
materials

Article

Parametric Effects of Single Point Incremental Forming on
Hardness of AA1100 Aluminium Alloy Sheets

Sherwan Mohammed Najm 1,2,* , Imre Paniti 1,3 , Tomasz Trzepieciński 4 , Sami Ali Nama 5,
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Abstract: When using a unique tool with different controlled path strategies in the absence of a punch
and die, the local plastic deformation of a sheet is called Single Point Incremental Forming (SPIF). The
lack of available knowledge regarding SPIF parameters and their effects on components has made
the industry reluctant to embrace this technology. To make SPIF a significant industrial application
and to convince the industry to use this technology, it is important to study mechanical properties
and effective parameters prior to and after the forming process. Moreover, in order to produce a SPIF
component with sufficient quality without defects, optimal process parameters should be selected.
In this context, this paper offers insight into the effects of the forming tool diameter, coolant type,
tool speed, and feed rates on the hardness of AA1100 aluminium alloy sheet material. Based on the
research parameters, different regression equations were generated to calculate hardness. As opposed
to the experimental approach, regression equations enable researchers to estimate hardness values
relatively quickly and in a practicable way. The Relative Importance (RI) of SPIF parameters for
expected hardness, determined with the partitioning weight method of an Artificial Neural Network
(ANN), is also presented in the study. The analysis of the test results showed that hardness noticeably
increased when tool speed increased. An increase in feed rate also led to an increase in hardness. In
addition, the effects of various greases and coolant oil were studied using the same feed rates; when
coolant oil was used, hardness increased, and when grease was applied, hardness decreased.

Keywords: SPIF; single point incremental forming; sheet forming; hardness; ANN; relative importance (RI)

1. Introduction

Incremental Sheet Forming (ISF) is a sheet-forming technique that produces compo-
nents through a series of small incremental deformations. ISF is a flexible active manufac-
turing process and is economically feasible for low-volume production due to the absence
of a punch and die. SPIF is one of the major types of ISF, and it is known as the simplest
process variant of incremental sheet-forming technologies. SPIF is an emerging process
that has been identified as suitable for use in small-scale production. Trzepieciński et al. [1]
presented a brief overview of state-of-the-art methods of ISF for lightweight materials. The
aim of their paper was to guide and inspire researchers by identifying current development
trends of valuable contributions in the field of Single Point Incremental Forming (SPIF) of
lightweight metallic materials. In SPIF, a rotating tool with a rounded tip at its end is used,
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and the desired shape is formed from clamped sheet metal [2]. In the literature [3], a review
paper on new advances and future opportunities considered single point incremental to
be one of the forming technologies of future-proof materials in aerospace applications.
Furthermore, there is governmental, academic, and business interest in developing new
manufacturing technologies, and there is also interest in ISF’s impact on the environment,
particularly in what ways and to what extent ISF reduces energy needs [4]. Two exergy
analyses of traditional forming and hydroforming of ISF were contrasted by Dittrich et al.
in [5]. After analysing the environmental impact of these forming techniques in the supply
chain, they concluded that ISF is significantly less harmful to the environment, particu-
larly for prototypes and non-mass production. Sustainability guidelines were developed
by Ingarao et al. [6] regarding the advantages and disadvantages of SPIF related to the
amount of energy necessary to form sheets and to economic material use in each process.
Ingarao et al. proved that SPIF supports saving material with respect to CO2 emissions,
because it supports recycling and facilitates novel ways of preparing raw materials. An
overview of the history of ISF was written by Emmens et al. [7], Li et al. [8], and Behera
et al. [9]: they discussed the enormous benefits and many advantages of SPIF and par-
ticularly referenced the flexibility of the process, which allows SPIF to be used in more
applications in industries and processes. Hence, SPIF will be considered an essential
process for the industry in the future.

