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Abstract: The new requirements in different sectors, such as aerospace, automotive and construction,
for lightweight materials have led to an increase in demand for composite materials suitable for use in
high rate production processes, such as plastic injection. This makes it necessary to look for matrices
and reinforcements that, in addition to being compatible with each other, are also compatible with
the injection process. It is in this area of research where the work presented here arises. To meet the
two requirements mentioned above, this study contemplates a battery of composite materials ob-
tained by combining PA66 and fiberglass, in different proportions and configuration, both for the
preparation of the matrix and for reinforcement. For the elaboration of the matrix, two options have
been evaluated, PA66 and PA66 reinforced at 35% with short glass fibre. To obtain reinforcement,
six different options have been evaluated; two conventional fiberglass fabrics (each with different
density) and four hybrid fabrics obtained from the previous ones by adding PA66 in different config-
urations (two over-stitched fabrics and two other fabrics). The different composite materials obtained
were validated by means of the corresponding adhesion, peeling and resistance tests.

Keywords: PA66; PA66GF; weaves; reinforcement; overmoulding; composites

1. Introduction
1.1. Framework

Thermoplastics are sets of materials formed by polymers joined by intermolecular
forces that form linear or branched structures. They become flexible or deformable at
high temperatures, and can be melted and reformed several times. The demand for
thermoplastic materials has had a great increase in the last years due to the increase in
their possible applications [1], both in new products and in the replacement of materials,
including metals. Their low cost, their good thermal and mechanical performance and
their low specific weight have contributed greatly to this.

When designing thermoplastic composites, it is necessary consider some key fac-
tors. These materials are made of a thermoplastic matrix or binder and an immiscible
reinforcement closely bounded to the binder. The composite properties depend mainly
on the matrix, the reinforcement, and the adhesion between matrix and reinforcement.
Reinforcement is the most influential parameter in mechanical properties. The matrix is the
most important parameter in determining the other properties such as thermal behaviour,
durability, chemical and fire resistance. Finally, the reinforcement/matrix adhesion is
essential for the final properties [2].

The main reinforcements used are fibres, foams, flat materials and nanofillers.
The utilization of fibres in the fabrication of composites has revealed significant appli-
cations in a variety of fields such as aerospace, automotive and construction [3,4]. Fibres
addition increases the mechanical properties, improves creep behaviour, can cause some
anisotropy according to the fibre orientation that can lead to different shrinkage in different
directions, and increases viscosity, so makes the processing more difficult [5].
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The principal fibre parameters to take into account in composite processing are: fibre
nature, addition level, real fibre sizes, homogeneity of the fibre distribution, and sizing,
which governs the fibre/matrix adhesion [6]. Of the available fibres, natural and synthetic,
the glass fibre (GF) is the most common for polymeric matrix composites, accounting for
95%, because it offers excellent strength durability, thermal stability, impact, chemical and
friction resistance, wear properties and low cost. Less frequently used are carbon, basalt
and aramid [7]. There is a practical limit of about 70 volume percent reinforcement that can
be added to form a composite; at higher percentages, there is too little matrix to support
the fibres effectively.

An additional issue to consider is whether the properties of composites vary depend-
ing on the fibre. When the properties of the composite vary with the length of the fibre
it is called discontinuous or short fibre. These types of material present random or pre-
ferred orientation of fibres. On the other hand, if any further increase in length does not
further increase, the elastic modulus, the composite is considered continuous or long fibre,
and features unidirectional or bidirectional orientation of fibres.

Different fibre forms can be used to strengthen. Spun filaments are assembled,
with technologies similar to textile fabrics, into strands, threads and rovings that can
be woven or knitted. There is a variety available: chopped or milled fibres, strands, yarns
(plied or cabled), texturized and volumized products, mats and prepregs. The reinforcing
structures and fabrics are characterized by the woven pattern or crossing scheme of the
warp (lengthwise) and weft (perpendicular to the warp) yarns, the count or number per
centimetre of warp and weft yarns, and the yarn types [8].

Hybrid composites are structures consisting of more than one type of fibre. As investigated,
there are several ways to optimize composites by varying fibre content, its orientation,
size, or manufacturing processes. Recent research develops hybrid compounds combining
natural and synthetic fibres. In some of them, certain manufacturing defects are evidenced
such as misalignment, waviness, fibre breakage, fibre/matrix debonding, delamination
and voids in the matrix. These defects minimize the expected improvement in mechanical
properties [9].

