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Abstract: The lattice phase field model is developed to simulate microstructures of nanoscale materi-
als. The grid spacing in simulation is rescaled and restricted to the lattice parameter of real materials.
Two possible approaches are used to solve the phase field equations at the length scale of lattice
parameter. Examples for lattice phase field modeling of complex nanostructures are presented to
demonstrate the potential and capability of this model, including ferroelectric superlattice structure,
ferromagnetic composites, and the grain growth process under stress. Advantages, disadvantages,
and future directions with this phase field model are discussed briefly.
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1. Introduction

Recent advances in phase field modeling have been effectively applied to quantitative
evolutions of material microstructures, e.g., growth of dendrites and eutectics [1–3], solid
state phase transformations [4,5], grain growth [4], nuclear materials [6], and ferromag-
netic [7] and ferroelectric materials [8,9]. It has several advantages in the following aspects:
(i) According to the physical properties studied and the chosen order of parameters, the
phase field model can be used to describe a wide range of various microstructures. (ii) The
phase field model can simultaneously perform the evolution of multi-order parameters
in one simulation by calculating the coupling effects between different order parameters.
(iii) The phase field model is generally considered a mesoscale simulation method; however,
recent simulation works are approaching nanoscopic length scale and macroscopic length
scale. (iv) It should be noted that the initial purpose of introducing phase field models
is to avoid tracking the interfaces, which makes it easier to simulate the evolution of the
microstructures. (v) The progress of recent works also shows that the phase field model
can predict local structure evolution under scanning microscopy tips.

Over the last decades, new novel nanomaterials in various fields attracted much
interest for their excellent physicochemical properties compared to bulk materials [10,11].
Some phase field simulation results for nanomaterials are summarized in previous review
articles [7–9]. It should be noted that, as a phenomenological model for continuous media,
the grid spacing for the phase field model can be very small, even smaller than the lattice
parameter of real materials, e.g., [12,13]. We cannot say that the predicted simulation
results of the microstructures are not correct because the statistical values of physical
properties in simulations are reasonable. The major disadvantage comes from direct
comparison with experimental results. Predicted order parameters on a scale smaller than
the size of the lattice parameter cannot be observed in experiments, which leads to the
continuous interfaces being unreasonable. The mismatch between the lattice parameter
for nanomaterials and the grid spacing in the phase field model makes it more difficult to
compare simulated results to the experimental works. From these points of view, we need
to develop lattice phase field simulation techniques for nanomaterials. The standpoint of
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this article is that it is not appropriate to use the grid spacing under the Angstrom scale; the
grid spacing should be rescaled and restricted to the lattice parameter for the nanomaterials.

To demonstrate how the model is constructed, it starts with the calculation of the
interfacial energy in the phase field model and how to rescale the grid spacing to match the
lattice parameter for real materials, followed by a detailed description of the simulation
methods employed in this article. Two effective approaches are suggested to rescale the grid
spacing in practice. Three specific complex cases of applying this model to nanostructured
materials are presented, including ferroelectric superlattices, ferromagnetic composites,
and the grain growth process under stress. The advantages and disadvantages of the lattice
phase field model are summarized in this paper, and we also point out some potential
applications for this model in the future.

2. Phase Field Methods

The aim of the lattice phase field model is to connect the simulated grid spacing with
the lattice parameter of real materials. First, let us see how to determine the real value of the
grid size in the phase field model. One of the most key advantages of the phase field model
is that this model avoids tracking phase boundaries during microstructure evolution, and
interfaces can generate, disappear, or move according to changes in the total free energy of
the material [4]. A schematic plot of the interface between two order parameters is shown
in Figure 1. The average interfacial energy density, or average gradient energy density, for
this simple model can be written as [4,14]

σ =
κ

2
(∇η)2, (1)

where κ is called the gradient energy coefficient, and η = +1/−1 is the order parameter
describing the phase structure in simulation.
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Figure 1. Schematic phase field profile across the interface.

At equilibrium, the interface width l, illustrated in Figure 1, can be calculated by

l =

√
2κ

σ
, (2)

The interfacial energy density or the interface width can be determined from experi-
mental measurements or first-principle calculations; thus the gradient energy coefficient κ
can be deduced from (1) and (2). It should be pointed out that since the phase field model
is a phenomenological model, the predicted domain size and its formed microstructure can
be sensitive to the experimentally measured values or first-principle calculations.