By studying the mechanical properties of components formed through SPIF and
standardising effective process parameters, the SPIF process can become a significant
industrial application embraced by numerous companies. To set optimal input process
parameters of SPIF with multiple pure copper sheets, Raju and Sathiya [10] utilised a
hybrid optimisation technique by connecting it with Taguchi grey relational analysis and
the methodology of the response surface. They showed that the feed rate is the most
significant parameter, followed by step depth and tooltip diameter. On the other hand,
lubrication plays a vital role in the successful forming of components during the SPIF
process. Lubrication reduces friction at the contact zone of the tool and sheet [11]. Recently,
José et al. [12] studied how mineral oil, sunflower, soybean, and corn lubricants influence
friction and wear effects on aluminium parts manufactured using the SPIF process. Using a
scanning electron microscope, they found the following: the experimental characterisation
of the sample’s surface showed that the worn surface of the metallic material samples
produced using vegetable oils increases surface roughness compared to those produced
with mineral oils. With respect to aluminium alloy foils, Najm and Paniti [13,14] noted that a
flat tool yielded better outcomes than a hemispherical tool in various conditions of the SPIF
process. The best geometric accuracy was achieved when the smallest corner radius flat tool
was used because a decrease in spring-back was observed. ISF-as-a-Service was introduced
by Paniti [15], who distinguished first-order and second-order bottleneck parameters. He
described the main capabilities of an incremental sheet-forming service provider in cloud
manufacturing. The hardening and normal anisotropy coefficients are the most influential
factors on traditional Forming Limit Diagrams (FLDs), as found by Fratini et al. [16] when
studying the relationship between material formability and mechanical properties. On
the other hand, Zhang [17] concluded that the most influential factor on formability is
forming temperature, followed by vertical step depth, sheet thickness, and tooltip diameter.
The above-mentioned results were obtained on Mg alloy sheets formed by using warm
incremental sheet forming. Liu et al. [18] asserted that formability and maximum vertical
force increase when vertical step-down increases, and they linearly increase when sheet
thickness is increased. In their study [19], Li et al. found that mechanical properties and
the thinning rate were affected by three parameters of ISF. It was shown that an increase
in the tool diameter considerably improved the microhardness of the product’s surface.
An increase in the tool diameter and a decrease in the step size ultimately increase the
tensile strength rate. Li et al. claimed that contrary to step size, sheet thickness significantly
affects yield strength. In [20], Manco et al. proved that, due to variations in tool path, tool
trajectory could be considered an essential parameter for the optimisation of process design
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by comparing the smallest thickness of the sheet with predicted thickness using the sine
law. Krasowski et al. [21] analysed and discussed experimental investigations of the effects
of selected SPIF parameters on the formability of DC04 sheets and the susceptibility to
crack formation on truncated cones produced through SPIF, and they found that lubrication
conditions clearly affect the formability of DC04 steel sheets.

At present, many methods of artificial intelligence are used in various applications, in-
cluding the metal forming process. More specifically, ANN generates predictive models for
end-milling machining, powder metallurgy, and high-speed machining [22–24]. Moreover,
machine learning techniques with controlled manufacturing are used to develop various
effective predictive models [25–29]. Trzepieciński et al. [30] presented an analysis of the
interaction between SPIF process parameters and the main roughness parameters. They
found that predictive models of ANNs for Ra and Rz were characterised by performance
measures of R2 values between 0.657 and 0.979. In other studies, different tool materials
and shapes were investigated experimentally to study factors including formability, ge-
ometric accuracy [31], and surface roughness [32] on an AlMn1Mg1 sheet formed using
SPIF under various forming conditions. The researchers evaluated the performance of
an Artificial Neural Network (ANN) and Support Vector Regression (SVR). Two different
ANN models were built in the study: an R-squared value with other validation metrics and
a feed-forward neural network with a backpropagation algorithm were used. A close cor-
respondence was found between predicted roughness, formability, and geometric accuracy
in the experimental results. The researchers derived regression equations to analytically
predict surface roughness in terms of Ra and Rz. Baruah et al. [33] claimed that lubrication
was the largest contributing factor in the process of ISF in all three directions (rolling,
transverse, and angular) when surface roughness in ISF is meant to be reduced. In fact, to
date, the applied lubricant and the viscosity of the lubricants on the ISF process have not
been optimised or discussed, as attested by [5,34,35]. In addition, Kumar and Gulati [34]
claimed that all parameters investigated in their study were significant for forming force
except lubricating oil viscosity, and they also noted that surface roughness decreased when
viscosity increased [35]. According to the literature, ANN is a helpful tool—before starting
new experiments—for predicting and designing predictive models to estimate expected
results, behaviour, or direction based on the use of the parameters of the studied process.
Using ANN before starting an actual experiment has the essential benefits of selecting the
correct parameters, reducing processing time, increasing efficiency, minimising errors, and
comparing actual results with predicted ones so as to reach the best values. In addition,
ANN is considered one of the most powerful tools for solving engineering problems by
predicting experimental data. In addition, ANN can serve as a valuable means to generate
and assess different processes and prepare the final details of tools.

Under normal conditions, the hardness behaviour in SPIF is as follows: formed
parts achieve higher hardness than an unformed sheet. Using different path strategies
and different forming angles, Al-Attaby et al. [36] showed that the tool path affects the
hardness and microstructure of the formed sheet. In all cases relating to the forming angle,
hardness increased. Regarding the two-point incremental forming process, Mostafanezhad
et al. [37] analysed the formability of aluminium 1050: the scholars used the response
surface methodology experimentally. They found that wall angle is the most influential
factor with respect to the thinning ratio; initial thickness, followed by step-down, has a
significant impact on forming force.

The above-detailed issues, the need for well-defined mechanical properties of SPIF
components, and the lack of referent analytical models prompted the authors to investigate
the effects of SPIF process variables on the hardness of truncated cones formed from AA1100
aluminium alloy sheets. Moreover, as a novelty and aim contributing to the significance
of this paper, different regression equations were derived to determine the hardness of
the components of a truncated cone using SPIF. In addition, the Relative Importance
(RI) of parameters of SPIF on hardness was assessed and classified by utilising the joint
partitioning weight of the built neural network. To the best of the authors’ knowledge
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and according to the literature introduced, such an experimental process has not been
reported to date. In this research, the influences of feed rate, various kinds of grease and
coolant oil, spindle speed, and tool diameter on the hardness of the AA1100 aluminium
alloy sheet formed by SPIF were investigated. Conventionally, AA1100 alloy is employed
for radiator components [38]. However, as a final general aim, it was posited that the
appropriate selection of properties would improve the application of the AA1100 alloy.
Furthermore, based on the diver’s mechanism of deformation, Song et al. [39] found three
different regions of deformation (bending/stretching, shear, and stretch/shear). Based on
these research projects, in this study, hardness was measured in three different positions on
the inside wall of the cone, and measured data were compared to the primary hardness of
the sheet involved in the experiment.