For fibre-reinforced composites (FRC), the matrix performs different functions. First,
it binds the fibres together and is the medium by which the external stress applied to
the fibres is transmitted and distributed, such that only a small proportion of the applied
load is sustained by the matrix. Ductility and much lower elastic modulus than that of
the matrix are recommended. The second function is to protect individual fibres from
surface damage because of mechanical abrasion or chemical reactions with the environment.
The matrix also serves as a barrier to the crack propagation [10].

Among all FRC; with polymer, metal, ceramic or carbon matrix; the polymers are
the most commonly used today for their light weight, high stiffness and strength, as well
as versatility and ease of manufacture [11,12]. The selection of matrix material is often
influenced by the required temperature performance of composite; polymers are usually
selected for lower temperature, up to 250 ◦C; and ceramics are used in high-temperature
applications. Polyamide 66 (PA66) has attracted attention as a resin matrix because of its
excellent melt flowability, good processability and mechanical properties [13].

Strengthening matrix reinforcement interphases has been the focus of a great amount
of research, particularly in thermoplastic composite materials. Compatibility can be in-
creased by fibre surface treatment, changes in the polymer matrix, or both. Among the
compatibilising methodologies, the most widely used is fibre treatment with coupling
agents and matrix modification techniques, such as alkali treatment, acetylation and graft
copolymerization [14].

FRC processing involves manufacturing of fibre preforms and then reinforcing these
fibres with the matrix material using various techniques. The over-moulding process
offers manufacturing in short cycle times and to combine the characteristics of two or
more polymeric materials in a single mould without mechanical interlocking or adhesive
bonding. Over-moulding process is one of the growing advanced technologies for fabricat-
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ing lightweight composite structures used in the aerospace, automotive and construction
industries [15,16].

1.2. Background

Under the technical framework exposed on FRC processing, several research has
established the basis of the present investigation. Asadi et al. [17] studied reinforced textile
membranes of PVC (polyvinylchloride)-coated PET (polyethylene terephthalate) fabric to
replace the traditional reinforcement of building structures under various criteria, such
as mechanical properties, insulation, light transmission, fire retardation, folding capacity
and cost.

Mikolajczyk et al. [18], investigated building composite beams made from Mapei
Mapefill concrete reinforced with knitted mesh, fabricated using the technology of warp
knitted fabrics. Three variants of knitted technical meshes made of polyamide PA6, PP
(polypropylene) and GF threads were used as reinforcement. Regarding the mechanical
properties, in case of the composite with GF, strength properties were twice better compared
to the original concrete beam.

Textiles in prefabrication as well as in the retrofitting of existing concrete or masonry
structures were studied by Koutas et al. [19]. Fibre rovings arranged in two or more
directions were used. Textiles with polymers improve the stability of the textile material
and the mechanical interlock between the textile and the matrix. As a result, the stiffness,
the ultimate flexural or shear capacity, and the performance under serviceability loads are
increased. In addition, cracking is better controlled.

Franke et al. [20], carried out composite construction parts, specifically sandwich
materials, with good load-bearing characteristics. Composites of pure PA66 and PTFE
(polytetrafluoroethylene), PTFE-PA66 compounds with a PA66 injection matrix and GF
reinforced core were developed, resulting in compounds with high mechanical strength.

Fiorotto’s team [21], from the University of Padua, has investigated the manufacturing
of a thermoplastic with a reinforcement sheet of a thermoformed fibre, which is inserted in
the mould and, right after the thermoplastic is injected. It produces an economic composite
with good technical qualities. Adhesion parameters between the fibre and the polymer
have been investigated experimentally.

Khondker’s team has experimented with the injection moulding with textile inserts
of knitted polyethylene (PE) fabric as reinforcement and only PE as matrix [22]. Since
they are similar elements, there would be a high bond between matrix and reinforcements.
In addition, an impregnation of a resin in the textile was applied. As a result, they found
that the tensile properties were dependent on the impregnated resin.

Yang et al. investigated the impact of PP composites, reinforced with fibres of the same
PP, and of PP reinforced with knitted GF [23]. Panels of these composites are made using
the injection-compression moulding technology, studying the behaviour as a function of
the composites’ temperatures. It was demonstrated that the impact strength of PP/PP and
GF/PP was very similar.

In the University of Zaragoza [24], the injection on fabric has been investigated from
the aesthetic point of view, studying the injection pressure parameters inside the mould
in order to achieve a good final finish. The methodology to determine the relationship
be-tween pressure and flow has been studied, with the aim to optimize this process. For
this purpose, they have designed a spiral mould with pressure sensors and three types of
textiles with different qualities and different foam thicknesses.

