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Abstract: The results of structure and mechanical property investigations of tungsten heavy alloy
(THA) with small additions of rhenium powder are presented. The material for the study was
prepared using liquid phase sintering (LPS) of mixed and compacted powders in a hydrogen atmo-
sphere. From the specimens, the samples for mechanical testing and structure investigations were
prepared. It follows from the results of the microstructure observations and mechanical studies,
that the addition of rhenium led to tungsten grain size decreasing and influencing the mechanical
properties of W-Ni-Fe-Co base heavy alloy.

Keywords: tungsten heavy alloy; rhenium addition; microstructure; mechanical properties; liquid
phase sintering

1. Introduction

Tungsten heavy alloys (THA) belong to the group named weight heavy alloys (WHA),
which are characterized with very high density and good mechanical properties [1–16]. One
of the special applications is kinetic energy penetrators (KEP) [17–24]. Up to today, these
penetrators were commonly made of depleted uranium (DU), which is technologically
easier and better from a ballistic point of view (depth of penetration). However, because
of its radioactivity, DU penetrators are successively replaced with tungsten heavy alloys;
because of the very high melting point of tungsten (3420 ◦C), the powder metallurgy
(PM) had to be used. Among a few methods of sintering, liquid phase sintering (LPS)
is most often used [1–3,7,15,25–28]. As was already said, DU penetrators exceed the
THA with depth of penetration, which is caused by so-called “self-sharpening” effects of
ascribed adiabatic shear bands (ASB) formation [28–33]. ASB forms in THA penetrators
(Figure 1), but only occasionally because of specific microstructures consisting of hard
30–40 µm size tungsten grains embedded in a relatively soft matrix. Such a specific
microstructure (sometimes called composite) forces the ASB to spread in a zigzag path.
However, we suspect that the spreading of ASB would be much easier in THA with finer
tungsten grains. The size of tungsten grains is controlled with an LPS parameter (time
and temperature) [1,7,15,27,33], but also can decrease with some alloying species (e.g., Re
addition [27,34–44]). Therefore, we conducted a preliminary investigation concerning the
influence of rhenium on the microstructure and mechanical properties of W-Ni-Fe-Co type
heavy alloy. The main goal of the study is to verify if and how much Re addition influences
the tungsten grain size?
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Figure 1. The example of ASB in the tungsten heavy alloys penetrator: (a) metallographic photo, (b) transmission electron 
micrograph (TEM) area × 40.000. 

2. Experimental Procedure 
The tungsten alloy W90.8Ni6.2Fe1.2Co1.8 designated as PR-100 was selected for the 

study. This alloy was “base” alloy; its composition was modified with a small amount of 
rhenium. The composition of three THA with rhenium selected for the study was calcu-
lated this way, to assure the same density of the alloys. Since density of rhenium (20.02 
Mg/m3) is comparable with tungsten (19.30 Mg/m3), the rhenium addition replaced tung-
sten in the powder mixture. The chemical composition of alloys is provided in Table 1. 
High purity tungsten, nickel and iron powders were mixed with pure rhenium. The rhe-
nium powder had to be powdered to a size of about 3–10, mechanically in agate mortar. 
The powder components were mixed, compressed, and then sintered in a hydrogen at-
mosphere, according to the schedule provided in Figure 2. 

Table 1. Chemical composition of the alloys. 

Alloy Designation 
Chemical Composition (wt.%) 

W Ni Fe Co Re 
PR-100 90.80 

6.2 1.2 1.8 

- 
Re-1 90.00 0.80 
Re-2 89.25 1.55 
Re-3 88.40 2.40 

Figure 1. The example of ASB in the tungsten heavy alloys penetrator: (a) metallographic photo, (b) transmission electron
micrograph (TEM) area × 40.000.

2. Experimental Procedure

The tungsten alloy W90.8Ni6.2Fe1.2Co1.8 designated as PR-100 was selected for the
study. This alloy was “base” alloy; its composition was modified with a small amount of
rhenium. The composition of three THA with rhenium selected for the study was calculated
this way, to assure the same density of the alloys. Since density of rhenium (20.02 Mg/m3)
is comparable with tungsten (19.30 Mg/m3), the rhenium addition replaced tungsten in
the powder mixture. The chemical composition of alloys is provided in Table 1. High
purity tungsten, nickel and iron powders were mixed with pure rhenium. The rhenium
powder had to be powdered to a size of about 3–10, mechanically in agate mortar. The
powder components were mixed, compressed, and then sintered in a hydrogen atmosphere,
according to the schedule provided in Figure 2.

Table 1. Chemical composition of the alloys.

