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Abstract: This article dwells upon the additive manufacturing of high-energy materials (HEM)
with regards to the problems of this technology’s development. This work is aimed at identifying
and describing the main problems currently arising in the use of AM for nanostructured high-
energy materials and gives an idea of the valuable opportunities that it provides in the hope of
promoting further development in this area. Original approaches are proposed for solving one of
the main problems in the production of nanostructured HEM—safety and viscosity reduction of the
polymer-nanopowder system. Studies have shown an almost complete degree of deagglomeration of
microencapsulated aluminum powders. Such powders have the potential to create new systems for
safe 3D printing using high-energy materials.

Keywords: additive manufacturing; thermite; high-energy materials; 3D printing

1. Introduction

In recent years, there has been explosive growth in interest toward additive manufac-
turing in many scientific research areas. This can be seen from the increase in the number
of publications on this topic [1], as well as the respective economic indicators; the current
additive manufacturing (AM) market size has already exceeded $1300 million. In practice,
AM saves time and costs from the design stage to production [2].

Additive manufacturing technologies have been developing for over 30 years. While
at the onset, they consisted of relatively simple 3D printing of polymer prototypes, now it is
possible to use AM to obtain metallic or non-metallic prototypes or functional products that
do not require mechanical post-processing. One of the examples is additive manufacturing
by means of layer-by-layer laser fusion of powder [3–5].

The main direction of AM application today is the production of functional products
for aerospace and automotive [6] industries and biomedicine, as well as manufacturing of
electronic devices and measuring equipment, etc. [1].

Despite significant advances in AM in recent years, some areas remain problematic.
These include AM of high-energy materials (HEM).

Recently, interest has arisen in high-energy nanocomposites. Those make it possible
to create miniature energy systems based on nanomaterials with more powerful oxidation
kinetics than macroscale materials. Such composites are called “reactive materials” [7,8],
“metastable intermolecular composites” [9,10], or “pyrolants” [11,12]. They are prominent
in terms of high heat release per unit mass of substance. Furthermore, being nanoscale,
they have the potential for precise targeting applications. However, their manufacturing
technologies should also differ from conventional ones.
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Conventional technologies such as pressing or casting are used for manufacturing
products from high-energy materials. These technologies also suffer from imperfections:
resulting products may contain pores and cracks [13], and some technological stages are
unsafe.

Additive manufacturing technologies are the most promising field for the fabrication
of products from high-energy nanocomposites since they are commonly and widely used
for the creation of nanocomposite products [1,14]. Additive manufacturing covers a wide
range of technologies for the layer-by-layer deposition and synthesis of objects based on
computer-designed 3D models. The advantage of such technologies lies in the creation
of objects of complex geometry with high resolution, which is important for the use of
nanomaterials. However, not all technologies in the AM toolbox are suitable for handling
high-energy materials.

Methods for creating planar (2D) structures from reactive materials are outside the
scope of this review (unless they are a variation of 3D), and they are considered in detail
in [14].

In this research, we rely on the results of the review [14] and earlier work [15] as well
as on new articles that have been published later. We focus on the problems of the additive
manufacturing of high-energy nanocomposites and the possible ways of solving them.

2. High-Energy Composite Additive Manufacturing Technologies
2.1. Material Extrusion

Material extrusion is the first and, currently, the most popular additive manufacturing
process for a wide range of products in terms of affordability and reliability. Material
extrusion is a 3D inkjet printing process whereby the material is fed through a nozzle or
jet. This principle of operation is mostly used in inexpensive desktop 3D printers. The
requirement for materials for the fabrication of items is the ability to push the material
through the nozzle. Any pasty material (sometimes preheated) can be used for “drawing”
2D cross-sections of a certain 3D model.