The German company “BASF” has developed a material called “Ultramid Structure®” [25].
It is a long GF-reinforced polyamide (PA) in the form of sheets. This product represents
a significant advance in performance. The exceptional feature of the composites manu-
factured with long glass fibre-reinforced plastic components is the 3D GF net that they
form during the conventional injection moulding, which gives the product exceptional
physical properties, both at high and low temperatures. The fibre net forms the skeleton
of the component, which lasts even after calcination. This structure is the reason why
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warping, plastic deformation behaviour and energy absorption in this type of material
have a performance close to metals.

The present research focuses on developing a lightweight thermoplastic reinforced
composite with high mechanical properties, meeting the requirements of the aerospace,
automotive and construction sector. As previously shown, there are several investiga-
tions in the field of addition of different elements such as natural and non-natural fibre-
reinforcements with varied matrixes. However, the significance of this paper is based
on the use of over-moulding technology for composites manufacturing. The composites
are made of PA matrixes reinforced with PA and fibre glass fabrics, which combine the
high specific strength and stiffness of the continuous fibres with the design freedom and
flexibility of short fibre. One of the great challenges is to acquire a good union between
the matrix and the fabrics. To solve this problem, two different manufacturing techniques
are presented: Over-stitching of PA thread on fibre glass fabric; and manufacturing by
weaving of hybrid fabrics, with GF, on a prototype loom. Adhesion, peeling and resistance
test are carried out to validate the properties of the new composites.

2. Materials and Methods
2.1. Introduction

This section is organized based on the phases shown in Figure 1 that also follow
the line of investigation for the achievement of the reinforced composite material. First,
the materials for the matrix and the reinforcing ones are selected, the latter being manufac-
tured in the form of fabric. In order to corroborate the material compatibility between the
matrix and the reinforcing materials, their melting points are validated by a differential
scanning calorimetry test. Moreover, to verify if the manufacturing process damaged
the fabrics, a tensile test of the manufactured fabrics is performed. After that, the com-
posite samples are manufactured, by injection over-moulding, combining the matrix and
reinforcement materials. Finally, these samples are tested to validate their properties.
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2.2. Materials

Two types of materials should be selected as discussed above, the matrix and the
reinforcement materials. These materials must be chemically compatible, so that the matrix
helps to stiffen the fabric.

2.2.1. Matrix Materials

PP and PA are the most widely introduced thermoplastics in the automotive sector [4,26].
The first ones are used for general parts while the second ones are used for parts with more
restrictive mechanical requirements. Since the goal of this work is to develop a thermoplas-
tic composite material with high mechanical properties, PA is finally the selected material.
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After an exhaustive benchmarking analysis of commercial PA, and weighting their
mechanical, physical and thermal properties, two PA66 have been chosen as the base matrix
material, whose properties are shown in Table 1:

• Zytel® 70G35HSL NC010 reinforced with 35% short GF (PAGF).
• Zytel® 101L NC010 non reinforced (PA).

Table 1. Mechanical and physical properties of selected materials.

Properties PA PAGF

Density (g/cm3) 1.14 1.41
Young’s modulus (GPa) 1.4 8.30
Bending modulus (MPa) 1210 -

Impact resistance—Charpy-V-notch (J/m) 110 15
Poisson’s ratio 0.41 -

2.2.2. Reinforcement Materials

From the side of the fabrics, and due to the lack of suppliers in the market for hybrid
fiberglass fabric with PA, this material was obtained by manufacturing processes. For the
manufacture of the hybrid fabrics, two different techniques were studied:

1. Over-stitching manufacturing of PA thread on fiberglass fabric.
2. Manufacture by weaving of hybrid fabrics, with fiberglass on a prototype loom.

Over-Stitching Manufacturing

To produce fabric by over-stitching, it is necessary to select the weight and orientation
of the fabric fibres since these features affect the greater or lesser opening of the mesh.

The more open the mesh, the better the embedding of the thermoplastic in the fabric
and consequently the better the adhesion at the matrix-fibre interface.

Regarding the orientation of the fibres in the fabric, a multidirectional fabric (0◦/90◦)
was chosen to minimize the anisotropy of the properties of the composites.

