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Abstract: We prepare and test four types of glass antennas for X-band applications and energy
harvesting. These antennas are made of three different glass metallization schemes, including
conductive copper foil (CCF), conductive silver paste (CSP) and indium tin oxide (ITO) thin film.
Compared with conventional microstrip patch antennas, the dielectric substrate materials of these
designs are replaced with silicon-boron glass (εr = 6, tangent δ = 0.002). The antenna with CCF as a
radiator and ground plane (case one) is compared with the antenna with ITO replacing the radiator
(case two) and ground plane (case three), respectively, and the glass antenna made of CSP (case four)
is also presented. In this paper, these four types of glass antennas are measured and analyzed, and
a comparison of the fabrication process and performance of these antennas is demonstrated. This
study could contribute to the development of human-machine interactivity (HMI) systems with glass
dielectric substrates.

Keywords: glass antenna; transparent antenna; conductive copper foil (CCF); conductive silver paste
(CSP); indium tin oxide (ITO)

1. Introduction

The application scenario of antennas becomes more and more diverse in form with the
continuous development of mobile communication technology, which brings new require-
ments and challenges to antenna designs in terms of appearance and performance. In terms
of performance, antennas are required to have large bandwidth, high gain, easy integration
and other characteristics. In 2020, a wideband circular cavity-backed slot antenna with
conical radiation patterns was shown to have a −10 dB impedance bandwidth of 16.35%,
extending from 9.26 to 11.02 GHz with flat gain and conical radiation characteristics [1]. In
addition, there are some other meaningful studies about antenna analysis and designs [2–4].
For instance, a substrate integrated waveguide planar cavity slotted antenna array was real-
ized, and it can be excited in TE33 higher mode, which operates at X-band (10.4–10.8 GHz).
This antenna array has the features of low cost and easy integration [3]. In addition to the
performance of today’s antennas with a variety of features, there are also new requirements
in terms of appearance. In the fields of aerospace, satellite communication, vehicle radar,
etc., glass dielectric substrate-based antennas are becoming increasingly important, as it
can be integrated in buildings, cars and other scenes where glass exists. Moreover, glass
dielectric substrates were frequently employed as parts of the structure in human–machine
interaction (HMI) systems, and the most common one is touch screen applications [5,6].
There is no doubt that the realization of communication devices (such as antennas) on glass
substrates would endow these HMI systems with more functions and potentials.

One of the early attempts at using glass dielectric substrate for antenna designs was
reported by scientists at the National Aeronautics and Space Administration (NASA) in
1997, and they initially verified the realizability of glass antennas in an experiment [7].
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With the continuous advancement of research on glass antennas, the methods of imple-
menting metallization on glass substrates are becoming more diverse, such as nano carbon,
transparent conductive oxides, metallic nanostructures, etc. [8]. In previous studies on
nano carbon based antennas, Vacirca et al. implemented a 2.4 GHz glass antenna for
wireless local area network (WLAN) applications using onion-like carbon (OLC) and multi
wall carbon nanotubes (MWCNT) [9]. Transparent conductive oxides (TCO) are another
popular method for the realization of glass antennas, and it has been widely used in the
industrial sector. Based on the used TCO structure, TCO based glass antennas can be
classified as mono-layer and multilayer. In 2017, a series of glass antennas working at
28 GHz was implemented by applying four types of mono-layer TCOs, which include
indium tin oxide (ITO), fluorine-doped tin oxide (FTO) and silver-coated polyester films
(AgHT-4, AgHT-8) [10], respectively. These antennas can be employed on solar panels for
the field of satellite communication. In a different example, multilayer TCO material was
demonstrated for the use of optically transparent antenna [11]. The proposed 2.45 GHz an-
tenna was fabricated with IZTO/Ag/IZTO multi-layer thin films, and the performance of
this antenna was compared with that of antennas making a metal grid, showing acceptable
characteristics [11]. Metallic nanostructure is considered as another effective technology
for accomplishing glass antennas. Metallic nanostructure can be mainly divided into three
forms, which are nanowire, ultra-thin metal films and patterned metal grid [8]. In 2017,
a research group at Leibniz University of Hannover has successfully fabricated a glass
antenna operating at 24 GHz and 61 GHz with the help of silver nanowire (AgNW) on
a glass substrate [12]. The practical application of large-scale silver nanowires with high
optical transparency, large electrical conductivity and strong mechanical durability is still
an open problem, which was effectively solved in 2020 by a process of combining screen
printing of Ag NWs with flash sintering (FLS), and the technology was used to realize the
design of a new type of antenna for 5G applications [13]. Compared to nanowire, ultra-thin
metal films are of higher electrical conductivity and more convenient to manipulate. In [14],
the analysis of the results of a dual-band CPW-fed transparent antenna fabricated from
AgHT-8 thin film indicated a strong correlation between measurement and simulation
at both operating frequencies, demonstrating the usability of ultra-thin metal films for
glass antenna fabrication. A significant analysis and discussion on the subject of applying
metal grid for antenna applications was proposed in [15], where a glass antenna working
at 24 GHz was presented. In addition, micro-copper mesh with its excellent electrical
properties has a variety of applications not only in the antenna field but also in frequency
selective surfaces [16]. The use of optically transparent glass substrates for energy har-
vesting applications is of great importance. Several antennas based on glass substrates for
infrared energy harvesting applications at 30 THz was presented in [17]. In a more recent
case, a broadband fully transparent antenna used for powering low power devices for the
Internet of Things was studied by Nermeen A. Eltresy in 2019 [18]. In this design, glass and
indium tin oxide were employed as the substrate and transparent conductor, respectively.
In a different case, Evan Shi et al. investigated plain silica glass as low cost and transparent
ground station substrates to reduce cost for space solar power application [19].