2. Material and Methods
2.1. Workpiece Material

Aluminium and aluminium alloys have become attractive materials for application in
the aerospace and automotive industries owing to their beneficial properties. In the experi-
ments conducted in this study, single point incremental forming tests were conducted using
a blank sheet of AA1100 aluminium alloy were produced by Xuzhou Bozhan Aluminum
Technology Co. Ltd, Xuzhou, Jiangsu, China with an initial hardness of 42.87 HV. The
initial thickness of the sheet used is 0.6 mm, with an original surface roughness of 0.29 µm.
AA1100 aluminium belongs to the 1xxx series with less than 1% alloying elements. The
main uses of the 1xxx series aluminium alloys are foil and strip for packaging, chemical
equipment, tank car or truck bodies, spun hollowware, and elaborate sheet metal work
because of their high corrosion resistance and formability [40]. The 1xxx alloys are essen-
tially characterised by superior corrosion resistance, usefulness for fabricating chemical
tanks and piping, or their excellent electrical conductivity, as in bus bar applications. These
alloys have relatively poor mechanical properties [41].

If strength is not an essential factor, AA1100 aluminium is selected to create fuel tanks,
cowlings, and oil tanks of aircraft due to the corrosion resistance and the economic weight.
The before-mentioned grade of aluminium can be utilised to repair aircraft wingtips and
tanks because it is weldable [42]. AA1100 commercially pure aluminium is highly resistant
to chemical attack and weathering. This low-cost material is characterised by excellent
solderability and susceptibility to deep drawing. It is used for high-purity applications
such as chemical processing equipment. In addition, examples of common 1xxx series
aluminium alloy applications include nameplates, fan blades, flue lining, sheet metal
work, spun holloware, and fin stock [43]. It is also used to produce decorative parts,
giftware, cooking utensils, rivets, and reflectors. A SPECTROMAXx optical emission
spectrometer manufactured by SPECTRO, Kleve, Germany was used to determine the
chemical composition of the AA1100 alloy used, and the test of mechanical properties was
conducted with a United testing machine according to the ASTM B557M-15 standard test
methods for tension check. The results of the tests of the aluminium sheet were compared
with the nominal values in the ASM Handbook [44]: these tests show the conformity to the
standard composition of the alloy (ISO 19000 standard). The mechanical properties and the
chemical composition of the sheet material are shown in Tables 1 and 2, respectively.

Table 1. Mechanical properties of the AA1100 aluminium alloy sheet.

Property Ultimate Tensile
Stress, MPa Yield Strength, MPa Elongation, %

Actual 110 95 20
Nominal 110 103 25

Standard Deviation, σ 0 4 2.5
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Table 2. Chemical composition of the AA1100 aluminium alloy sheet (in wt.%).

Element Si Fe Cu Mn Mg Cr Ni Zn Ti Pb B Sn V Al

Actual 0.110 0.482 0.004 0.005 0.001 0.0005 0.004 0.021 0.021 0.0005 0.003 0.001 0.014 balance
Nominal 0.5 0.5 0.2 0.04 0.01 Other 0.15 max balance

2.2. Experimental Setup

In this study, a Boxford 300VMCi milling machine built by Boxford in Halifax, UK
with 0.01 mm accuracy was used. The ISO format using G and M codes was used to
program a cone shape with large and small diameters of 80 and 10 mm, respectively. An
inward spiral path strategy was used to deform the cone part, in which case a spiral tool
trajectory is advantageous to the successful forming of the same parts [45]. The strategy
utilised in this study was developed by Skjoedt et al. [46] to overcome the difficulty of
reaching maximum axial loads at each layer (step down) and to prevent the appearance of
a line on the inner side of the formed part. A wall angle of 45◦, a context contour of 0.5 mm
for the step size, and an inward spiral path were applied, as shown in Figure 1.
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In the SPIF process, only one tool can be used, and the feed rate, spindle speed,
lubricant, and forming conditions should be selected beforehand. Furthermore, in the
current study, the mentioned parameters were considered parametric values and were
changed in the subsequent part forming. A primary step was conducted to select the best
values of these parameters to fix them in the subsequent forming process, and only one of
these parameters was changed in each forming group. To this end, a matrix of 3 factors
with the same levels (feed rate, spindle speed, and tool diameter) was applied in the first
step. The best values of feed rate, spindle speed, and tool diameter were chosen depending
on the best geometrical accuracy and maximum depth. In the second step, the best values
selected from the first step were applied in order to study the coolant type.

Forming tools with different diameters (4, 6, 8, and 10 mm) were used in the experi-
ment, as shown in Figure 2a. The tools used in the experiment are made of carbon steel
with a hardness of 30 HRC and are 100 mm in total length. Plain carbon steel was used
for manufacturing the clamping rig, which was fixed to the CNC machine table with a
simple-to-use fixture system, as shown in Figure 2b.