Generally, the interface width should be larger than the grid spacing dx in simulation,
i.e., l = N•dx, where N > 1. Otherwise, the interface becomes very sharp and leads to the
grid-pinning phenomenon in simulation. Once the gradient energy coefficient and grid
spacing are determined, the physical size of the material can be linked to the simulation
size of the system.

Two approaches are suggested to rescale the grid spacing to the lattice parameter for
real material in this paper. Firstly, a reference length l0 relevant to interfacial energy density
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was introduced, i.e., l0 =
√

2κ0/σ0, and the grid spacing dx = nx•l0 was introduced, where
nx is a scale parameter. One simple way (Method 1) is to directly set the distance between
grid points dx, dy, and dz to the lattice parameter for the simulated materials while l0 stays
the same. In other words, the scale parameter changes. The second approach (Method 2)
recognizes that the grid spacing also can be adjusted by the gradient energy coefficient;
for example, reducing the interface energy coefficient κ0 results in a decrease in l0, and,
therefore, the same interface requires more grids in simulation, with reduced grid spacing
dx. The main disadvantage of the two methods is that the simulation is quite memory-
and CPU time-consuming for a system with many grids, and the computer memory is
always limited.

Combing the interfacial energy and other chemical bulk energies gives phase field
dynamic equations for conserved or non-conserved systems, recognized as Cahn–Hilliard
equations or Ginzburg–Landau (Allen–Cahn) equations [15], respectively:

∂η

∂t
= ∇·

(
M∇ δEtot

δη

)
, (3)

∂η

∂t
= −L

δEtot

δη
, (4)

where L and M are the dynamic coefficients for conserved and non-conserved equations,
respectively. Etot represents the total free energy of the system. The phase field equations
can be solved by several numerical algorithms, e.g., the finite difference method, the
semi-implicit Fourier space method, the finite element method, etc. [15].

For a ferroelectric system, the evolution of the ferroelectric polarization distribution is
governed by the Ginzburg–Landau equation, [8,16].

∂P
∂t

= −L
δE
δP

, (5)

where Pi (i = 1, 2, 3) is the spontaneous polarization, L is the kinetic parameter, and E is the
total free energy of the ferroelectric system, which includes the contributions of Landau
free energy, interfacial energy, electric energy, and elastic energy, i.e.,

E =
∫  1

2 aijPiPj +
1
4 aijkl PiPjPkPl + . . . + 1

2 Gijkl
∂Pi
∂xj

∂Pk
∂xl
− 1

2 εbε0E2
i

−EiPi +
1
2 Cijkl

(
εij −Qijkl PkPl

)(
εkl −QklijPiPj

) dV, (6)

where aij, aijkl are Landau expansion coefficients, Gijkl is the gradient energy coefficient, and
ε0 and εb are the vacuum permittivity and the background relative dielectric permittivity.
Ei is the external electric field. Cijkl is the elastic stiffness tensor. εij is the total strain and
Qijkl is the electrostrictive coefficient. With all the energetic contributions, the evolution
of the ferroelectric domain structure can be obtained by solving Equation (5) using the
Fourier spectral method [17] and Khachaturyan’s elastic theory [18].

For a ferromagnetic system, the ferromagnetic domain structure evolution is governed
by the Landau–Lifshitz–Gilbert equation, [7,19].(

1 + α2
)∂M

∂t
= −γ0M×Heff −

γ0α

Ms
M× (M×Heff), (7)

where Mi (i = 1, 2, 3) is the spontaneous magnetization, α is the damping factor, t is time,
γ0 is called gyromagnetic ratio, Ms is saturation magnetization, and the effective magnetic
field Heff = −(1/µ0)·∂E/∂M, where E is the total free energy of a magnetic system, which
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includes the contributions of anisotropy energy, exchange energy, magnetostatic energy,
and external field energy, i.e.,

E =
∫ [

K1
(
m2

1m2
2 + m2

1m2
3 + m2

2m2
3
)
+ K2m2

1m2
2m2

3
+A(∇m)2 − 1

2µ0MsHd·m− µ0MsHex·m

]
dV, (8)

where K1, K2 are anisotropy constants, mi = Mi/Ms, A is called the exchange coupling
constant, µ0 is the vacuum magnetic permeability, Hd and Hex are the demagnetization
field and external magnetic field, and V is the representation volume. With all the energetic
contributions, the evolution of the ferromagnetic domain structure can be obtained by
solving Equation (7) using the Gauss–Seidel projection method [20].