Keeping these orientations as a basis, fabrics with lower weights were selected for
processing since they have a bigger pitch between threads. Two fiberglass fabrics with
weights of 86 and 125 g/m2 with different mesh opening were selected to manufacture by
over-stitching (Table 2):

• Fiberglass of 86 g/m2 (GF86).
• Fiberglass of 125 g/m2 (GF125).

Table 2. Characteristics of the fiberglass fabrics.

Characteristics
GF86 GF125

Weft Warp Weft Warp

Fibre percentage 49 51 53 47
Fibre type EC9 34 EC9 34 EC9 34X2 EC9 34X2

Number of threads per cm 12.0 12.5 9.6 9.0

To facilitate the ulterior injection over-moulding process, a PA fabric that acts as a
coupling agent between the fiberglass fabric and the matrix, was added. To stitch both
fabrics a PA thread was used (Figure 2). Both PA fabric and PA thread are made of PA66,
the same material as the base, which ensures the chemical compatibility and helps to stiffen
the fiberglass fabric in the process of over-stitching.
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Characteristics of the PA fabric and PA thread are shown in Table 3.

Table 3. Characteristics of the PA fabric (Monodur® from Cadisch Precision Meshes) and PA thread
(Passat20 from Hicoman).

Characteristics PA Fabric PA Thread

Weight (g/m2) 110
Filament diameter (µm) 210

Mesh opening (µm) 500
Diameter (mm) 0.50

Linear density (TEX) 179.92
Resistance (N) 108.50

Deformation (%) 29

As a result of the over-stitching process two hybrid fabrics are obtained:

• Fiberglass + PA thread by over-stitching of 86 g/m2 (PAGF86).
• Fiberglass + PA thread by over-stitching of 125 g/m2 (PAGF125).

Weaving Manufacturing

For the fabrics manufactured with fiberglass on a prototype loom (Figure 3a), a single-end
roving for long fibre thermoplastics PA composites SE 4535 from 3B Fibreglass was
selected (Table 4). The proprietary sizing chemistry is specifically engineered to pro-
vide excellent wet out, optimum resin-fibre load transfer and adhesion for exceptional
mechanical performances.
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Table 4. Fibre characteristic from 3B Fibreglass.

Characteristics Fibre

Density (g/cm3) 2.62
Linear density (TEX) 1200

Filament diameter (µm) 17

Figure 3b shows the fiberglass fabric manufactured. Another hybrid fabric composed
by fiberglass roving with PA thread was also created (Figure 3c). The procedure for making
this hybrid fabric is the same as for the fabric made with only fiberglass, with the difference
that, in this case, for each horizontal fiberglass thread two PA66 threads are interspersed.

These two fiberglass fabrics were functionalized with Aminopropyltriethoxysilane
(APS) to provide them with new properties [27,28], obtaining the following fabrics to
the tests:

• Functionalized fiberglass (GFF).
• Functionalized fiberglass + PA thread (GFFPA).

2.2.3. Validation of Materials

Before manufacturing the composites, differential scanning calorimetry (DSC) tests
were performed in order to validate the melting point of the thermoplastic materials
referred in the manufacturers’ datasheet (fabric, textile thread and granules for the injection)
and to establish a correlation between the melting points of the PA threads and fabrics
and the PA pellets to be injected. The tests were carried out on a previously calibrated
“DSC Perkinelmer precisely” equipment, according to specifications of the standard ISO
11357-1:2017 [29]. Three samples of each material (PA66 fabric, PA66 thread, PA matrix and
PAGF matrix) were tested resulting in 12 tests.

Once the fabrics were manufactured, to assess whether the manufacturing pro-
cess damaged the fabrics, a tensile test on these fabrics was performed on an Instron
4505 universal testing machine at room temperature (23 ◦C) with a 1KN load cell and a
constant speed of 50 mm/min until failure, according to specifications of the standard
ISO 527-4:1997 [30]. These processing conditions have a direct influence on the morpholog-
ical structure of the parts [31,32], and this structure, in turn, influences the properties of
the material [33]. This test was not performed with functionalized/hybrid fabrics because
no comparison values are available. With this test it was sought that the maximum force
supported by the hybrid fabric was at least equal to or greater than the force supported by
the GF/PA fabric. Then, three samples of each material (PA66 fabric, PA66 thread, GF86,
GF125, PAGF86 and PAGF125) were tested resulting in 18 tests.

2.3. Methods
2.3.1. Manufacturing of Composite Samples by Over-Moulding Process

In the manufacturing of composite samples, the injection over-moulding process has
been chosen. In this process, a piece of fabric is placed between the plates of the mould
and a matrix material is injected to reinforce the material (Figure 4).