A digital Vickers microhardness tester supplied by TIME Group Inc., Beijing, China
was used to measure the hardness of the component formed using SPIF (see Figure 3a)
based on Equation (1). For each set, three products were experimentally formed to study
the process parameters of different forming conditions (see Figure 3b). The hardness of
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each part was measured at three zones: the upper, middle, and lower zones along the
inner wall of the formed part. Figure 3c shows a formed part after it was cut to the desired
shape in the proper size for the preparation of the test samples and for establishing the
three zones of the hardness measurement. The hardness measurement was repeated three
times at different points inside each mentioned zone. The hardness value of each zone was
calculated as the average value of the selected zone hardness. The average hardness value
of the three zones was considered the average value of the measured component. The
appropriate piece of the section was mounted by a mounting press device and polished
by a Metaserv type 250/RP device manufactured in (Buehler, Lake Bluff, IL, USA) before
hardness was measured (see Figure 3d).

Hv = 1854.4
F
d2 (1)

where F is penetration force (N), and d is average diagonal distance (d1 + d2)/2.
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For hardness measurement, the hardness tester was calibrated before testing using
the calibration standard block, and 100 N was applied on the formed part with a Vickers
diamond pyramid indenter for 15 s. The results were recorded automatically on a digital
screen after the adjustment of the rhomb corner had been triggered by the indenter.

There is no internationally accepted term for the definition of Environmentally Ac-
ceptable Lubricants (EALs), and they still lack standardisation. The American Society for
Testing and Materials (ASTM) used “environmentally acceptable” as a phrase for defining
EALs [47]. There is an overall trend towards using EALs. In the present study, different
coolant types (four different grease types, as shown in Figure 4a–d, and one coolant oil)
were used to carry out the experiment. Supergrees EP2 and Kaucuklu grease produced
by Petrol Ofisi, Istanbul, Turkey, Zinol grease from Universal Lubricants (ZINOL) L.L.C,
Sharjah, United Arab Emirates, Gp Grease Calcium type was produced by United Grease
& Lubricants Co. LLC based in Ajman, United Arab Emirates, and the coolant oil was also
by Petrol Ofisi, Istanbul, Turkey. Table 3 lists grease properties based on their commer-
cial name and standard denominations, and Table 4 presents coolant oil properties. It is
worth mentioning that viscosity values of different greases were assumed based on the ISO
3448:1992 standard for viscosity grading systems [48].
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Table 3. Selected properties of the greases used.

Grease Type ISO Viscosity Grade Average Dropping Point, ◦C
(at 25 ◦C) Flash Point, ◦C Viscosity at 40 ◦C,

mm2/s

EP2 ISO VG 15 90 180 15
Kaucuklu ISO VG 22 88 172 22

Zinol ISO VG 32 88 170 32
Gp Grease Calcium ISO VG 46 58 60 46

Table 4. Selected properties of the coolant oil used.

Acidity, pH Kinematic Viscosity at 29 ◦C, mm2/s Boiling Point, ◦C

1.086 1.086 95

Lubricants cannot be used in forming processes where high loads are applied, and
thus, Syahrullail et al. [49] suggested using an appropriate additive to solve this problem.
Consequently, the difference between using coolant oil and grease is that grease forms
a mixture with small disintegrating particles (debris) of either the formed sheet or, in
rare cases, the tool. Due to heat generation, sometimes the debris repeatedly sticks to the
sheet surface or passes between the tool and the formed sheet. Diabb et al. [50] observed
aluminium flakes in the used lubricant: this phenomenon was caused by wear adhesion on
alloy sheets of SPIF components. In the case of coolant oil, which flows continuously on
the sheet, debris can be washed away from the forming zone. However, when grease is
used, a smoother surface can be produced compared to the scenario where coolant oil is
used due to the flattening and roughening effects exerted by the debris, as stated in [51].
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On the other hand, coolant oil continuously flows during the forming process, whereas
grease is applied on the sheet surface only once at the beginning of the process. In other
words, coolant oil has higher exergy than grease due to the difference in the amount
of material used, which means that an increased environmental impact is observable.
Figure 5a,b illustrate the processes of using grease and coolant oil.
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Four different tool rotation speeds (500, 1000, 1500, and 2000 rpm) were used to study
hardness behaviour. In addition, in the scope of the current experiments, four different
feed rates (200, 400, 600, and 800 mm/min) were implemented to investigate the effects of
changes in the feed rate on sheet hardness.

3. Results and Discussion
3.1. Feed Rate

Four different feed rates were used with different lubricants (oil and grease). At the
same time, other experimental parameters were fixed: the tool speed was 2000 rpm, the
tool diameter was 10 mm, and coolant oil was used. Table 5 and Figure 6a,b show the
results of hardness measurements for different feed rates. Changing the lubricant type
resulted in inverse values of hardness: it increased when the feed rate was increased and
coolant oil was used, and it decreased when grease was used.

An increase in feed rate led to an increase in hardness, and this was inversely pro-
portional to formability. The increase in feed rate caused a decrease in formability, as
mentioned in [52]. A decrease in hardness is due to changes in surface asperities because
the peaks of the aspirates formed by the generated debris shoot and break. By attach-
ing the debris to the tool and cultivating the sheet surface, new grooves can be created,
and the sharp peaks of the asperities can likewise be crashed. Finally, through contin-
uous cultivation and crashing, the contact area between the tool and the formed sheet
will increase.

