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Abstract: The design, fabrication and functional evaluation of the radio-frequency dielectric heating
of liquids in an LTCC-based ceramic microfluidic system are described and discussed. The device,
which relies on the dielectric heating of liquids, was fabricated using a low temperature co-fired
ceramic (LTCC) technology. A multilayered ceramic structure with integrated electrodes, buried
channels and cavities in micro and millimetre scales was fabricated. The structure with the dimensions
of 35 mm × 22 mm × 2.4 mm includes a buried cavity with a diameter of 17.3 mm and a volume of
0.3 mL. The top and bottom faces of the cavity consist of silver/palladium electrodes protected with
100 µm thick layers of LTCC. The power, used to heat a polar liquid (water) in the cavity with the
volume of 0.3 mL, ranges from 5 to 40 W. This novel application of RF dielectric heating could enable
the miniaturization of microfluidic systems in many applications. The working principle of such a
device and its efficiency are demonstrated using water as the heated medium.

Keywords: ceramic microsystem; microfluidics; LTCC; RF dielectric heating

1. Introduction

Radio-frequency (RF) dielectric heating is a well-established heating method that
allows for rapid, uniform heating throughout a medium and is widely used in different
sectors of industry, such as the wood industry [1], food industry [2], and many others [3–5].

The heat is generated within the medium (liquid) and throughout its mass simultane-
ously due to dipole, atomic, electric, and Maxwell–Wagner effects. The contribution of each
mechanism is affected by different frequency ranges, temperature, electric conductivity,
moisture content, and the size of polar molecules [6]. Ionic conduction and molecular
dipole rotation are dominant mechanisms for RF heating [2].

In the last 30 years, ceramic MEMS and other ceramic microsystems have become pop-
ular in many branches, especially in applications where chemical stability, thermal stability,
and mechanical stability are important factors [7]. Examples include chemical (micro-
)reactors [8], with chemical, fluidic, heating and other functions. Low temperature co-fired
ceramic (LTCC) was recognized as a very suitable material for their fabrication [8–14].

Channels or cavities in a fluidic system are usually heated by resistive heating elements
buried between ceramic layers. These heaters are simple and powerful, however, when a
high output power is needed, they create a critical gradient of temperature in the ceramic
which can cause the microfluidic system to fail [15]. However, the LTCC material can
survive relatively high temperature gradients compared to technical ceramics such as
Al2O3 ceramics. The 1 mm × 1 mm × 0.5 mm LTCC block can be heated to more than
300 ◦C and immediately submerged in water at room temperature without any damage or
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microcracks [16]. Nevertheless, high gradients and high temperatures in the structure are
not beneficial to reliability, connectivity, and fast temperature control.

Alternatively, dielectric heating could be applied in such structures. The cavity should
be placed between electrodes and the external high-frequency AC field should be applied
to them. Liquids with a high dielectric constant and high dielectric losses are heated
throughout the volume of the cavity. The maximal temperature within the structure is
defined by the boiling temperature of a heated liquid [1].

In this work, we design, fabricate and evaluate the implementation of the RF dielectric
heating of water in a ceramic microfluidic structure in LTCC technology. The working
principle of this novel approach of high-power heating of liquid is demonstrated in a test
microfluidic structure.

2. Materials and Methods

The RF dielectric heating of the liquids was studied in a simple microfluidic system,
which was designed as a heating chamber located in the centre of a monolithic ceramic
structure with the outer dimensions of 35 mm × 28 mm × 2.4 mm. The layout of the mi-
crofluidic system and the cross-sections of the heating chamber are schematically presented
in Figure 1. The system contains a heating chamber with a volume of 0.3 mL and diameter
of 17.3 mm, integrated bottom and upper electrodes with a diameter of 16.4 mm, electrical
interconnections, fluidic channels with the cross-section dimension of 1.9 mm × 1.2 mm
and a length of about 5 mm, external electrical contact pads and fluidic ports.
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heating of liquids.