For a multi-grained system, the evolution of the grain structure can be described by a
set of Ginzburg–Landau equations,

∂ηi
∂t

= −L
δE
δηi

, (9)

where the ηi (i = 1, 2, 3 . . . p) are called the orientation field variables representing the ori-
entation of grains. In this work, a random set of orientations of grains between [−45◦, 45◦]
is connected to the phase field order parameter ηi. L is the kinetic parameter for grain
migration, and E is the total free energy of the multi-grain system, which includes the
contributions of the chemical bulk free energy, interfacial energy, and elastic energy, i.e.,

E =
∫ 

p
∑

i=1

(
α(T−Tc)

2 η2
i +

β
4 η4

i

)
+ γ

p
∑

i=1

p
∑
j 6=i

ηiηj

+
p
∑

i=1

κi
2 (∇ηi(r))

2 + 1
2 Cijkl(εij − ε0

ij)(εkl − ε0
kl)

dV, (10)

where α, β, and γ are Landau bulk free energy coefficients, T and Tc represent the tempera-
ture and phase transition temperature, κi is the gradient energy coefficient, Cijkl is the elastic
constant, and εij and εij

0 represent the microelastic total strain and local eigen-strain in
crystal. In this paper, the periodic boundary conditions are employed in all the simulations.

3. Simulation Results

In this section, the lattice phase field model is employed to study various materials
systems. These simulation works are programmed and performed on the platform of
the GNU Octave software package. The phase field equations are solved using the semi-
implicit Fourier space method, and all the simulated microstructures at late stages of the
evolution process are close to the equilibrium state.

Firstly, consider a ferroelectric superlattice structure of (SrTiO3)4/(BaTiO3)8. This
oxide nano-heterostructure periodically grown at the atomic level has attracted great
attention due to its adjustable dielectric and ferroelectric properties and its potential
applications for electronic memory devices. It should be noted that the ferroelectric
properties of the superlattice structure can be highly influenced by the relaxation condition
between the thin film–substrate interface. For a heterostructure thin film grown on a
certain substrate, lattice parameters of the film and substrate materials can be different.
For a ferroelectric thin film constrained by a substrate, the thin film is considered in a
commensurate condition. If the lattice mismatch between the thin film and substrate is
larger, this results in a relaxation of the film material, which accommodates interfacial strain
in the system and leads to a partially relaxed or fully relaxed film. Figure 2a–c show the
domain structures and polarization vector plots of a single period of (SrTiO3)4/(BaTiO3)8
grown on a SrTiO3 substrate at fully commensurate, partially relaxed, and fully relaxed
interfacial coherency conditions, respectively. The ferroelectric domain structures are
performed after 12,000 time steps of evolution. In the simulation, the simulation cell is
discretized by 64∆x1 × 64∆x2 × 12∆x3 grids, where each grid represents a single lattice, and
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Method 1 is employed in this case. At room temperature, the in-plane lattice parameters
of the superlattice asup are 3.905, 3.946, and 3.969 Å for fully commensurate, partially
relaxed, and fully relaxed relaxation conditions [21].Thus the in-plane grid spacing is set
as ∆x1 = ∆x2 = asup, for the SrTiO3 layer ∆x3 = a(SrTiO3) = 3.905 Å, and for BaTiO3 layer
∆x3 =a(SrTiO3) = 4.008 Å. The material parameters for BaTiO3 and SrTiO3 are described
in Ref. [21].The reduced gradient coefficient g11 = G11/G110 is chosen to be 2.0, g12 = 0,
g44 = g’44 = 1.0, G110 = a0l02, l0 = 1×10−9 m, a0 = 0.371 × 108 C−2m2N, and P0 = 0.26 C/m2

at room temperature. For 180-degree domain walls, the domain wall energy density of
BaTiO3 is evaluated to be about 2g11a0l0P0