Alloy
Designation

Chemical Composition (wt.%)

W Ni Fe Co Re

PR-100 90.80

6.2 1.2 1.8

-
Re-1 90.00 0.80
Re-2 89.25 1.55
Re-3 88.40 2.40

Liquid phase sintering was carried out under a hydrogen atmosphere in a Vacum In-
dustries chamber furnace (Vacuum Industries, Inc., Somerville, MA, USA). Proper sintering
consisted of a 5 min soak-time at the temperature of 1520 ◦C (7 stage on the graph, Figure 2).
Starting from a temperature of 1100 ◦C (point END on the graph), the atmosphere was
changed from hydrogen to nitrogen. After LPS, the specimens in the shape of cylindrical
rods with a diameter of 18 mm and length of 510 mm, were subjected to heat treatment in a
vacuum furnace to remove the hydrogen introduced during the liquid phase of sintering.
The heat treatment annealing was carried out in a vacuum at 1100 ◦C for 180 min. In the
final step, the rods were removed and flash cooled in water.

First, the density of the alloys were measured using the Archimedes method. The
microstructure investigations were carried out using conventional metallography. The
observations of the microstructure were carried out on the Nikon Eclipse MA-200 Micro-
scope (Nikon Corporation; Tokyo, Japan), using objectives with a magnification of 50 to
1000×. The typical microstructure photos were digitalized for quantitative analysis. For
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the qualitative analysis, both longitudinal and transverse cross sections of the specimen
were used. The mechanical testing was used for evaluation of tensile strength—Rm, yield
stress—Rp 0.2, and elongation—A5. For the mechanical testing standard, quintuple samples
with a diameter of 5 mm were used. The tests were carried out on the Instron model 1115
testing machine (Instron; Norwood, MA, USA) with a 100 kN head and a traverse speed of
1 mm/min.
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Figure 2. Scheme of single heat treatment: (stage 7) 20 min liquid phase sintering at temperature
1520 ◦C.

Except for the standard mechanical testing, a hardness measurement of tungsten grains
and the Ni-based matrix were performed. The experiment was carried out on a Future-Tech
FM-810 tester (Future-Tech Corp; Tokyo, Japan) under a load of 25 g (dwell time: 15 s). The
research was carried out on previously performed metallographic specimens.

The analysis of the chemical composition, in particular of the rhenium content in the
tungsten grains, was carried out on a scanning electron microscope (Carl Zeiss Microscopy
GmbH, Jena, Germany) by Zeiss Ultra Plus with an attached EDS system (Quantax 400)
by Bruker.

3. Results
3.1. Results of Density Measurements

The results of density testing are provided in Table 2. It follows from Table 2 that the
density of all alloys is almost the same and the calculated values equal the calculated one;
this means also that the specimens are free of discontinuities and pores.

Table 2. Density of alloys.

Alloy Designation
Density (Mg/m3)

Calculated Measured

PR-100 17.37 17.35
Re-1 17.38 17.37
Re-2 17.39 17.35
Re-3 17.40 17.35

3.2. Results of Mechanical Testing

The results of the mechanical testing are presented in Table 3. It is visible from the
table that the rhenium addition influences tensile strength, yield stress, and elongation,
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but this influence is different and depends on the amount of rhenium. Figure 3 displays
the graphic illustration of the dependence of tensile strength, ultimate tensile stress, and
elongation in the function of rhenium content. Figure 4 displays the stress-strain diagram
for the sample with 0.8 wt.% Re.

It is visible from the graphs that the rhenium content increase causes an almost
simultaneous increase of tensile strength (Figure 3a). In the case of ultimate stress, the
maximum value Rp 0.2 is observed for 1.5% of Re and then it decreases with the Re increase
(Figure 3b). The elongation value is almost constant up to 1.55% Re and then drops
drastically for 2.4% Re (Figure 3c). The behavior of elongation with rhenium content was
expected on the basis of literature information, where it can be found that an excess of
rhenium causes brittleness of tungsten alloys.
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Figure 3. The results of tensile tests as a function of sintering cycles: (a) tensile strength, (b) yield 
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Table 3. The results of mechanical testing.

Alloy Type
Mechanical Properties

Rp0.2 (MPa) Rm (MPa) A5 (%)

Pr-100
717 1002 33.4
720 998 34.5
719 995 32.9

Average values 719 ± 2 998 ± 4 33.6 ± 0.8

Re-1
732 1028 32.5
725 1020 31.2
734 1032 29.3

Average values 730 ± 5 1027 ± 6 31.0 ± 1.6

Re-2
761 1060 33.4
755 1048 32.1
752 1064 30.9

Average values 756 ± 5 1057 ± 8 32.1 ± 1.3

Re-3
740 1098 15.6
750 1079 13.2
739 1090 12.6

Average values 743 ± 6 1089 ± 10 13.8 ± 1.6
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Figure 4. The stress-strain curve for the specimen Re-1 (0.8% Re).