A variation of the process under consideration is the creation of flat structures, for
example, screen printing for pyrotechnic applications [16] and Doctor Blade Casting [17].
The Doctor Blade method can operate at speeds of up to several meters per minute and
is suitable for coating substrates with a very wide range of wet film thicknesses ranging
from 20 microns to several hundred microns. Here, an HEM suspension with a dissolved
binder is applied to the substrate using a knife with a specific gap (Figure 1). A team from
Texas Tech University led by Professor Pantoya has published a series of articles on the
fabrication of thermite-based films using this approach [18–20].
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The extrusion process is also used for the formation of more complex 3D structures.
To this end, the “ink” is applied layer by layer through the hole in the 3D printer head
(Figure 2). The respective 3D printing method is called DIW (Direct Ink Writing). Initially,
the liquid ink solidifies on the substrate as a result of solvent evaporation or binder deposi-
tion, thus creating a volumetric product structure. The minimum size of printed structures
can be less than 1 micron, depending on the size of the nozzle and the physicochemical
properties of the ink. Thanks to its relative simplicity, DIW is widely used for the fabrication
of HEM products [21–26].
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Figure 2. Direct printing method, a schematic diagram.

The pen-type technique is a variation of this method. Here, a specially prepared ink
containing a dispersed phase (a nano- or micro-sized aluminum powder, for example)
and a binder are used. The ink fills the syringe, and the extrusion process is actuated by
pressurized air. The adjustment of air pressure allows for controlling the printing speed and
setting up the technology in accordance with the ink viscosity. However, manufacturing
articles with a solid content of over 90%, using the pen-type technique, is still a problem.
This is because high pressure is required, which also results in the slurry stratification
phenomenon, i.e., the separation of the binder from the solids [27].

To overcome the limitations associated with high ink viscosity, an ultrasonic technique
with high frequency and amplitude oscillations is used [28] (up to 30 kHz and 20 µm,
respectively). However, ultrasound creates flow hysteresis problems leading to inaccuracies
in geometry, nozzle erosion and ink degradation due to high stress.

The main problem of using this technology for the fabrication of products from
high-energy compositions is their hazardous nature. Reactive materials are susceptible to
ignition, deflagration, detonation or explosion when subjected to shear stress and friction
during extrusion as they travel through valve and nozzle assemblies. In addition, it is
necessary to meet ink viscosity requirements to create the conditions for the extrusion
itself (i.e., material passage through the nozzle) [14,29]. There are significant difficulties
to be overcome, especially when using a suspension with a very high particle content
(>80 vol.% of particles). Work [29] is devoted to the investigation of a polymer binder used
in high-energy compositions from the point of view of the viscosity of the suspension and
its suitability for printing.

In general, DIW direct printing technology achieves a relatively high slurry-solid
content and appropriate viscosity of the material using special techniques (ultrasound) and
careful ink formulation designs, individually designed for each application.
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One of the important advantages of this process, as applied to high-energy materials,
is the relatively low operating temperatures, which reduce the probability of ignition. The
operating temperatures are determined by the physical and chemical characteristics of the
material.

2.2. Fused Deposition Modeling (FDM)

FDM is a widely used additive manufacturing technology. It is based on the use of a
plastic filament which is deposited in layers through a heated extruder onto a substrate
(Figure 3). Typical spatial resolutions achieved by the FDM method lie in the range of
100–500 µm.
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Today, the FDM printing process has matured to an industrial level, and inexpensive
commercial printers are used in the manufacturing process. However, there is little data
on the fabrication of high-energy composites based on this technology. The reason for this
is obvious: FDM involves a rather high degree of material heating to increase its fluidity.
This limits the range of materials that can be printed with FDM to those with a melting
point significantly lower than the reaction temperature [30,31].

Another approach that still does not completely eliminate ignition during printing
consists of filling a thermoplastic polymer filament with solid HEM particles [32].