In this study, we further investigate the implementation of glass antennas for X-
band application and energy harvesting. Four microstrip glass antennas operating at
~8 GHz were designed, fabricated and verified in experiment with various metallization
techniques, including conductive copper foil (CCF), conductive silver paste (CSP) and ITO
thin film. The reflection coefficients and radiation patterns of the fabricated glass antennas
are compared and discussed, providing a guiding direction for the better realization of
glass antennas in the future.

2. Materials and Methods

The ANSYS High Frequency Simulation Software (HFSS) (Ansys, Canonsburg, PA, USA)
was employed for glass antenna design and modelling. The structure of the proposed
microstrip patch antenna is depicted in Figure 1, and it is a conventional sandwich-like



Materials 2021, 14, 7283 3 of 13

structure. The antenna is constructed using silicon-boron glass dielectric substrate, with
its dielectric constant (εr) and dielectric loss tangent (tangent δ) equal to 6 and 0.002,
respectively, at 10 GHz and 23 ◦C. The glass substrate has a size of Sub_L × Sub_W ×
Sub_h = 30 mm × 30 mm × 0.7 mm, and it is sandwiched between the upper radiator and
lower ground plane. The upper layer radiator consists of three parts: the rectangular patch,
the quarter wavelength converter and the feeding line. First determine the width W of the
rectangular patch, according to the following empirical formula:

W =
c

2 f0
(

εr + 1
2

)
−1/2

(1)

where c is the speed of light, f 0 is the operating frequency and εr is the dielectric constant of
the dielectric substrate. The radiation patch length L is a half wavelength. Moreover, since
the electromagnetic wave propagates within the medium, the guided wave wavelength λe
is defined as follows:

λe =
c

f0
√

εe
(2)

where εe is the effective dielectric constant, which is calculated as follows.

εe =
εr + 1

2
+

εr − 1
2

(1 +
12h
W

)
−1/2

(3)
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Moreover, consider the radiation slit length ∆L; thus, the equivalent slit length is
calculated as follows.

∆L = 0.412h
εe + 0.3

εe − 0.258

w
h + 0.264

w
h + 0.8

(4)

Therefore, the radiation patch length L is described as follows.

L =
λe

2
− 2∆L (5)

After the radiation patch design is completed, the line width of the feed line needs to
be considered since the microstrip feed is chosen as the feed method. The equation for the
characteristic impedance Z0 of the microstrip line is described as follows:

Z0 =
377√

εr

{
w′

h
+ 0.883 + 0.165

εr − 1
εr2 +

εr + 1
πεr

[
ln
(

w′

h
+ 1.88

)
+ 0.758

]}−1

(6)

where w’ is the line width of the microstrip line, and it can be observed that the impedance
Z0 is related to line width w’, dielectric substrate thickness h and dielectric constant εr. The
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above equation is written as a MATLAB program, and the corresponding data are brought
into the calculation to obtain the approximate size of the desired microstrip antenna.