3.3. Results of Microhardness Measurement

The average values of the microhardness measurements of tungsten grains and matrix
are presented in Table 4. Figure 5 shows examples of microhardness measurement in
the area of tungsten grain and matrix. Average values were obtained by performing
20 measurements in tungsten grains and the matrix.

Larger microhardness scatter (standard deviation) was obtained for the measurement in
the matrix. The likely cause of this is with the WHA microstructure; there may be tungsten
grains under the thin warp layer. Thus, when performing the matrix measurement, the
measurement in tungsten grains is partially carried out. In each of the WHA materials,
the microhardness of tungsten grains is higher than the microhardness of the matrix. The
microhardness of the matrix and tungsten grains in the alloy without the addition of rhenium
(PR-100) is, respectively, 345 and 440 HV 0.025. With an addition of 0.80 wt.% Re (Re-1), no
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increase in matrix microhardness and a decrease in tungsten grain microhardness is observed.
For the alloy with an intermediate amount of rhenium (Re-2), the matrix microhardness
increased by approximately 30 HV 0.025 units. The microhardness of the tungsten grains,
taking into account the error value, did not change. For the highest rhenium content in the
alloy (Re-3), an increase in the matrix microhardness by approx. 45 HV 0.025 units is visible.
The microhardness of tungsten grains increases by 30 HV 0.025 units.

Table 4. The results of microhardness measurements.

Alloy Designation
HV 0.025

Matrix Tungsten Grain

PR-100 345 ± 15 440 ± 12
Re-1 340 ± 15 398 ± 18
Re-2 380 ± 21 455 ± 13
Re-3 398 ± 23 470 ± 12Materials 2021, 14, 7365 7 of 12 
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Figure 5. Sample photos of measuring microhardness of tungsten grains (a) and matrix (b).

3.4. Microstructure Observations

In Figure 6, the examples of THA microstructure are depicted. The micrographs are
specially given at the same magnification to allow immediate comparison of the tungsten
grains’ diameter.

The microstructure of all WHA materials is homogeneous, consisting of shaped,
elliptical tungsten grains in the matrix of the binding phase. No pore clusters were found
in the microstructure.

For each sample, at least 100 measurements of tungsten grains were carried out. Then
two of them, the maximum and minimum values, were removed, and the rest were used
for statistical evaluation. The results of the tungsten grain size measurement are provided
in Table 5. The values provided in Table 5 are the mean diameter converted to the area of
the circle.

Table 5. The average tungsten grain size.

Alloy Designation Re Content (wt.%) Tungsten Grain Size (µm)

PR-100 33.1 ± 4.6
Re-1 0.80 32.8 ± 4.6
Re-2 1.55 26.1 ± 3.1
Re-3 2.40 20.6 ± 3.4
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Figure 6. The microstructure of THA: (a,b) without addition of Re (PR-100), (c,d) with 2.4 wt.% Re (Re-3), (a,c) mag. 200×,
and (b,d) mag. 500×.

It follows from Table 5 that the increase of Re content causes the systematic decrease
of tungsten grain size.

The average diameter of the tungsten grains in the WHA material without the addition
of Re is 33 µm. Grain size reduction in the material with the lowest Re content (0.8 wt.%)
is at the level of just a few percent. Tungsten grain size reduction in an alloy with an
intermediate Re content (1.55 wt.%.) is 20%. In the WHA material with the highest Re
addition (2.4 wt.%), the tungsten grain size was reduced by 40%.

3.5. Chemical Microanalysis Tungsten Grains and Matrix

The microanalysis of studied alloys was performed in a scanning electron microscope
equipped with am EDX attachment. The aim of this study was to evaluate the concentration
of rhenium in tungsten grains and the matrix. The results of the chemical composition
study are depicted in Table 6. Examples of EDS analysis sites are shown in Figure 7.

Table 6. Results of microanalysis of tungsten grains and matrix.

Alloy Designation
Re Content Mass Norm. (%) Chemical

Composition (wt.%)Tungsten Grains Matrix

Re-1 0.82 0.73 0.80
Re-2 1.85 0.49 1.55
Re-3 2.46 0.82 2.40
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It is visible from the tables that rhenium occurred either in tungsten grains or the
matrix, but the solubility of rhenium in tungsten grains reaching 2.46 wt.% is much higher
in tungsten grains than in the Ni-based matrix, where it arrives at 0.82 wt.% only.