For the injection, an Engel 350 ton injection mould machine with a 60 mm diameter
screw and a mould with flat plates was used. Both the equipment and the mould are
not adapted for injection by the injection-compression process. The mould is also not
prepared for the manufacturing of samples by a multipoint or sequential injection process,
consequently it was not possible to apply these techniques in order to reduce the injection
pressure during the process. The fabric was placed directly in the cavity of the movable
plate. It was fixed by a double-faced tape at each of the corners and in the middle of the
fabric longitudinal distance in order to ensure the total support of the fabric.
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Fourteen samples were injected considering the different combinations of matrix and
reinforcement materials, corresponding to the design of experiments that is shown in
Table 5.

Table 5. Design of experiments.

Matrix Fabric
(Reinforcement Material) Sample Acronym Number

PA None PA 1
PAGF None PAGF 2

PA GF86 (conventional fabric) PA-86 3
GF125 (conventional fabric) PA-125 4

PAGF GF125 (conventional fabric) PAGF-86 5
GF86 (conventional fabric) PAGF-125 6

PA PAGF86 (over-stitched fabric) PA-PA86 7
PAGF125 (over-stitched fabric) PA-PA125 8

GFF (weaved fabric) PA-F 9
GFFPA (weaved fabric) PA-FPA 10

PAGF PAGF86 (over-stitched fabric) PAGF-PA86 11
PAGF125 (over-stitched fabric) PAGF-PA125 12

GFF (weaved fabric) PAGF-F 13
GFFPA (weaved fabric) PAGF-FPA 14

Figure 5 shows an explanatory diagram of the samples’ composition.
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The processing conditions were selected following the manufacturer’s recommenda-
tions, which essentially depend on the matrix material. Table 6 shows these conditions.
Due to the typical hygroscopicity of PA, it was necessary to perform a drying process prior
to the injection process, which was carried out in a Koch Technik KKTT55 dehumidifier at
80 ◦C for 4 h, as recommended by the manufacturer.

Table 6. Injection conditions.

Condition PA PAGF

Melt temperature (◦C) 290 310
Mould temperature (◦C) 50 90

Injection speed (m/s) 43 44
Clamping force (ton) 100 100

Sample preparation plays a major role in recorded test results. Depending on the
geometry and the type of test, different shapes are proposed for cutting the 3 types of
samples [34]. For the tensile and peeling tests, rectangular samples of 25 × 100 mm2 were
prepared. In the case of the three-point loading test, 100 mm diameter circular samples
were cut, and for the impact test the samples had a 60 mm square shape.

2.3.2. Tests and Validations

The morphological structure influences the properties of the material, so before re-
alizing the tests in the different samples to evaluate the composites, the shell-core-shell
type morphology of them due to the injection process was evaluated. In Figure 6 it can be
observed the asymmetry in the morphology resulting from the difference in the cooling
velocity on the side of the fabric with respect to the side without fabric. On the injection
side (side without fabric), due to the better thermal conductivity of the mould insert mate-
rial, the cooling velocity is higher, which causes a well-defined layer. On the other hand,
on the ejector side (side with fabric) due to the low thermal conductivity of the fabric,
the cooling velocity is much lower than the injection side one, leading to a decrease of the
shell advantaging the nucleus formation [35].
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In order to evaluate the function of the diverse fabrics used and final reinforced
composite, numerous tests were performed. Table 7 summarizes all the tests performed to
verify each property.

Table 7. Test performed to different composites.

Function to Verify Test Quantity

Adhesion Peeling test 36
Impact strength Impact test 42

Stiffness Three-point loading test 30
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Once the composites have been manufactured by injection, three tests are conducted to
assess their behaviour. To evaluate the adhesion of the fabrics to the matrix, the peeling test
was performed according to ISO 11339 [36]. Tests were carried out on the previous universal
testing machine at room temperature (23 ◦C) with a 1 kN load cell and a constant speed
of 50 mm/min. Three samples of each composite (PA-86, PA-125, PAGF-86, PAGF-125,
PA-PA86, PA-PA125, PA-F, PA-FPA, PAGF-PA86, PAGF-PA125, PAGF-F and PAGF-FPA)
were tested resulting in 36 tests. For the manufacturing of the samples for the peeling test,
a part of the plate was covered with aluminium adhesive tape, to avoid adhesion and to be
able to use that area for pulling, as shown in Figure 7.
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Figure 7. Prototype part for the manufacturing of the peeling test sample.