The main difference between FDM and DIW is the required feedstock viscosity (for
example, 0, 1–103 Pa·s [33] for DIW and >103 Pa·s for FDM). The application of FDM to
high-energy materials requires the incorporation of high concentrations of reactive particles
into the polymer filament to maintain high reaction rates. However, from the point of
view of uniform distribution of the components and reduction of material viscosity during
printing, lower particle concentrations are recommended [34].

Most of the recent works devoted to the use of FDM for the creation of HEM products
are focused on the use of poly (vinylidene fluoride) (PVDF), which can serve both as a
filament backbone in printing and as an oxidizing agent during the reaction [34–37]. In
particular, nano-aluminum (n-Al) and polyvinylidene fluoride (PVDF) are attractive fuel
and oxidizing materials due to the high energy density of n-Al as well as high oxidation
potential and excellent mechanical properties offered by PVDF [38].
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Summarizing the research findings obtained on the use of the FDM method for the
additive manufacturing of HEM, it can be assumed that this technology has high potential.
The main disadvantages of FDM are the limited surface finishing capabilities and precision
as well as poor mechanical properties of the products [39]. Balancing between the material
viscosity and its reactivity also remains a problem as the relatively high temperature of the
filament compromises safety during printing.

2.3. Photopolymerization (Laser Stereolithography (SLA), Digital Light Processing (DPL))

Vat Photopolymerization is a 3D printing process that implements a light source to
cure liquid photocurable resins (photopolymers). The key difference between the two
technologies lies in the type of light source used for curing the material: in SLA (Figure 4),
it is ultraviolet light, and in DLP (Figure 5), it is visible light. Normally, the light is projected
downwards on the printed material in SLA systems, and from under the printed material
(through a transparent surface), in DLP systems.

A 3D printer involved in the implementation of vat photopolymerization is equipped
with a container with photopolymer resin, which is cured by the light source. SLA printers
use a vat with liquid photopolymer resin that is cured by UV radiation. Laser beam
processing is done layer by layer. After one layer has been treated, the printer platform
is shifted by a distance equal to the layer thickness (0.05–0.15 mm). The resin-filled plate
then passes over the cross-section of the item and re-coats it with new material. The next
layer is formed on this liquid surface and is joined with the previous one. Thus, an entire
3-dimensional object is formed.

DLP uses visible light projectors such as arc lamps. In this case, each layer of the object
being fabricated is projected into a vat of liquid resin, which hardens layer by layer as the
platform is raised or lowered. Thanks to this treatment method, DLP is faster than most 3D
printing methods.
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There are a number of works devoted to SLA application in energy product manufac-
turing: fuel pellets for hybrid engines [40], gun powders [30,41], compositions based on
ammonium perchlorate [42] and cannon fuels [43]. DLP for energetic materials was used
in [44,45]. Some works reported the use of a combination of DIW and SLA: the composite
is first deposited by extrusion and then cured by UV radiation [46,47].

The use of photopolymerization processes in a vat imposes a number of requirements
for the materials [45]:

- All the components must be chemically compatible.
- The viscosity of the material should be sufficiently low, preferably below 20 Pa·s [48].
- The material must be sufficiently stable over time, i.e., sedimentation must not occur

for several hours.
- The material must be sensitive to the wavelength range of the light source used.
- The material must be promptly cured, preferably within a few seconds.
- Light penetration into the material (including light scattering) must be limited to

provide sufficient resolution in all directions.
- Once illuminated, the material must have sufficient mechanical strength to withstand

transportation, treatment and use.

Additional requirements largely depend on the intended use of the printed product.
In the case of energy cells, it can be said that the following requirements must be met:

- The energy resin must not decompose when exposed to the light source used for
curing.

- The energy properties (e.g., heat of explosion, combustion rate, detonation velocity)
must be sufficient for the intended use.