2 = 0.01 Nm−1, which is consistent with existing
experimental measurement 10 erg/cm2 reported by Merz [22]. Since the time length of
the relaxation process is significantly larger than that of the dynamical process in phase
field simulation, the initial grid spacing is unchanged in the calculation process. The
predicted domain structures agree remarkably well with the experimental observation by
piezoelectric force microscopy [23].
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Figure 2. The simulated superlattice ferroelectric domain structures (left) and the vector plot of polarization in the cross-
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In the vector plot, each vector represents a single polarization generated withinthe
crystal lattice. The grid spacing between each neighboring vector is exactly the lattice
parameter for real materials. It is worth noting that the length in the x-direction of the
vector plot under the three types of constraints is different due to the different grid spacing
that is employed, and the length in the y-direction of the vector plot is subject to the lattice
parameter of the ferroelectric materials, as shown in Figure 2d. Suffering from the in-plane
strain generated by the interfacial coherency, the polarization rotates from the out-of-plane
direction to the in-plane direction and orthorhombic phases are formed in ferroelectric
domain structures. Thus this model can simulate the structure of polarization distributions
at the atomistic scale and monitor the polarization development in the crystal lattice of
superlattice ferroelectrics. Compared to our previous work of [21], this model predicted
local polarization in the crystalline lattice of the ferroelectric body. These simulated struc-
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tures can better compare with experimental measurements at the atomic level, e.g., domain
structure, domain wall, local polarization distribution, etc.

Next, consider a ferromagnetic composite of FePt/Fe. Figure 3a illustrates ferromag-
netic domain structures after 8000 computational time steps of evolution. The initial domain
structure is magnetized to saturation along the z-direction, and then we place an external
field of 500 kA/m along the −z-direction. The two-layered magnetic nanodot structure
consists of an iron soft magnetic layer and an FePt hard magnetic layer. This structure is
called an exchange coupled composite structure and is widely used in ultra-high-density
magnetic memory devices [19]. During the switching process, the soft magnetic layer can
help reverse the magnetization of the whole structure while the hard layer can keep the
structure stable at a zero field. This composite structure can greatly reduce the switching
field, decrease the energy required in the writing process, and increase the density of
the magnetic memory bit. The simulation is performed on a 64 × 64 × 64 mesh with the
grid size of the FePt hard layer and Fe soft layer set to 0.386 nm [24] and 0.287 nm [25],
respectively. The material parameters for FePt and iron can be found in Ref. [19]. Method 2
is employed to change the interfacial coefficient to adjust the grid size ld in the model to
match the lattice parameters of an L10 phase FePt alloy and bcc iron. In magnetic simu-
lations, the exchange energy, similar to the interfacial energy, plays a role in controlling
the thickness of the magnetic domain wall. A reduced exchange stiffness constant A*
was introduced to connect the grid size ld and the exchange stiffness constant between
two spins, and A* is defined as A* = 2A/(µ0Ms

2ld2), where A is the exchange stiffness
constant. For Fe, A = 2 × 10−11, and for FePt, A = 1 × 10−11; thus the domain wall width,
or the exchange length of the hard layer, is around lexch = 2.43 nm, which is consistent with
experimental results by Huang et al. [26]. Using Method 2, since we set the grid size ld(Fe)
= 0.287 nm and ld(FePt) = 0.386 nm, the reduced exchange stiffness constants are chosen to
be A*(Fe) = 155.78 and A*(FePt) = 96.887 in the simulation. A similar calculation process
also can be found in Ref. [27].
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Another advantage of exchange coupled composites is that the structure is easy to be
designed for better performance. The simulated structure of the composite can be very
flexible. Figure 3b shows another popular structure used for bit-patterned media: the
core–shell structure, with an FePt nanodot core covered by an iron layer as shell, which
was found to be very efficient in reducing the switching field. The nominal thicknesses of
the FePt core and the Fe shell are8 nm and 5 nm, respectively.