To determine the influence of the hybrid fabric on the impact properties with respect
to the initial matrix, impact tests were carried out in a Fractovis Plus machine using a
drop weight instrument at room temperature (23 ◦C) with a weight of 5.045 kg, a dart
with a 20 mm diameter ball tip, dropping from a 1 m height [37,38]. Samples with fabrics
(without reinforcement) and samples with the hybrid fabric were tested. The composites
were tested with the face of the fabric under impact and with the face of the matrix under
impact as shown in Figure 8, due to the different morphological structures as commented
before. Three samples of each composite at both sides (PA-PA86, PA-PA125, PA-F, PA-FPA,
PAGF-PA86 and PAGF-PA125) and three samples of the two-matrix material (PA and PAGF)
were tested resulting in 42 tests. PAGF-F and PAGF-FPA were not tested because of poor
adhesion between matrix and fabric.
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The three-point flexural test used was the one proposed by Nunes et al. [39]
and Okereke [40], where the sample is supported in three uniformly distributed points
inserted in a circumference with a diameter of 9.35 cm. The load is applied in the centre
with constant speed, in the same way as in the dart drop impact test. The composites were
tested positioned on both sides and following the work of Wakeman’s team [41]. Tests
were carried out on the same universal testing machine at room temperature (23 ◦C) with a
1 KN load cell and a constant speed of 5 mm/min up to 2 mm maximum deformation.
Three samples of each composite at both sides (PA-PA86, PA-PA125, PA-F, PA-FPA, PAGF-
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PA86, PAGF-PA125, PAGF-F and PAGF-FPA) and three samples of the two-matrix material
(PA and PAGF) were tested for each load orientation, resulting in 30 tests.

3. Results and Discussion
3.1. Differential Scanning Calorimetry (DSC) Tests

In the different DSC tests, it was checked that the melting temperature, experimen-
tally measured in the samples, corresponds to that shown by the manufacturers in their
datasheets, with variations under 0.5%. It was also verified that all the materials have
similar melting temperatures (Table 8), the largest difference being 5.5 ◦C between the PA66
textile thread and the PA matrix material, which shows the stability of these materials and
the stability of the transitions.

Table 8. DSC test results.

Material

Melting Temperature (Peak) (◦C)

Experimental
Datasheet¯

X s

PA—Matrix 263.87 1.38 262
PAGF—Matrix 263.21 1.51 262

PA66 thread 257.33 0.95 -
PA66 fabric 262.59 0.40 -

3.2. Tensile Test

As an example of the graphs obtained from the tensile tests, Figure 9 shows the graph
Load vs. Extension of the composite number 11, according to the design of experiments
(Table 5). This graph shows the composite PAGF-PA86 compared with its component
materials (GF86, PA fabric and PA thread).
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The graph shows that the maximum force supported by the composite PAGF-PA86
is greater than its components. In Table 9 the values of maximum force obtained for all
the material are resumed. It can be observed that the tensile strength of GF125 fabric is
higher compared to the tensile strength of the GF86 fabric. In composites this difference
does not exist, assuming similar values. This fact is justified by the use of the PA fabric
with short fibre in the manufacture of the composite, since the value of the maximum
force recorded for the composite practically corresponds to the value obtained in the
PA66 fabric test. It means that the manufacturing process by industrial over-stitching does
not influence on the properties of the composites, thus guaranteeing the viability of the
manufacturing process.
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Table 9. Tensile test results.

Composite Material
Maximum Force (kN)

¯
X s

GF86 0.19 0.03
GF125 0.42 0.03

PA66 fabric 0.59 0.04
PA66 thread 0.08 0.01

11 PAGF86 0.58 0.03
12 PAGF125 0.59 0.02

Another cause of this behaviour could be the processing conditions that influence
the morphological structure of the parts [42,43], and the type of morphological structure
influences the material properties [44]. The injection moulding process, as discussed above,
induces a shell-core-shell type morphology. The unbalance in the cooling rate causes an
asymmetry in the morphological structure that can increase the temperature gradient along
the composite thickness [45].

3.3. Peeling Test

Table 10 shows the mean peel strength and deviation of the composites tested, ac-
cording to the design of experiments (Table 5). During the tests it was revealed that in
the samples reinforced with conventional fiberglass fabric, the fabric is evenly pulled off.
However, in the samples based on hybrid fabrics, elaborated both through sewing and
weaved by a weaving machine, there are areas in which the adhesion is higher than the
reinforcement, thus when performing the test, the fabric is stretched until it breaks.