The main advantages of the photopolymerization methods are high resolution and
high performance. The light-induced process eliminates the use of toxic hardeners. The
main disadvantage is the need to use polymers that are curable by UV or visible light. This
significantly limits the list of materials available for printing.
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2.4. Powder Printing (Binder Jetting, Powder Bed Printing)

Two materials are used in printing with this technology: a base material in the form of
a powder and a liquid binder. The binder is sprayed by the printer head, and the powder
particles stick together to form a solid 3D model (Figure 6). The powder is poured into the
first chamber and fed into the second chamber by rolling the required amount of powder
with a roller. The powder is poured onto the construction platform lowered to a depth
equal to the first layer height. A liquid adhesive binder is fed through the inkjet printer
head. After laying one layer, the platform is lowered to a depth equal to the height of the
next layer. Then the powder is rolled out of the first chamber into the construction chamber.
All subsequent layers are deposited in the same way. After completing the last layer, the
3D model is extracted, and the excess powder is peeled off. Initially, this technology was
used to create plaster molds and casting molds.
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The difficulty of using this technology with high-energy materials lies primarily in
the fact that post-processing is required to eliminate mechanical defects and increase
strength [49]. Apart from that, the removal of excess reactive powder can also be challeng-
ing [14].

2.5. Powder Sintering Technology (Selective Laser Sintering, SLS)

There are other additive manufacturing technologies that are less suitable for handling
reactive materials (most often, for safety considerations). However, literary sources describe
attempts to use them.

SLS or Selective Laser Sintering is an additive manufacturing technology based on
layer-by-layer sintering of powder materials using a laser beam [50]. The laser beam
selectively activates powder particles, causing them to partially melt and coalesce with
neighboring particles, thus forming a monolithic layer. The SLS technology provides only
partial melting of the surface of the particles. This is necessary for sintering them together.
However, the temperature in the laser treatment area is close to the melting temperature
of the powder. The process of manufacturing a product using the SLS technology has the
following stages (Figure 7): heating the powder to a temperature close to the melting point;
feeding the powder to the fabrication chamber; sintering the powder in the required areas
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with a laser beam; feeding the next layer of powder (the fabrication chamber goes down
one layer), etc.
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The advantages of the SLS technology are high fabrication precision for products of
complex geometric shapes, high speed and performance, excellent mechanical properties of
products and the absence of wastes. The disadvantages include the high cost of equipment.

The research work [51] investigated the possibility of using the SLS technology for
handling highly explosive composites such as RDX and TNT. The idea of modifying the
method was that explosive particles are covered with a polymer shell with a low melting
point. This will ensure easy sintering of particles among themselves while avoiding the
initiation of explosives. The SLS concept has been successfully demonstrated on explosive
simulators coated with polycaprolactone (PCL). However, the authors still recommend
using technologies for the additive manufacturing of explosive materials without the use
of intense laser energy (for example, powder printing).

3. Reactive Materials for Printing, Problems of Their Preparation and Use

The last two decades have seen remarkable developments in the field of energetic
materials. There has been a gradual transition from the use of nitrocarbon energetic materi-
als, such as TNT, RDX and CL-20, to microstructural composites and nanothermites [52].
Thermite is a powder mixture composed of oxygen donor particles, such as a metal oxide
and an oxygen scavenger represented by a reducing metal (fuel). Nanothermites are pro-
duced from finely dispersed powders where particle sizes normally range between 1 and
100 nm. Aluminum nanopowder has proven to be one of the best fuels for nanothermites.
The commercial availability of stable aluminum nanopowders with narrow particle size
distributions and well-defined metal contents has stimulated research in this area [53].

In contrast to micro-sized energetic materials, nanothermites have a higher specific
surface area (~10–50 m2/g), a lower ignition temperature, a higher energy density (up to
50 MJ/kg), a shorter ignition time, a higher burning rate [54,55] and a lower impact sensi-
tivity (<4–35 J) [52]. The combustion of nanothermites often occurs due to the dispersion
of condensed products by gases (advection), which provides a flame propagation veloc-
ity of up to 2400–2600 m/s [56–58]; this is significantly higher than that of micron-sized
thermites.
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In particular, such exceptional properties of nanoenergy composites (i.e., thermites,
combinations of metal-fuel/metal oxide particles) find their applications in ammunition,
pyrotechnics and microcircuits of microelectromechanical systems (MEMS). Very high reac-
tion rates (often in the form of detonation) are useful in the above applications. However,
due to the high sensitivity, there is a certain hazard during their production and handling.