Set the parameters: For example, the operating frequency is 8 GHz, the thickness of the
glass dielectric substrate is Sub_h is 0.7 mm and the dielectric constant is 6. The theoretical
data are obtained as follows: radiation patch length Ptc_Ll is 6.4 mm, radiation patch width
Ptc_W is 10 mm, feed line width Fdl_W is 1 mm and quarter wavelength Mtc_L is 4.4 mm.
Since the results are calculated by empirical equations, these parameters are inputted into
HFSS for modeling and optimization in order to obtain the final simulation parameters. The
rectangular patch size is calculated and optimized to Ptc_L × Ptc_W = 7.1 mm × 11.5 mm.
The structure in the red circle in Figure 1 is a quarter-wavelength converter for impedance
matching, with a size of Mtc_L×Mtc_W = 3.9 mm× 0.1 mm. In order to realize characteris-
tic impedance, the size of the feeding line is selected at Fdl_L × Fdl_W = 7.55 mm × 1 mm.
Both radiator and ground plane are set as perfect conductors, and the optimized dimensions
of each part are shown in Table 1.

Table 1. Dimensions of the proposed glass antenna.

Structure Length (mm) Width (mm) Thickness (mm)

Glass substrate 30.00 30.00 0.70
Rectangular patch 7.10 11.50 -

Quarter-wave length converter 3.90 0.10 -
Feeding line 7.55 1.00 -

Ground plane 30.00 30.00 -

Based on the above dimensions, four types of glass antennas were fabricated with three
metallization techniques for top-layer radiators and bottom-layer ground planes. Three
metallization techniques include using (1) conductive copper foil (CCF), (2) conductive
silver paste (CSP) and (3) ITO conductive film. Table 2 illustrates the structures of these
four glass antennas: (1) antenna with CCF as radiator and ground plane, as in case 1;
(2) antenna with ITO film as radiator and CCF as ground plane, as in case 2; (3) antenna
with CCF as radiator and ITO film as ground plane, as in case 3; and (4) antenna with
CSP as radiator and ground plane, as in case 4. The photos of these fabricated samples are
shown in Figure 2. The specific processing methods for the three metallization options are
described in detail below.

Table 2. Composition of the 4 types of glass antennas.

Case Top Layer Bottom Layer Conductor

case 1 CCF CCF Silicon-boron glass
case 2 ITO CCF Silicon-boron glass
case 3 CCF ITO Silicon-boron glass
case 4 CSP CSP Silicon-boron glass

The CCF is stuck to the glass substrate through a kind of acrylic adhesive on the back
side, and the acrylic adhesive owns the properties of high-temperature resistance and
chemical resistance, which is followed by the laser etching process for further treatment of
CCF [20]. The laser etching machine used for processing is a picosecond UV laser (Wuhan
Hero Optoelectronics Technology Co. Ltd, Wuhan, China) with a minimum focused spot of
less than 10um and with a laser frequency range of 1Hz–1MHz at a wavelength of 355 nm.
The laser etching machine focuses the laser onto the copper foil and heats it locally to
exceed the melting point, then blows the molten metal away with high-pressure gas. The
picosecond UV laser adopts the self-developed CCD automatic positioning laser etching
technology, which can complete automatic etching by importing CAD data. As the laser
moves relative to the copper foil on the glass substrate, the desired shape of the upper
radiator can be cut out and realized. As a glass metallization solution, CCF based on
laser etching technology owns the merits of high dimension precision and high electrical
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conductivity, while this method should also pay attention to laser control during processing
in order to avoid damaging the glass substrate below or burning the required part of CCF.
In this study, CCF is used in cases 1, 2, = and 3.
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ITO conductive film is a semiconductor oxide material with high visible light trans-
mission, high mechanical strength and high chemical stability, which is commonly used in
industrial applications [21,22]. In cases 2 and 3, glass substrates are deposited with ITO
films for realizing the radiator and ground plane by magnetron sputtering. In fabrication,
ITO thin films are created by using ionized inert gas to bombard the ITO target, causing ITO
atoms to be deposited on the glass substrate to form a nanoscale layer. Therefore, ITO films
with high visible light transmission were initially applied in the display area, and they now
can be used for the implementation of optically transparent glass antennas. The ITO film
based top-layer radiator and bottom-layer ground plane are presented in Figure 3 from
which we can observe that the fabricated glass sample with ITO film possesses extremely
high visible light transparency. The measured transmission of ITO film-based glass at
300–800 nm wavelength is illustrated in Figure 4, and it is noticeable that the transmittance
of the ITO film can reach ~90% at 600 nm.

CSP is generally a kind of conductive ink, and it is mainly composed of conductive
silver powder, binder, solvent and trace additives for performance improvement. The
major component of conductive silver powder is nano-silver particles with a content
60–70% [23]. In case 4, the radiation structure and ground plane of the proposed glass
antenna are made of CSP. For the fabrication of the CSP-based antenna, a CSP layer was
printed directly on both sides of the glass substrate with the help of printing technology.
To be specific, it is an electric field driven jet-deposition micro/nano forming 3D printing
technology, which is based on electrostatic field induction and electro-hydrodynamic theory.
Unlike conventional electro-hydrodynamic jet 3D printing, this method only requires a
conductive nozzle to be connected to a high-voltage pulsed power supply without a
grounded electrode, and it could make the required electric field excited by electrostatic
induction. Compared with the described laser etching technique, the printing technology
is more convenient, cost effective and mature for antenna design and glass metallization.