Table 10. Peeling test results.

Composite Sample
Mean Peel Strength (N/cm)
¯
X s

3 PA-86 45.33 18.9
4 PA-125 34.66 3055
7 PA-PA86 44 3.46
8 PA-PA125 44.66 9.45
9 PA-F 29.74 6.9
10 PA-FPA 32.89 7.4
5 PAGF-86 17.33 7.02
6 PAGF-125 25.33 5.33
11 PAGF-PA86 26.66 3.05
12 PAGF-PA125 22 3.46
13 PAGF-F No adhesion
14 PAGF-FPA No adhesion

From these results it can be observed that the adhesion load is higher for the samples
with matrix without fiberglass (PA matrix) than that of the filled ones (PAGF matrix).
The best results in peeling test correspond to composites 3, 7 and 8, all of them with PA
matrix. This could be due to any kind of chemical incompatibility between the matrix filled
with GF and the reinforcement, apart from the denser resin, which significantly worsens
the impregnation of the reinforcement.

However, analysing in more detail the graphs of Figure 10 that compare the results of
the samples with hybrid fabrics with those with conventional fiberglass fabrics, it can be ob-
served that although the mean peel strengths are similar, the adhesiveness remains longer.
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It can be observed in Figure 11 the total impregnation of the PA thread in the matrix,
which confirms that PA thread improves the adhesion between the reinforcement and the
matrix, in case of composites 7 (PA-PA86) and composite 8 (PA-PA125).
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The samples with reinforced matrix material and functionalized fiberglass reinforce-
ment fabrics (PAGF-F and PAGF-FPA) finally did not undergo peeling test because the
fabric could detach simply pulling by hand. On the other hand, the samples with woven
fabric to reinforce the PA66 matrix are the ones that obtained the worst results. Based on
these results and given the difficulty and slowness of making these fabrics, it is considered
that the properties of samples with woven fabrics will no longer be evaluated.
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It would be interesting, in future work, to test other types of fabrics to improve the
adhesion. Working for example with binders could ameliorate adhesion, controlling the
peel strength by different kinds of binder layer formations and also by the different binder-
fibre interaction [46]. Reactive binders could offer the potential to provide much larger
interplay adhesions, as demonstrated in the study of glass/vinyl ester composites [47].

3.4. Impact Test

As described in test and validations, the impact test was performed on both sides of
the composites and on the matrix samples without fabric reinforcement. The results of these
tests are shown in Figure 12. In each graph, the behaviour on each side of the composite
sample is compared to the sample of the matrix material (red line). It was observed that
in the case of the PA matrix (Figure 12a,b), the behaviour of the failure load composite is
lower than the failure load matrix. However, the energy absorption is higher. Furthermore,
since the impact on the side of the fabric reinforcement (yellow line) is produced on a
more rigid area, the rigidity is higher than when the impact occurs on the matrix side (blue
line). In the latter case, a ductile behaviour is more present at the beginning, with a longer
duration of the impact, and increases the capacity of energy absorption. This behaviour is
interesting but does not improve the failure load matrix material. However, in the case of
PAGF matrix (Figure 12c,d), the working of the composite is similar to that of the matrix,
mainly when the impact is on the side of the reinforcement.
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According to Silva et al. [48], the mechanism of crack initiation and propagation
was found to have a strong impact on the failure mode induced in the structure. They
distinguished four failure modes: Mode I; progressive crashing with microfragmentation
and delamination with a good energy absorption. Mode II, brittle fracture with large
fragmentation. This fracture mode corresponds to unstable and catastrophic failure of the
sample. Mode III, brittle fracture with progressive crashing and medium fragmentation,
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and Mode IV, progressive folding with mushrooming effect. The case of matrix PA and
PAGF are Mode II of failure. It was observed on the graphs that PA matrix material registers
only radial fracture while PAGF matrix material reveals both radial and circumferential
fracture (Figure 13). This is due to the greater rigidity and anisotropy of PAGF compared
to PA.
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If both sides of the impact on PA-PA86 samples are analysed, it is observed that on the
opposite side of the impact the fractures are developed in a radial direction, which corre-
sponds to a radial fracture evidenced by the curve registered (yellow line in Figure 12a).
A well-defined whitish circle is observed in Figure 14b as a result of the deformation
suffered by the sample at the moment of the impact of the dart. Furthermore, a higher
resistance of the composites is observed when they are impacted on the side of the rein-
forcement (Figure 14a,b). When the samples impacted on the injection side are analysed,
it is detected that beyond appearance of radial fractures, circumferential fractures occur
and that means failure of Mode II. In Figure 15c,d, the formation of the radial fracture and
the subsequent circumferential delamination are distinguished.
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sample with injection side impact.
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impact face on sample with ejector side impact. (c) Impact face on sample with injection side impact. (d) Opposite impact
face on sample with injection side impact.