In addition to high sensitivity, there are other factors limiting the use of nanother-
mites [14], including stability problems, for example, oxidation [59] or coalescence [60–62]
during storage; the difficulty of obtaining a homogeneous composite mixture [55,63]; grad-
ual increase in the viscosity of compositions with a binder [64]. Furthermore, toxicological
hazard remains an important issue when handling nanopowders [52,53].

In addition to the reactive material, energetic inks contain a binder. The main role
of the binder is to improve the mechanical properties of the composite [65]. The binder
encapsulates the powder particles, reducing their oxidation and coalescence [62]. Another
possible role for the polymeric binder lies in increasing the energy of the composition
if the binder reacts with the filler particles. For example, fluoropolymers oxidize alu-
minum [36,66–68], and 80% more energy is generated in the process as compared to the
formation of aluminum oxide [11].

An integral part of the ink used in most additive manufacturing technologies is a
solvent or dispersion medium. The use of liquid media increases safety by reducing the
sensitivity to electrostatic discharge as compared to the use of dry powders [69].

The suspension used in additive manufacturing (e.g., DIW) must be properly designed
to meet the following requirements: uniform distribution of particles, fast solidification
kinetics and suitable rheology for substance flow and shape retention [29]. The rheology
of the ink determines the printability and quality of the final product [70]. An important
consequence of high suspension viscosity is excessive heating of the printed material (there
is a 30 ◦C difference between the center and the wall of the flow [71]).

Despite the advantages of nanothermite systems, safety concerns hinder the produc-
tion and use of nano-energetic materials to a certain extent.

4. Trends and Directions for Further Research

The problems of additive manufacturing of HEMs can be divided into two groups:
problems associated with the use of materials in the production process (ignition possibility,
rheology, technical and economic parameters, etc.); the quality issues of the final products
(mechanical properties, the need for post-processing, energy parameters compliance).

Table 1 summarizes the additive manufacturing technologies discussed in this review
as well as their respective problems. It should be noted that the set of additive technologies
is wider than we have considered. However, attempts to use them in the fabrication of
items from reactive materials have not been observed in the literature.

Table 1. Additive manufacturing technologies for HEMs and problems pertinent to their use.

AM Technology Advantages Problems and Material
Requirements Sources

DIW
Relatively low process temperatures

Relative simplicity
High resolution (up to 1 µm)

Viscosity of highly filled inks
Uniform distribution of particles in

the ink
Suspension stability

Possibility of ignition and detonation
during fabrication

[21–29,70,71]

FDM High viscosity of the feedstock
Inexpensive commercial printers

Unsatisfactory mechanical properties
of the products, low resolution

Balance of material viscosity and its
reactivity

Possibility of ignition and detonation
due to the relatively high temperature

of the filament

[30–39]
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Table 1. Cont.

AM Technology Advantages Problems and Material
Requirements Sources

Photopolymerization methods
(SLA/DPL)

High resolution and high performance
No toxic hardeners used

The need for polymers curable by UV
or visible light

Low viscosity of materials
[30,40–48]

Binder jetting

No supporting structures required
Ability to use leftover material for a

new print process
Low process temperatures

Post-processing required to eliminate
mechanical defects and increase

strength
Removal of excess reactive powder

Product fragility

[14,49]

SLS

High precision manufacturing of
products of complex geometric shapes

High speed and performance
Excellent mechanical properties of

products
No wastes

High equipment costs
Intense exposure to IR laser may

initiate explosives
[50,51]

Reactive material products from the additive manufacturing process have been pro-
posed for a wide variety of applications. Different applications may require very different,
sometimes oppositional, properties of reactive materials:

- Providing a high reaction rate (for example, a multichannel igniter [72]);
- Providing a low controlled reaction rate and the absence of gas formation [73];
- Releasing heat during the reaction (for example, destruction of microcircuits [74]);
- Generating gases (for example, micromotors and actuators [75]).