The electrodes are isolated from the fluid by protective LTCC layers of different
thicknesses, 50 µm or 100 µm. The structures with such protective LTCC layers are
schematically shown in Figure 2.
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Figure 2. The cross-section (not to scale) of the cavity with the protective LTCC layers, which are
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The three-dimensional (3D) ceramic structure for the microfluidic system with an RF
dielectric heater was made from a commercial LTCC tape (KEKO SK-47, KEKO Equipment,
Žužemberk, Slovenia) with thickness 254 µm, 100 µm and 50 µm. The properties of this
LTCC tape are presented in Ref. [17]. The LTCC tapes were shaped according to the
layout by a laser (LM-8UCC, KEKO Equipment, Žužemberk, Slovenia). The internal
electrodes and electrically conductive lines and pads were screen-printed with a thick-film
silver-palladium paste (KEKO AgPdS-1, KEKO Equipment, Žužemberk, Slovenia) by an
automatic screen printer (P-250, KEKO-Equipment, Žužemberk, Slovenia). The punched
and patterned layers were collated and laminated for 10 min at a uniaxial pressure of
500 N/cm2 and the temperature of 50 ◦C. This relatively low pressure was used to prevent
the deformation of the 3D structure. The LTCC laminate was fired in a single step starting
with a heating rate of 7 ◦C/min up to 450 ◦C. After a holding time of 1 h to allow a proper
binder burnout, the heating proceeded at the heating rate of 10 ◦C/min up to the sintering
temperature of 850 ◦C for 30 min and cooling with a rate of 10 ◦C/min. After a visual
inspection of the structure, the inlet and outlet ports were bonded with a two-component
epoxy glue (Delo, Windach, Germany). The tubes were attached to the inlet and outlet
ports. The tightness of the system was tested with an air pressure of about 700 kPa and
submerged in water to check for any leakage.

A photo of a complete LTCC structure for dielectric heating of the liquids is shown in
Figure 3a, and in Figure 3b the structure without the lid is shown. The shape of the heating
chamber is clearly seen.
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The test setup for dielectric heating of liquids is schematically shown in Figure 4. It
consists of a high-frequency power generator (i.e., RF generator). Here, a radio transceiver
Yaesu FT-857D (Yaesu, Tokyo, Japan) with selectable output power between 2 and 100 W
was used because it enables easy setting and measuring of the output power. The real
output power was measured in the range from 5 W to 40 W with an external homemade
and calibrated power meter. The dielectric properties of water at different frequencies and
temperatures are presented in Table 1 [18].
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Table 1. The permittivity (έ) and dielectric losses (Tan δ) as a function of temperature and frequency.

0 ◦C 25 ◦C 50 ◦C

Frequency έ Tan δ έ Tan δ έ Tan δ

0.00 87.90 0.0000 78.36 0.0000 69.88 0.0000
1 kHz 87.90 0.0000 78.36 0.0000 69.88 0.0000
1 MHz 87.90 0.0001 78.36 0.0000 69.88 0.0000
10 MHz 87.90 0.0010 78.36 0.0005 69.88 0.0003

100 MHz 87.89 0.0104 78.36 0.0048 69.88 0.0029
200 MHz 87.86 0.0207 78.35 0.0097 69.88 0.0056
500 MHz 87.65 0.0519 78.31 0.0243 69.87 0.0140

The permittivity is decreasing with increasing frequency and temperature. The di-
electric losses are decreasing with increasing temperature and increasing with increasing
frequency at a given temperature. The corresponding capacitance contributed to the choice
of the frequency. The frequency was set to 27.12 MHz as it is the centre frequency of
the ISM band approved by the International Telecommunication Union (ITU). To reduce
energy-transfer losses from the transceiver to the electric heater, an impedance-matching
electronic circuit was designed and realized, consisting of an adjustable air capacitor and
inductance that is changed by using a self-made air coil with a selected number of turns.
The impedance matching circuit was then connected to the electrical contact pads at the 3D
LTCC structure with copper wires (Alpha Wire, Elizabeth, NJ, USA).

The fluid with the temperature of about 23 ◦C entered the dielectric heater through
the inlet and the heated fluid exited through the outlet. The flow rate of the fluid and the
duration of the flow were controlled. The temperature of the exiting fluid was monitored
by a K-type thermocouple (Supco, Allenwood, NJ, USA), which was placed in the outlet
tube at a safe distance from the heating chamber to avoid any temperature interference.
The temperature was recorded as a function of time while keeping the flow through the
chamber constant by using a temperature logger Supco SL500TC (Allenwood, NJ, USA).