As the magnetization is constrained to lie in the thin film plane by magnetocrys-
talline anisotropy energy, vortex ferromagnetic domain configurations are found in the soft
magnetic layer for both double-layered and core–shelled structures. The predicted vortex
structure is experimentally observed in a similar double-layered L10−FePt/permalloy
structure by Zhou et al. [28]. The vector plots on the right of Figure 3 show the mag-
netization distributions in the xy plane and the xz plane during the switching process.
In the following process, the magnetization in the FePt layer starts rotating due to the
exchange coupling effect between the soft layer and hard layer. This effect requires the
magnetizations to tend to align in the same direction, and finally, the magnetization of the
whole structure will be reversed. In this case, the distance between the two neighboring
vectors is different since the gradient coefficient changes. This model can also integrate
with elastic energy considering the magnetostrictions or magnetic shape memory devices.
The gradient energy coefficients can reflect lattice shape and change to accurately predict
the magnetic or mechanical properties of nanomaterials.

For the last case, consider a nano-scaled grain growth process under tensile stress. The
nano-grained metals have attracted great attention due to their excellent properties for the
structure designed [29,30]. Since the grain growth process is widely simulated through the
phase field model [4,31,32], this lattice model can take into account the grain lattice direction
in the elastic contribution of the total free energy. It should be noted that no specific material
is employed. The materials coefficients for phase field modeling are the same as that in
Ref. [31]: α = β = γ = 1.0, L = 1.0 for all the grains, and the cubic phase crystal with elastic
coefficients C11 = 450 × 109 N/m2, C12= 150 × 109 N/m2, and C44 = 300 × 109 N/m2. A
2D model with system size of 64 × 64 mesh grids is employed in this case, and the gradient
coefficient is set to be 1.0. The grid spacing is chosen to be dx = dy = 1.0. Both Method 1 and
Method 2 can be applied in this example. If using Method 1, one can directly set dx equal
to the lattice parameter of the aim material. If Method 2 is used with fixed grid spacing,
the gradient energy coefficient κ can be determined by Equation (2).

Figure 4a–c illustrate the evolution of multi-grain material at a tensile stress of 10 MPa
after 5000 steps. The order parameters η1~η10 represent grains with a given crystallographic
orientation. In this 2D simulation, a vector of constant length denotes the angle between
the grain direction and the x-axis. Under tensile stress along the x-direction, one can see
that grain boundary migration occurs, the evolution of simulated grain structure reveals
that the energetically favorable grain starts growing, and unfavorable orientated grain
disappears. It is also interesting to note that a small-angle-grain-boundary is observed
between the red-colored grain (with a misorientation angle of 0◦), and orange-colored
grain (with a misorientation angle of 2.88◦), as shown in Figure 4c. This grain boundary
almost keeps static, since the elastic energy contributions of neighboring grains are similar
under applied stress. This multi-grain model also can be integrated with the previous
ferroelectric/ferromagnetic models to study the physical properties of nanoscale multi-
grained materials.
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Figure 4. (a–c) The grain growth process at a tensile stress of 10 MPa along the x-direction. The vectors indicate the
orientation of grains, which is assumed to be −45◦~45◦with a random distribution. In this work, the orientation of grains
η1~η10 are 0◦, −7.6◦, 35.9◦, 9.7◦, −17.1◦, 2.88◦, 23.1◦, −23.7◦, −35.8◦, and 43.7◦, respectively.

4. Summary Remarks

In this paper, a lattice phase field model is developed to investigate microstructures
of materials at the nanoscale, where the grid spacing is carefully controlled to match the
lattice parameters of the crystalline material. Two methods are suggested in this work to
adjust the gradient spacing; one is to directly control the grid spacing dx, dy, and dz, and
the other is adjusting the gradient energy coefficients. These simulation examples allow
convenient application of this lattice phase field model to various microstructure evolution
process at the nanoscale, such as ferroelectric, ferromagnetic, and nano-grained materials.

The main advantage of the lattice phase field model is that it avoids unphysical
predicted values of the order parameter in the case where the grid spacing is set smaller
than the atomic spacing. Using this criterion, the grid spacing would correspond to the
lattice parameter of materials in real space. Thus the predicted values or images can
be directly compared to the experimental results at the atomic scale. The most obvious
disadvantage for this model is the continuum phenomenological nature of the phase field
method. The input coefficients are very sensitive to the experimental measurements or
predicted values from the first-principle calculation. It also should be pointed out that 3D
structures require more computing power than traditional phase field simulation. A future
direction is to employ this lattice phase field model to study or design nanostructured
materials or nanoscale devices in various application areas.
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