The design of processes for the additive manufacturing of products from high-energy
nanocomposites is based on the requirements of a specific engineering task and is an
example of engineering art. Here, it is necessary to:

- Choose an adequate 3D printing method;
- Investigate the feasibility of the processes pertinent to the preliminary preparation of

materials, printing and post-processing while ensuring their compliance with safety
requirements;

- Achieve the required mechanical and energy properties of the final product.

The research methods may include mathematical modeling or physical modeling,
including the use of simulators of explosives.

Mathematical modeling of 3D printing processes is complex and multi-faceted. It
must take into account many problems pertinent to mechanical engineering, heat and
mass transfer, as well as chemical kinetics. Currently, there are many works devoted to
the mathematical modeling of various additive manufacturing processes. The authors
of [76] propose a mathematical model of heat transfer in Selective Laser Melting (SLM) [76].
In [77], a two-dimensional mathematical model of laser cladding with injection of Direct
Metal Deposition (DMD) droplets has been developed. In [78], the temperature profile
of the powder layer in the SLM process was calculated by the finite element method in a
three-dimensional formulation. The research work [79] is also devoted to the mathematical
modeling of the SLM process (for metal powders). The improved model takes into account
laser power, scan speed, thermal conductivity and heat capacity of the powder. The authors
of [80] consider the DIW process of orthopedic material printing using a relatively simple
mathematical model in order to optimize printer parameters. Statistical analysis methods
also find their use here. Thus, in [81], linear regression methods were used to assess the
roughness, as well as the correlations between material filling and printing speed and
correlations between layer height and temperature in the DIW process of ceramic materials.
Research work [82] optimizes important parameters of the FDM process (layer thickness,
assembly orientation, fill density and contour count) to improve the dimensional accuracy
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using hybrid statistical tools. Thus, mathematical modeling of the 3D printing processes
is evolving, allowing for the optimization of these processes. However, there is a lack of
research that would take into account the specifics of reactive materials in mathematical
models of additive manufacturing. Still, the safety of the printing process associated with
the possibility of explosive initiation remains an important issue.

The advantage of additive manufacturing of high-energy products lies not only in the
ability to control the properties of products by changing the physicochemical parameters
of the feedstock (for example, powder particles size). The ability to control geometric
3D shapes on a micro-scale is also valuable since the rate of combustion and detonation
depends on them [83]. This opens new perspectives but also complicates the engineering
task.

Thus, it can be assumed that the most important challenges in obtaining high-energy
nanocomposites adapted for 3D printing technologies are: (i) materials safety and (ii)
the viscosity of the binder-nanopowder system. Here, high viscosity is a result of the
agglomeration of nanoparticles and their high specific surface area. One of the approaches
to solving these problems lies in the deagglomeration and encapsulation of aluminum
nanoparticles.

5. Promising Methods for Improving the Safety and Manufacturability of
Nanopowders for 3D Technologies of High-Energy Materials

Increased reactivity of aluminum nanopowder is known to be one of the key char-
acteristics that contribute to its extensive research and application in the composition of
energy systems [84–88]. However, there are drawbacks limiting their application in addi-
tive manufacturing. One of these disadvantages is the increased sensitivity to the effects of
oxidizing and corrosive environments due to the large specific surface area of the nano-
materials [89,90]. This disadvantage leads to a significant decrease in the content of active
aluminum, thus lowering its energy characteristics in the energy system compositions.

