alternatives D+ D– CCi

1 2.195 0.890 0.456
2 2.096 0.967 0.477
3 2.039 1.026 0.490
4 2.256 0.827 0.443
5 2.195 0.890 0.456
6 2.256 0.827 0.443
7 2.413 0.710 0.414
8 2.039 1.026 0.490
9 2.256 0.827 0.443
10 2.317 0.764 0.432
11 2.256 0.827 0.443
12 1.918 1.151 0.522
13 2.039 1.026 0.490
14 2.112 0.960 0.473
15 2.341 0.764 0.427
16 2.173 0.898 0.460
17 2.231 0.839 0.448
18 2.256 0.827 0.443
19 2.112 0.960 0.473
20 2.256 0.827 0.443
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Confirmation experiments were performed to validate the optimal settings. Table 18
shows that the experimental results correlate well with the predicted results.

Table 18. Results of the confirmation experiment.

Performance
Response Optimal Setting Predicted Values Experimental Values % Error

VC (mm/min)
Ton 40 µs, Toff 15 µs,

Current 2A

2.067 2.114 2.22
MRR (mm3/min) 2.616 2.690 2.75

SR (µm) 3.117 2.98 4.39
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4. Conclusions

In this study, multi-criteria decision-making techniques, fuzzy AHP and fuzzy TOPSIS,
were integrated for parameter optimization problems in Ti6Al4V alloy machining. The
conclusions of the present work are summarized as follows:

• Response surface methodology is effective for systematically designing the experi-
ments. The mathematical relations developed between dependent and independent
parameters are significant for predicting the responses at a 95% confidence interval.

• ANOVA analysis confirmed that the input parameters Ton, Toff, and current signifi-
cantly affect cutting speed, material removal rate, and surface roughness.

• Fuzzy AHP can be incorporated to prioritize the responses using data collected from
experts. The use of the fuzzy approach eliminates the aleatory uncertainty present in
the natural language. The weights calculated using fuzzy AHP can be incorporated in
fuzzy TOPSIS without bias.

• For the considered range of process parameters, the optimal process parameters for
WEDM are Ton = 40 µs, Toff = 15 µs, and current = 2A.

• The confirmatory experiments proved that fuzzy logic is an effective and efficient
solution for the optimization of WEDM process parameters. The proposed integrated
approach of RSM, fuzzy AHP, and fuzzy TOPSIS can be further extended for different
machining processes.
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Nomenclature
AHP Analytical hierarchy process
ANOVA Analysis of variance
CCi Closeness coefficient index
CCD Central composite design
CR Consistency ratio
FMGV Fuzzy mean geometric value
FPIS Fuzzy positive ideal solutions
FNIS Fuzzy negative ideal solutions
GRA Gray relational analysis
HTS Heat transfer search
MCDM Multi-criteria decision making
MRR Material removal rate
RSM Response surface methodology
S/N Single to noise
SR Surface roughness
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
Ton Pulse-on time
Toff Pulse-off time
VC Cutting speed
WF Wire feed rate
WEDM Wire electrical discharge machining process
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