The solubility of rhenium in tungsten grains is comparable to the percentage of
rhenium in the chemical composition of individual WHA materials.

4. Discussion of Results

For many years, work has been carried out to increase the armor penetration by kinetic
anti-tank missiles. The armor penetration depth of this type of ammunition depends on many
factors, including (at the same projectile velocity) the density and mechanical properties of
the penetrator used. One of the directions of development of this type of ammunition is
research in the field of modification of the chemical composition and heat and mechanical
treatment processes of the penetrator’s construction material, in the direction of obtaining an
appropriate metallographic structure ensuring a self-sharpening effect. One of the possible
methods of increasing the penetration capacity of the armor by penetration may be by adding
rhenium to the WHA chemical composition. Due to its density higher than tungsten, rhenium
does not lower the WHA material density, improves strength properties, and decreases the
size of tungsten grains in the alloy microstructure. The advantages of rhenium presented
above may facilitate the formation and spreading of adiabatic shear bands (ASB) during the
target penetration process and the self-sharpening effect.

The Re-W binary system [45,46] indicates the formation of solid solutions between
tungsten and rhenium from the temperature of 1500 ◦C to the melting point of individual
elements. The maximum solubility of rhenium in tungsten at the temperature of 3000 ◦C
is 37%. The solubility at 1500 ◦C is 28%. The solubility of tungsten in rhenium at the
temperature of 2800 ◦C is 20%, and at the temperature of 1500 ◦C it is 12%.

Rhenium solubility in nickel at 1620 ◦C is 17.4%. It should be emphasized that the
attached system displays equilibrium with the W-Re phase above the temperature of 1500 ◦C.

The presented results of the analysis of the chemical composition of tungsten grains
by the EDS method confirm the formation of solid solutions of tungsten with rhenium.
The solubility of rhenium was confirmed both in the binding phase, which was a solution
on a nickel matrix, and in tungsten grains. The rhenium content in tungsten grains is
comparable to the percentage of rhenium powder added to individual mixtures (Table 2).

In traditional W-Ni-Fe alloys, along with increasing the amount of tungsten, the
theoretical density increases, and the amount of matrix decreases. This translates into
a change in the microstructure, an increase in the share of low-energy intercrystalline
boundaries between the contacting tungsten grains. Increasing the amount of tungsten in
the alloy causes an increase in hardness, but when its’ optimal amount is exceeded, the
strength, plasticity, and impact properties decrease (e.g., in W-Ni-Fe alloys with a content
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of more than 96% by weight of tungsten, the values above the mentioned parameters drop
significantly [15]). The formation of solid solutions of rhenium and tungsten enables the
production of high-density tungsten heavy alloys without losing mechanical properties.
The high density of rhenium and the fact of its steaming in the tungsten grains allows it to
maintain the optimal amount of the matrix, without increasing the direct contact points
between the tungsten grains (called contiguity) and without reducing the strength and
impact toughness value.

5. Conclusions

Based on the research, it can be concluded that at given LPS parameters:

• Rhenium is dissolved in the tungsten grains to a content of at least 2.4% by mass.
• Rhenium promotes the grinding of tungsten grains. With 1.5 wt.%, changes in the

microstructure are visible; there is a marked reduction in the size of the tungsten
grains. With the increase in the rhenium content in the alloy, the size distribution of
the measured grains decreases.

• Addition of Re has a relatively small influence on tungsten grain hardness (~7%), but
causes a visible increase of matrix hardness (~15%).

• The increase of rhenium content increases the porosity. It can be suggested that
increased porosity decreases plasticity by increasing the matrix sensitivity on the
stress concentration factor. This in turn could explain the drop in elongation in cases
with higher (2.4 wt.%) Re content.

• The addition of rhenium increases the strength properties of WHA. The value of tensile
strength and proof strength increases with increasing shares of rhenium in WHA.

• The addition of rhenium reduces the plasticity of the WHA. As the rhenium content in
WHA increases, the elongation decreases. Initially, for the lower amount of rhenium
in WHA (0.8 and 1.55% by weight), the reduction in plasticity is slight—4% for the
alloy without the addition of Re. With a higher rhenium content in WHA (2.4%), the
decrease in plasticity is significant—nearly 60%.

In future research, we would like to study the influence of Re content on the contiguity
parameter. Moreover, we are going to carry out a TEM observation using the thin foil
method. In this study, we will concentrate on the very subtle structure of the matrix and
the region on the tungsten grain-matrix boundaries. Since we are involved into materials
dedicated to military application, we will try to see if and how the rhenium addition
influences W-Ni-Co type WHA.
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