Another disadvantage is the increased tendency of nanoparticles to agglomerate. This
significantly reduces the viscosity of the powder-polymer system and complicates the
preparation of materials for 3D printing. There are different approaches to solving this
problem. For example, in Ref. [91], it was proposed to use copper oxide particles in the
form of a wire mixed with nanoaluminum particles to reduce the size of agglomerates and
increase the combustion rate of the mixture.

To solve this problem, we propose a new technology. It aims to modify the surface of
aluminum nanopowder by creating a protective coating on it [92,93]. The protective layer
will postpone direct contact between nanopowder particles till the moment of their active
oxidation. It is obvious that the modifier should be applied to deagglomerated particles.
Partial destruction of agglomerates can be achieved by homogenization under the effect
of the flow of a liquid organic solvent medium containing surface modifier molecules. In
the process of agglomerate disintegration, the interaction of modifier molecules and the
surface of nanoparticles occurs, which results in the formation of a protective layer. It
should be noted that even a partial replacement of micron-sized powders with aluminum
nanopowder results in the reduction of mixture viscosity.

For experimental research, we used aluminum nanopowders from Alex [94]. The
aluminum nanoparticle size distribution histogram has a right-sided asymmetry and is
close to the lognormal distribution (Figure 8a) [95]. The content of active aluminum
in nanopowders is about 90% of the mass, and the specific surface of the nanopowder
is S = 28.0 m2/g. Nanoparticles form micron-sized agglomerates (Figure 8b). There is
a 2.10 nm thick layer on the surface of nanoparticles. This layer includes aluminum
hydroxides: bayerite—α-Al (OH)3 and boehmite—γ-AlOOH.
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To avoid the agglomeration of nanoparticles, surface modification is required. Thin
layers (films) should be created on nanoparticle surfaces to prevent contact between them
until the moment of their active oxidation. To apply such films to nanoparticle surfaces,
agglomerates of nanoparticles must first be disintegrated.

The disintegration of nanoparticle agglomerates occurs during the intensive process-
ing of powders exposed to the effect of the liquid organic solvent flow containing chemical
surface modifiers. The additional agglomerate disintegration effect is caused by the inter-
action of modifier molecules with the surface of nanoparticles resulting in the formation of
a film on the nanoparticle surfaces.

The substances presented in Table 2 have been selected as active modifiers.

Table 2. Content of modifiers.

Coating The Amount of Organic Substances, wt.%

substances, wt. 0.5
pyrocatechol 0.5

8-oxyquinoline 0.5
stearic acid 3.0

This research has shown that in samples of nanopowders treated with 8-hydroxyquinoline,
the content of the fine fraction relative to the initial aluminum nanopowder slightly in-
creases. The share of nanoparticles less than 100 nm in size is 23% of their total number.

In the samples of nanopowders modified with pyrocatechol, the proportion of nanopar-
ticles with a size less than 100 nm is 32% of their total number, while the difference between
the fractions becomes less pronounced. Somewhat better disaggregation of nanopowders
is achieved when using stearic acid. The fraction of particles less than 100 nm is 36% of
their total number.

The best dispersion is achieved when using acetylacetone, whereby the fraction of
particles less than 100 nm is 56%. The data obtained show that the deagglomeration effect
is determined by the bond strength between the modifier and the particle surface, as well
as the difference in the intermolecular interaction of the modifiers used. Stearic acid forms
unstable covalent compounds with surface aluminum cations, so its efficiency as a surface
modifier is low. Pyrocatechol and 8-hydroxyquinoline readily polarize, which enhances the
interaction of protective layers formed by these modifiers on the surface of nanoparticles
with each other. Acetylacetone forms strong covalent bonds with superficial aluminum
cations. Furthermore, acetylacetone molecules are characterized by low polarizability and
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strong intermolecular repulsion. Figure 9 shows particle and agglomerate size distributions
in the aluminum powders after their treatment with different modifiers.
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A protective layer of acetylacetone on the surface of nanoparticles protects (shields)
the surface of nanoparticles, thereby reducing the level of interactions between them. Thus,
it was shown that acetylacetone has the highest efficiency as a surface modifier. This
ensues from the data obtained that the creation of protective layers (films) that prevent
aluminum nanoparticle agglomeration requires surface modifiers in order to form bonds
with superficial metal atoms. These modifiers make it possible to reduce the surface energy
of the dispersed phase.