Materials 2021, 14, 7283 6 of 13

However, due to the fluidity of CSP, it might result in lower machining accuracy, and
advanced processing technology and equipment are required.
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In the above three metallization schemes, CCF is a kind of metallic copper layer
with extremely high conductivity of 5.8× 107 S/m [24]. In contrast, CSP contains only
60–70% nano-silver, resulting in slightly lower electrical conductivity than that of the CCF.
Compared with CCF and CSP, ITO films own the lowest electrical conductivity. Due to the
nanoscale thickness of ITO films, the light transmission of the ITO films is much higher
than that of CCF and CSP. Moreover, due to the ultra-thin property of ITO films, sheet
resistance is very high. In order to analyze the performance of the three metallization
schemes, a comparative experiment was conducted for these four types of antennas, as
presented in the next session.
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3. Results
3.1. Reflection Coefficient

The reflection coefficient of the four types of glass antennas (case 1–4) was measured
by using Agilent N5230A Vector Network Analyzer (VNA) (Agilent Technologies, CA,
USA). The calibration kit 3.5 mm Agilent 85052D was used for VNA calibration of both
ports before measurement. The measurement setup for antenna reflection coefficient was
depicted in Figure 5. The reflection coefficients of the antennas when connecting with port
one and port two were tested in order to verify calibration property and reduce measure-
ment error. Figure 6 presents the measured reflection coefficients and the corresponding
simulation result. Note that all simulations of these antennas in four cases are set as follows:
The boundary settings of both radiator and ground plane are ideal conductive surfaces,
and the sweep range is 6–10 GHz with a step size of 0.01 GHz. Table 3 summarizes the
measured and simulated results with more detail, including the resonant frequencies, the
corresponding reflection coefficients and the −10 dB bandwidths of these four cases.

As observed from Table 3 and Figure 6a, the measurements of the case one antenna
with CCF as the radiator and ground plane are in a good agreement with the simulation.
However, the resonant frequencies of case two and case three antennas are 9.2 GHz and
11.1 GHz, with a frequency shift of 1.2 GHz (15%) and 3.1 GHz (39%), respectively, when
compared with the simulated resonant frequency (8 GHz). For the case four antenna
composed of CSP as the radiator and ground plane, it has two resonant frequencies at
7.15 GHz and 9.43 GHz, as shown in Figure 6d, with 0.85 GHz (11%) and 1.43 (18%)
offset. For the structures of case 1–3 antennas, case two and case three are equivalent
to replacing the radiator and ground plane of CCF layer in case one with ITO material,
respectively. Combining the measured reflection coefficients of case two and case three
antennas for analysis, the case two antenna has a smaller frequency shift, but the magnitude
of the reflection coefficient at the resonant frequency for case three antenna is closer to
the simulated one. Although ITO films have the advantage of highlight transmission, the
best resistivity available in literature might only reach 0.4 × 10−3 Ω× cm [25], which is
too large when comparing with metallic copper material. Therefore, the high resistivity of
ITO films has an impact on the magnitude of reflection coefficients. In addition, one study
presented by F. Declercq et al. implies that the semiconductor property of ITO films may
affect the effective dielectric constant of the fabricated antenna [26], resulting in a shift of
resonant frequency. The case two antenna uses ITO film as the radiator, and due to the
aforementioned high resistivity and semiconductor property of ITO films [27], there is a
frequency shift for the resonance point, and the corresponding magnitude of reflection
coefficient is larger than the simulated results. A similar reason is also applicable for
explaining the measured reflection coefficient of the case three antenna. While since the
ground plane in case three antenna is an ITO film, the measured reflection coefficient of the
case three antenna is different from that of the case 2 antenna.
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Table 3. Measured and simulated resonant frequencies, the corresponding reflection coefficients and
−10 dB bandwidths of the antennas.