3. Results

The main advantage of a dielectric heater is that it heats only the fluid. A thermogram
during the operation at 40 W power with a flow of 5 mL/min is shown in Figure 5. It
is clearly seen that the power was concentrated in the centre of the chamber and was
not dissipated throughout the structure. This is also a consequence of the low thermal
conductivity of LTCC ceramics (about 3 W/(m·K)).
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In the first experiment, the fluid was water and the RF power was set to 10, 20, 30,
and 40 W. At each RF power, the temperature of the exiting fluid at a constant flow rate
of 15 mL/min was recorded as a function of time, see Figure 6. Immediately at the onset
of heating, the temperature increased until it reached a plateau. A slight increase of the
temperature at the plateau at 40 W was ascribed to the local boiling of water, namely, the
heating is self-regulating, as the water starts to boil, the capacitance between both cavities
drastically decreases and consequently the efficiency of transmitted power drops until the
vapour is not present anymore. The set power measured the output power, the difference
between the inlet and maximal outlet temperature of the water. The calculated power
transferred into water is calculated by P = qm·cp·∆T, where P is power transferred into
the water in (W), qm is mass flow of water (g/s), cp is heat capacity of water (J/gK), ∆T
is the difference in temperature between outlet and inlet (K) and the efficiency of power
transmitted into water are collected in Table 2.
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Table 2. The set power, measured output power and the difference between the inlet and maximal
outlet temperature of the water. The calculated power transferred into water and the efficiency of the
power transmitted into the water.

Set
Power

(W)

Output
Power

(W)

∆T
(K)

Power
Transferred into

Water (W)

Efficiency of
Transmitted

Power

40 33 24.7 25.8 0.78
30 22 15.6 16.3 0.74
20 15 10.6 11.1 0.74
10 9 6.3 6.6 0.73

The power transmitted into the water increased with increasing output power while
the efficiency remained almost constant. At the highest power setting of 40 W, the output
power was 33 W. Such power was applied into the cavity with the volume of 0.3 mL which
equaled more than 100 W/mL power density applied in such a structure.

The influence of the thickness of the protective LTCC layer on the power transfer was
evaluated. The temperature of the exiting water at the constant water flow at a 20 W set
heating power is shown in Figure 7.
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The measurements of the calculated power that was transferred into the water and
the efficiency of the transmitted power are collected in Table 3.

Table 3. The power setting, measured output power, difference of the water temperature in inlet
and outlet, the calculated heat transferred into the water and the efficiency of the transmitted power
depending on the thickness of the protection layer.

Thickness of
the Protection

Layer (µm)

Output
Power

(W)

∆T
(K)

Power
Transferred into

Water (W)

Efficiency of
Transmitted

Power

50 15 12.1 12.7 0.84
100 15 10.6 11.1 0.74

It is clearly seen that the power transferred into the water was higher in the case of
the thinner protective layer as there was a larger fraction of water between the electrodes,
please refer to Figure 2. The structure can be electrically represented as two capacitors
in series. In the case of a thicker ceramic layer between the electrode and water, the
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contribution of the ceramic to the impedance and consequently the loss of the power
transmitted into the structure is larger.

4. Summary and Conclusions

Dielectric heating has been used, according to the authors’ knowledge, for the first
time in a ceramic (LTCC) microfluidic structure. The working principle, the use, and its
efficiency were demonstrated, using water as the heated medium. The dielectric heater as
a part of a ceramic microfluidic 3D structure was realized with LTCC material. When the
transmission power was set to 40 W, and the measured transmission power was 33 W, the
power density in the structure exceeded 100 W/mL.

The main advantages of dielectric heating of liquids in a LTCC-based ceramic microflu-
idic system are: (i) it heats only the fluid due to the principle of dielectric heating (ii) it is
self-regulated and is determined by the boiling point of the liquid; (iii) the heat dissipation
to other parts of the ceramic structure is limited due to the relatively low thermal conduc-
tivity of the LTCC material; (iv) dielectric heating is especially convenient for the heating
of water, because of its higher dielectric constant; On the other hand, dielectric heating
requires an RF generator and an impedance-matching electronic circuit. Here, external
devices were used for test purposes, but for a real application, it would be necessary to
create a suitable electronic circuit and assemble it into the system.
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