For microencapsulation, the best methods are colloidal methods of material fabrication.
Those rely on the deagglomeration of nanoparticles in a liquid medium in the presence of
a polymer, sorption of the polymer on nanoparticle surfaces followed by solvent removal.
These methods are simple and technologically mature, while allowing for the achievement
of almost complete deagglomeration and, therefore, uniform coating of nanoparticles with
a polymer layer.

In this work, the following components were used as polymers for surface modifica-
tion:

1. HTPB—hydroxyl-terminated polybutadiene with low molecular weight.
2. MPVT is a copolymer of 1-methyl-5-vinyltetrazole, 2-methyl-5-vinyltetrazole, N-allyl-

5-vinyltetrazole and acrylonitrile.

Petroleum ether (70/100) was used as a solvent for the HTPB polymer, and dimethyl-
formamide and ethyl acetate (butyl acetate) were used for the MPVT polymer.

It has been experimentally established that the highest efficiency of the microencap-
sulation process is achieved in units with periodic interruptions in the liquid medium
flow. Periodic liquid medium flow interruptions lead to multiple discontinuities in the
liquid medium flow (the effect of acoustic cavitation). Accordingly, ultrasonic vibrations
are generated in a wide frequency range, which is very effective in the case of nanoparticles.
Under the effect of the generated liquid medium flows, the aggregates of nanoparticles are
disintegrated, and the mass transfer of reagents is intensified.

Microencapsulation of nanoparticles was performed by the following technique:
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Solvent (300 mL), 20.00 g of powder and 100 mg of polymer were placed in a round-
bottom flask with a capacity of 500 mL. The mixture was processed in an HG-15D high-
speed homogenizer over 30 min at a stirring speed of 5000 rpm. The solvent was removed
on an IKA 10 RV rotary evaporator, and the resulting powder material was dried at a
pressure of 1 Torr over 16 h.

Figure 10 shows a general view of surface-modified aluminum nanopowders. The
figure shows that aluminum nanopowder particles are covered with a uniform polymer
film. Such a film remains stable until the onset of the active phase of aluminum oxidation.
This facilitates the solution of material safety problems in the technological processes of 3D
printing of high-energy systems. In addition, the created film reduces the specific surface
area of nanopowders. This allows for obtaining pastes with a lower viscosity as well as
implementing 3D printing in a more streamlined and efficient manner.
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6. Conclusions

• Additive manufacturing technologies used with high-energy materials have been
considered based on the analysis of literary sources.

• The advantages and disadvantages of these technologies from the point of view of
using high-energy materials for printing have been shown.

• Requirements for the preparation of materials for printing by using each of the tech-
nologies under consideration have been formulated.

• It has been shown that the chemical reactivity of HEMs significantly complicates the
problem of additive manufacturing, development and optimization of 3D printing
methods. In addition to customary complications in the development of these methods
(for example, high suspensions viscosity), there are specific problems associated with
the nature of the reactive substances. First and foremost, it is the possibility of initiating
reactive materials in the 3D printing process.

• This paper proposes a method for the microencapsulation of nanosized aluminum
powders with polymeric materials of different chemical compositions. It has been
shown that polymers form a continuous homogeneous layer (film) on the surface of
nanoparticles. The research has demonstrated an almost complete degree of deagglom-
eration of microencapsulated aluminum powders. Such powders open the potential
for creating new systems for safe 3D printing using high-energy materials.

• The development of new paste formulations for the 3D printing of HEMs is the subject
of further research, which will be published in a separate paper.
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