Table 5. Effects of different feed rates on hardness.

Feed Rate,
mm/min

Hardness HV

Coolant Oil Grease

Top Middle Bottom Standard
Deviation, σ Top Middle Bottom Standard

Deviation, σ

200 43.89 40.40 39.02 2.0494 63.30 58.61 50.56 5.2610
400 39.16 43.61 41.78 1.8262 59.80 56.70 49.13 4.4816
600 44.08 46.44 48.22 1.6957 51.29 53.17 44.70 3.6317
800 47.76 53.84 49.54 2.5522 43.99 45.72 45.50 0.7689
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Figure 6. (a) Effects of different feed rates on hardness of formed sheet when using coolant oil, (b) effects of varied feed
rates on hardness of formed sheet when using grease.

Hol et al. [53] mentioned that, in the case of normal forces, the sheet surface asperities
are in the plastic condition, and they are further affected by only a little stress in the
underlying bulk material. They claim that this stress is perpendicular to the normal force
and generates increased plastic deformation of asperities. Finally, because of the enormous
strain of the underlying material, this situation leads to an increased contact area, which is
recognised as a decrease in effective hardness.

3.2. Tool Speed

Table 6 lists different tool rotation speeds with the experimentally obtained hardness
values. Figure 7 shows that an increase in tool speed led to an increase in hardness. High
speed causes the resulting particles to impact the surface of the sheet faster than in the case
of low speeds, and this results in the hardening of the surface. On the other hand, in the
case of high tool speeds, the tool head, in the same contact area, travels on the sheet with
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more passes than a tool at low speeds. Due to stretching with longitudinal deformation,
the sheet material seems to be undergoing cold working conditions. Cold working creates
a different type of crystal deformation, such as compressing, twisting, and bending, and
this results in comparatively uniform plain crystalline particles. New imperfections created
by these movements result in more resistance and, finally, increase hardness.

Table 6. Effect of different speed values on hardness.

Tool Speed, rpm
Hardness HV

Top Middle Bottom Standard
Deviation, σ

500 45.83 41.78 40.10 2.4050
1000 50.50 47.48 42.75 3.1895
1500 56.83 55.96 45.90 4.9601
2000 61.58 75.51 57.71 7.6439
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Figure 7. Effect of different tool speeds on hardness of formed sheet (feed rate: 600 mm/min; tool diameter: 10 mm; coolant: oil).

3.3. Tool Diameter

The effects of tool diameter on hardness are presented in Table 7 and in Figure 8.
Decreases in values are due to increases in tool diameter. McAnulty et al. [54] found differ-
ent behaviours for the effects of changes in tool diameter on formability. Asgari et al. [55]
concluded that a tool diameter of 3 mm results in increased hardness in an aluminium alloy
1100-O sheet relative to 5 or 10 mm tool diameters. A decrease in tool diameter from 10
to 3 mm causes ultimate tensile stress and yield stress to decrease by 7% and 24%, respec-
tively. Furthermore, a reduction in the tool diameter causes a decrease in grain size [55].
Shrivastava and Tandon [56] discussed various parameters of the pre-production sheet
and studied the effects of such parameters on the ISF process and on the final properties
of products. They claimed that the forces needed to form the sheet in ISF are affected by
grain size. Increasing the grain size leads to a decrease in forming forces, yield stress, and
hardness [56]. The researchers used different tools for forming, and all of the formed parts
showed decreased hardness irrespective of the diameter of the applied tools. The results of
this study show that hardness decreased in the case of any diameter of the tool irrespective
of the hardness value at each point. A tool diameter of 4 mm showed higher hardness than
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other diameters at all points. Tool diameters of 10 and 8 mm, on the other hand, produced
lower hardness values than tool diameters of 6 and 4 mm. In addition, larger tools, which
passed through the formed sheet more times than smaller tools, made the material of the
formed part softer (and also caused more heating through increased friction).

Table 7. Effects of different tool diameters on hardness.

Tool Diameter, mm

Hardness HV

Top Middle Bottom Standard
Deviation, σ

4 75.51 57.71 66.61 7.2668
6 56.33 50.65 53.01 2.3299
8 43.22 40.62 44.26 1.5308
10 41.78 40.10 42.57 1.0300

Materials 2021, 14, x  11 of 20 
 

 

3.3. Tool Diameter 

The effects of tool diameter on hardness are presented in Table 7 and in Figure 8. 

Decreases in values are due to increases in tool diameter. McAnulty et al. [54] found dif-

ferent behaviours for the effects of changes in tool diameter on formability. Asgari et al. 