Similarly, analysing both sides of the impact on PAGF-PA86 samples, it is noticed
the fracture begins with radial cracks which then evolve to circumferential ones with a
manifest pattern of rigid material (Figure 15). This is due to the high rigidity material of its
base, since it is reinforced with short fibre. It could be considered in the failure of Mode III.

One of the reasons for the behaviour of the composites in the impact test could be the
effect of delamination. However, because delamination reduces the bending stiffness and
allows further deformation to occur, it also has a beneficial effect by limiting stresses that
lead to fibre failure. If it were completely removed, there would be a risk of premature
fibre failure, which could lead to a more brittle overall response [49,50].

3.5. Three-Point Loading Test

Regarding the monotonic three-point flexural test, the samples are not tested until
breakage, thus only their behaviour in elastic mode was registered. The obtained values of
the elastic modulus of PA and PAGF matrix are significantly higher than the ones obtained
by Nagakura et al. [51], and these results may be due to the fact that PA used in this work
is PA66, not PA6. In the Figure 16, it is verified that none of the composites show a positive
gain, that is to say, the properties of the composites registered lower flexural stiffness than
their respective matrices. This loss of flexural stiffness was more notable for the composites
with PAGF matrix. It can be considered that the lower adhesion of the fabric to the PAGF
matrix with respect to the PA contributes to the decrease of the flexural stiffness.
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4. Conclusions and Perspectives

The aim of this research work was to carry out an industrialization approach of
a reinforced textile material based on a PA matrix with and without percentage of GF.
The results obtained have shown that it is possible to make composites with PA matrix that
have improved energy absorption, with better performance than with PA66GF matrix.

To summarize the results obtained, the properties of each of the composites analysed
in the different tests performed are listed in Table 11.

Table 11. Overview of the composites analysed.

Fabric
Manufacturing

Composite
Manufacturing Deformation Adhesive Energy

Absorption Stiffness 1

PA-PA86 Good Good Good Good Poor 8%SLM
PA-PA125 Good Good Good Good Poor 9%SLM

PA-F Fair Good Good Poor - -
PA-FPA Fair Good Good Poor - -

PAGF-PA86 Good Good Good Good Fair 10%SLM
PAGF-PA125 Good Good Good Good Fair 20%SLM

PAGF-F Fair Good Good Poor - -
PAGF-FPA Fair Good Good Poor - -

1 Legend: %SLM: Percentage Slightly Lower than Matrix.

After analysing the results, the following conclusions were obtained:

• Regarding the manufacture of the fabric, the one that seems the most industrially
viable, taking into account the materials currently available at the market, is the
over-stitching technology.

• The fabric placement system is considered critical regarding the manufacturing phase
of the composites.

• The proposed fixing system has allowed the fabric to rest on one of the cavities of
the mould, in order to avoid problems and favour the consolidation of the part, even
being a totally manual system.

• It has been proven that this over-moulding technology induces a peculiar and asym-
metric morphological structure in the materials. The analysis of the morphological
structure of the composites, by means of reflection microscopy, showed that the low
thermal conductivity of the hybrid fabrics induced an asymmetry in the morphological
structure of the composites, caused by the lower cooling velocity on the side of the
fabric, with respect to the injection side.

• Peeling tests prove that the use of hybrid textiles on the PA matrix allows to improve
the adhesion on the matrix-fabric interface. The worst adhesion appears between the
hybrid fabrics and PAGF matrix. This is mainly due to the higher viscosity of this
matrix and the fact that the GF filler already has its own coupling agents that could be
incompatible with the fabric.

• With respect to the impact tests and from the point of view of energy absorption,
it can be ensured that the PA matrix composites have a much better behaviour than
the GF reinforced PA matrix composites.

• The stiffness of the composites reinforced with PA matrix fabrics can have improve-
ments of up to 5%, however, this is not considered an industrial scale improvement.
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