Case Frequency (GHz) S11 (dB) Bandwidth (GHz)

Simulation 8.00 −20.46 0.10
Case 1 8.01 −15.71 0.18
Case 2 9.20 −10.01 -
Case 3 11.10 −18.72 1.99

Case 4 7.15 −12.03 0.11
9.43 −1.86 0.13

CSP material was employed for both the radiator and ground plane of the case four
antenna, for which its electrical conductivity is between CCF and ITO film. We also
investigated the cause of resonance shift in the case four antenna by analyzing fabrication
and processing sizes. Finally, we found that the actual size of the rectangular patch width
of case four antenna is 7.58 mm, which is much larger than the designed value of 7.10 mm.
Figure 7 depicts the microscopic images of the radiation patch edges of the case one antenna
and case four antenna, which are manipulated by laser etching technology and printing
technology, respectively. It can be clearly observed from the figure that the patch edge of the
case one antenna is more uniform than that of the case four antenna, and the unevenness of
the case four antenna patch may be caused by the fluidity of CSP during fabrication, which
results in a larger patch size than expected and, thus, affects the antenna’s performance.
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Figure 7. Microscopic images of the radiation patch edge. (a) Laser etching technology for case 1 antenna: (b) printing
technology for case 4 antenna.

3.2. Far-Field Radiation Pattern

The far-field radiation pattern was measured in a microwave anechoic chamber. The
setup for the measurement of H-plane and E-plane radiation patterns are presented in
Figure 8. Standard horn antennas were applied as a reference for the normalization
of radiation patterns and gains. The standard XB-GH137-20N and XB-GH90-20N horn
antennas are used for the frequency bands of 5.38–8.17 GHz and 8.2–12.4 GHz, respectively.
The measured H-plane and E-plane radiation patterns of these four antennas are shown
in Figure 9. It is noticeable from the figure that the E-plane radiation direction diagram
is a little asymmetric and deviates from the center. This is probably due to the fact that
the horizontally placed antenna in E-plane measurement was not completely in the center
of the rotation axis of test bench. In addition, the presence of the quarter-wavelength
converter and feeding line of the side-fed microstrip glass antenna could also result in
an asymmetric E-plane radiation pattern. The radiation gains of case one and case four
antennas are greater than 2 dB; thus, the shapes of their radiation patterns are similar (such
as H-plane). For case two and case three antennas, due to the fact that their radiation gains
are lower than −4 dB, their radiation patterns are more vulnerable to measurement noise,
errors and side-feeding structure, resulting in slightly different radiation patterns
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The specific data of the maximum available gain (MAG) of the four antennas are
shown in Table 4. Combined with Figure 9, in the four cases, the CCF glass antenna (case 1)
has the best radiation performance, with a MAG of 4.60 dB at the operating frequency.
In contrast, due to the high resistivity of ITO films, the MAG at the operating frequency
is only −4.98 dB for the case two antenna where the radiator is replaced with the ITO
structure. Similarly, case three antenna uses CCF as the radiator material, rendering its
MAG slightly larger than that of the case two antenna; however, ITO films are for the
ground plane, resulting in less suppression of back-scattering. As observed in Figure 9c,
the forward and backward radiation pattern gains of case three is close, resulting in low
MAG in the forward direction compared with case one. For the case four glass antenna
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composed of CSP layer, due to the better electrical conductivity of CSP material than that
of ITO film, the case four antenna reveals a larger MAG. However, the conductivity of the
CSP is smaller than that of the CCF, resulting in a gain of 2.10 dB for case four, which is
lower than that of case one.

Table 4. Measured maximum available gain (MAG).

Frequency (GHz) MAG (dB)

Case 1 8.00 4.60
Case 2 9.00 −4.98
Case 3 11.00 −4.40
Case 4 7.15 2.10

4. Conclusions

In this paper, three different glass metallization methods, including conductive copper
foil (CCF), conductive silver paste (CSP) and indium tin oxide (ITO) thin film, were em-
ployed for the design of X-band glass antennas. Four glass antennas with the combination
of these metallization methods were fabricated for analysis. The fabrication technique
of each metallization scheme was described, and the performance of the metallization
technique-based glass antennas were compared and analyzed. The maximum available
gains of the case one antenna (CCF as the radiator and ground plane) and case four antenna
(CSP as the radiator and ground plane) are 4.60 dB and 2.10 dB, respectively, while both
of the case two (ITO as the radiator) and case three (ITO as the ground plane) antennas
had much lower radiation gains due to the lossy property of ITO films [27]. This study
demonstrates the feasibility of CCF and CSP as well as ITO films in the field of glass
antennas. Generally, the processing accuracy of CSP needs to be improved in order to
achieve better antenna design and application. The high optical transparency of ITO films
is beneficial for realizing optically transparent antenna, but it is essential in enhancing
antenna performance by using appropriate optimization techniques, such as multilayer
film or hybrid metallization scheme.
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