[55] concluded that a tool diameter of 3 mm results in increased hardness in an aluminium 

alloy 1100-O sheet relative to 5 or 10 mm tool diameters. A decrease in tool diameter from 

10 to 3 mm causes ultimate tensile stress and yield stress to decrease by 7% and 24%, 

respectively. Furthermore, a reduction in the tool diameter causes a decrease in grain size 

[55]. Shrivastava and Tandon [56] discussed various parameters of the pre-production 

sheet and studied the effects of such parameters on the ISF process and on the final prop-

erties of products. They claimed that the forces needed to form the sheet in ISF are affected 

by grain size. Increasing the grain size leads to a decrease in forming forces, yield stress, 

and hardness [56]. The researchers used different tools for forming, and all of the formed 

parts showed decreased hardness irrespective of the diameter of the applied tools. The 

results of this study show that hardness decreased in the case of any diameter of the tool 

irrespective of the hardness value at each point. A tool diameter of 4 mm showed higher 

hardness than other diameters at all points. Tool diameters of 10 and 8 mm, on the other 

hand, produced lower hardness values than tool diameters of 6 and 4 mm. In addition, 

larger tools, which passed through the formed sheet more times than smaller tools, made 

the material of the formed part softer (and also caused more heating through increased 

friction). 

Table 7. Effects of different tool diameters on hardness. 

Tool Diameter, mm 
Hardness HV  

Top Middle Bottom Standard Deviation, σ 

4 75.51 57.71 66.61 7.2668 

6 56.33 50.65 53.01 2.3299 

8 43.22 40.62 44.26 1.5308 

10 41.78 40.10 42.57 1.0300 

 

Figure 8. Effect of different tool diameters on hardness of formed sheet (feed rate: 600 mm/min; tool 

speed: 2000 rpm; coolant: oil). 

  

4 6 8 10

40

45

50

55

60

65

70

75

80

H
ar

d
n
es

s 
(H

V
)

Tool Diameter (mm)

 Average of Top Point Hardness            Average of Middle Point Hardness

 Average of Bottom Point Hardness       Average of Sheet Hardness

Figure 8. Effect of different tool diameters on hardness of formed sheet (feed rate: 600 mm/min; tool speed: 2000 rpm;
coolant: oil).

3.4. Grease Grade

Table 8 and Figure 9 show the impact of different greases on the hardness results. The
grease with the highest drop point resulted in the lowest hardness and vice versa. The
grease type named “Gp Grease Calcium-ISO VG 46” provided the highest hardness (with
the lowest drop point): this was due to the fact that this grease entered between the tool
and the formed sheet and cooled the local forming zone faster. Regarding the properties of
different greases, it is shown that the use of the grease with a higher flash point resulted
in a more stable hardness value. In fact, it can be noted that the use of grease rather than
the use of coolant oil produced more homogeneous hardness values at different points of
the same sheet, with a slight difference in this conclusion for coolant oil compared to Gp
Grease Calcium type grease.

3.5. Regression Equations to Calculate the Hardness of SPIF Components

Regression enables one to find an alternative method to quickly and more economi-
cally calculate SPIF components’ hardness, rather than having to resort to an experimental
process. In view of this, in our experiments, regression equations capable of calculating
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the hardness of SPIF were used instead of actual measurements. Consequently, differ-
ent equations were used in this study: Equation (2) Linear Cross-Validation Regression,
(3) Linear Cross-Validation with Multiple Regression of Viscosity, (4) Multiple Regression,
and (5) Equation Based on Biases and Weight. These equations are as follows:

Table 8. Effects of different grease types on hardness.

Grease Type ISO
Viscosity Grade

Average Dropping Point
(at 25 ◦C)

Flash Point, ◦C
Hardness HV

Top Middle Bottom Standard
Deviation, σ

Gp Grease Calcium ISO VG 15 58 60 46.81 72.00 56.95 10.3487
Zinol ISO VG 22 88 170 46.34 42.70 40.74 2.3202

Kaucuklu ISO VG 32 88 172 42.73 38.12 40.62 1.8843
EP2 ISO VG 46 90 180 45.81 43.30 38.18 3.1751
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Figure 9. Effects of different grease types on hardness of formed sheet (feed rate: 600 mm/min; tool
speed: 2000 rpm; tool diameter: 10 mm).

Linear Cross-Validation Regression:

H =
(

FrCoe f f × Fr + SCoe f f × S + DCoe f f × D + LCoe f f × Lv + C
)

/4
H = (0.0658 × Fr + 0.0028 × S − 9.3993 × D + 0.2829 × Lv + 234.7775)/4

(2)

Linear Cross-Validation with Multiple Regression of Viscosity:

H =
(

FrCoe f f × Fr + SCoe f f × S + DCoe f f × D + (LCoe f f 1 × Lv − LCoe f f 2 × Lv
2
)
+ C)/4

H =
(
0.0749 × Fr + 0.007482 × S − 8.2277 × D +

(
3.5691 × Lv − 0.0950 × Lv

2)+ 217.7624
)
/4

(3)

Multiple Regression:

H =
(

FrCoe f f 1 × Fr − FrCoe f f 2 × Fr2) + (SCoe f f 1 × S − SCoe f f 2 × S2)

+ (DCoe f f 1 × D2 − DCoe f f 2 × D) + (LCoe f f 1 × Lv
2

− LCoe f f 2 × Lv) + C
H = (0.029255 × Fr − 0.000010 × Fr2) + (0.0278 × S − 0.000009 × S2)

− (17.4122 × D − 1.0414 × D2)
− (0.9343 × Lv − 0.0244 × Lv

2) + 87.4763

(4)

Equation Based on Biases and Weights:
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where LW = [6.4552 −2.1276 2.7984 7.8625 4.7908 4.3514 −6.4366 −4.2600 2.3087 4.7381],
H is hardness, Fr is feed rate, S is spindle speed, D is tool diameter, LV is viscosity of the
lubricant, C is the intercept, and Coeff is a coefficient.

Many different validation metrics are used for assessing and measuring the agreement
between a predictive model and physical observations with the aim of selecting the best
models or equations, and choosing the proper validation metric can be a crucial point and
a challenge for evaluating results. In this study, the equations developed were compared
and validated with the validation metrics listed in Table 9. In order to check the equations
in question, different validation metrics were used to test performance on the basis of the
results of the equations used in the hardness calculation. The criteria of validation consist
in minimising error. To this end, Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) were used for validation in this study. RMSE can be more sensitive to the error
in case the MAE is more stable. However, RMSE and MAE are more accurate evaluation
metrics compared to other metrics [57]. The equation’s more reliable performance is
guaranteed by a condition where MAE and RMSE values are close to 0. Nevertheless, the
large variance between RMSE and MAE values represents significant variations in error
distribution. Consequently, Mean Relative Error (MRE) was used to measure the precision
of the equations applied.

Table 9. Assessment of best alternative equations with different validation metrics for hardness calculation.

Validation Metric Linear Cross-Validation
Regression

Linear Cross-Validation
with Multiple

Regression of Viscosity

Multiple
Regression

Equation Based on
Biases and Weights

Mean Error 0.0000 0.0000 −0.0002 −0.0306
Mean Absolute Error 4.8183 3.6826 2.7811 1.8954
Mean Square Error 40.9419 29.2784 22.0436 20.2431

Root Mean Square Error 6.3986 5.4110 4.6951 4.4992
Mean Relative Error 0.0963 0.0727 0.0555 0.0367

Standard Deviation, σ 6.5955 5.5775 4.8396 4.6376
Standard Error of Mean 1.5996 1.3527 1.1738 1.1248

As can be seen in Table 9, the suggested Equation Based on Biases and Weight shows
much greater reliability compared to other equations, and the next most reliable equation
is the Multiple Regression equation. Consequently, both could be applied to precisely
calculate the hardness of the SPIF component. Figure 10 illustrates the ability of the
developed equations to precisely calculate the hardness of SPIF components compared to
the real values of hardness. The fluctuating and uneven hardness in Figure 10 is normal
because the values are for different components formed in various conditions using SPIF.
All of the hardness data were used in predictions models; by sorting these data from
low to high or vice versa will affect the random selection of data as training and testing
values, which may make it challenging to distinguish the difference between the actual
values of hardness and the predicted values by various models in the figure. The HV of
points 1–4 is related to the feed rate, 5–8 is related to the spindle speed, 9–12 is related to
the tool diameter, and the rest is related to the four types of grease and one coolant oil.
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The significant change in the values is because these values were obtained from different
components formed in various process conditions. The goal is to employ all of these
data to derive different equations despite fluctuations in the data because the mentioned
parameter will have parametric values that can be changed in the equations; in the end, the
best equation is selected based on the predictive values of hardness that are closest to the
actual values with minimum error.
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Figure 10. Calculated and real hardness of SPIF components.

The outcomes achieved via the proposed equations versus the real data are presented
in Figure 11a–d. The solid line shows a hypothetical exact fit of actual and calculated
hardness values, over which data are superimposed. Data dispersion and deviation
are based on the ability of the selected equation to predict the hardness values with
minimum errors; i.e., a large number of data points that do not match the approximate
line (superimposed line) means high error, and a large number of points that match this
line means lower error. A satisfactory agreement between the experimental and calculated
values was observed for two equations, represented in Figure 11c and d. This figure
shows that the equations can appropriately estimate hardness. The connection between the
calculated and real data reveals that the calculated values were in agreement with values
from the real experiment.
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Figure 11. Actual and calculated values obtained with equations of (a) Linear Cross-Validation
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3.6. Contribution Analysis of Input Variables

Various methods can be used to evaluate the contribution of each parameter indi-
vidually and its effective rate on the output. To generate dependent variables, different
algorithms for determining the RI of different parameters were employed in this study as a
predictor of the predicted output, which is hardness. The algorithms used are Garson’s
algorithm [58] and the Most-Squares (MS) algorithm, which was proposed by Ibrahim [59].
The equations of the mentioned algorithms are defined in Equations (6) and (7). Both of
the algorithms are based on the connection weights of the neurons of the ANN model,
which was built for this purpose using MATLAB R2020a [60]. The network structures
consist of input, hidden, and output layers, and the number of neurons is (4-10-1). As a
mathematical tool for making predictions in machine learning for the purpose of training
multilayer networks, a backpropagation learning algorithm was used: this algorithm is
called “multilayer perceptron” (MLP), the concept of which was established by Werbos in
1974 and Rumelhart, McClelland, and Hinton in 1986 [61]. The Garson method has also
been used in many studies, as presented in [62–67]. Goh [68] applied the Garson algorithm
and claimed that RI estimation requires the partitioning of the hidden output weights into
elements connected to each neuron in the input layers. Nevertheless, a comparative study
of seven different algorithms included the above-mentioned methods to assess relative
importance, as outlined in [59]. The author asserted that the Most-Squares method is a
better method in comparison to the other methods, and the Most-Squares method seems to
outperform all the other methods, as described by the equations below.

RI(%) =

[
∑nh

j=1

(
yvj / ∑nv

k=1 ykj

)
hOj

]
∑nv

y=1

[
∑nh

j=1

(
yvj / ∑nv

k=1 ykj

)
hOj

] (6)

RI(%) =
∑nv

j=1

(
yi

vj − y f
vj

)2

∑nv
j=1 ∑n

v=1

(
yi

vj − y f
vj

)2 (7)

where nv is the number of neurons in the input layer, nh is the number of neurons in
the hidden layer, yj is the absolute value of connection weights between the input and
the hidden layers, hOj is the absolute value of connection weights between the hidden

and the output layers, ∑nv
j=1

(
yi

vj − y f
vj

)2
is the sum squared difference between initial

connection weights and final connection weights from the input layer to the hidden layer,

and ∑nv
j=1 ∑n

v=1

(
yi

vj − y f
vj

)2
is the total of the sum squared difference of all inputs.

The replacement of the input parameters with greater RI significantly influences the
outcomes as compared to changes in the parameters with lower RI values [66,67,69]. In
the current study, the input parameters are the feed rate, spindle speed, tool diameter
and different coolant oils, whereas the outcome is the hardness of the component formed
using SPIF.

With regard to the relative importance and weights analysis, the most significant
factor affecting hardness, as described in Figure 12a, is the feed rate with an RI of 31%,
followed by tool diameter with an RI of 25%. Another interesting observation, based on
Figure 12b, is a slight difference in the RI ratios. The tool diameter with an RI of 29% is
the most influential factor on hardness, followed by feed rate with an RI of 28%. Relying
on the Garson method to assess the contribution, it can be claimed that spindle speed
and viscosity have nearly the same RI, with values of 23% and 21%, respectively. When
the MS method was used, the relative importance of spindle speed and viscosity was
24% and 19%, respectively, the values of which express the effects on hardness. Based
on the above-mentioned facts, it can be asserted that the most significant parameters that
jointly influence SPIF hardness are the feed rate and tool diameter. A slight difference is
acceptable due to the difference in algorithms of the two methods and thanks to the small
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amount of data studied. It is worth mentioning that the Garson method partitions hidden
output connection weights into components associated with each input neuron and uses
absolute values of connection weights. At the same time, connection weights between the
hidden and the output layers were not used in the MS method: instead, connection weights
between the input and hidden layers were used.
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4. Conclusions

In this study, the effects of four process parameters on hardness were investigated
experimentally: the influences of feed rate, spindle speed, and tool diameter on hardness
were successfully analysed. Regression equations were established using both linear
and quadratic functions based on biases and weights generated from the ANN model of
influential forming parameters. Two different methods of RI were used to assess the effects
of SPIF parameters on outputs. The RI values of the Garson and Most-Squares methods
revealed that feed rate and tool diameter are influential factors, impacting hardness by
29.5% and 27% on average, respectively. Based on our study, the effects of four parameters
on hardness can be summarised as follows:

• An increase in the feed rate increases hardness when coolant oil is used. Hardness
decreases when grease is used (which happens by way of filling the grooves between
asperities with debris carried by the grease).

• The hardness of the component increases when tool speed increases.
• Increases in tool diameter result in a decrease in the hardness of components.
• Grease properties are certain to affect hardness values.
• The use of grease instead of coolant oil generates homogeneous hardness values at

different points of the same formed sheet.

From the first four findings, it can be concluded that in order to increase the hardness
of a SPIF component made of AA1100 aluminium alloy, high feed rates and high tool
speed have to be applied, and coolant oil must be used instead of grease if tools smaller
than 8 mm in diameter are used. A significant finding of the study is that the Biases and
Weights-Based model, jointly used with Multiple Regression, yielded the best calculation
of hardness. In the scope of the calculations, the results were assessed using different
validation metrics; in the case of the above-mentioned models, the lowest MRE values were
0.0367 and 0.0555, respectively.

5. Recommendations for Further Research

This research presented many issues that require further investigation. Given this, it
is worth researching the impact of the studied parameters on sheets of different materials
and thicknesses. It is essential to understand whether the mechanical properties of the
forming tool affect the hardness of the components or not. A detailed study and evaluation
of the different microstructures derived from the different processing conditions of the
ISF process should be investigated to examine the impact of the parameters on the grain
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size, which affects the component hardness. In addition, based on the authors’ knowledge,
tool shape and tool material are vital parameters, and the hardness of formed components
might be closely related to these parameters, which also merits investigation. Furthermore,
different cases should be analysed with different parameter values to test and validate the
developed regression equations.
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1. Trzepieciński, T.; Oleksik, V.; Pepelnjak, T.; Najm, S.M.; Paniti, I.; Maji, K. Emerging Trends in Single Point Incremental Sheet

Forming of Lightweight Metals. Metals 2021, 11, 1188. [CrossRef]
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