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Abstract: Controlling stability of dynamical systems is one of the most important challenges in
science and engineering. Hence, there appears to be continuous need to study and develop numerical
algorithms of control methods. One of the most frequently applied invariants characterizing systems’
stability are Lyapunov exponents (LE). When information about the stability of a system is demanded,
it can be determined based on the value of the largest Lyapunov exponent (LLE). Recently, we
have shown that LLE can be estimated from the vector field properties by means of the most
basic mathematical operations. The present article introduces new methods of LLE estimation for
continuous systems and maps. We have shown that application of our approaches will introduce
significant improvement of the efficiency. We have also proved that our approach is simpler and
more efficient than commonly applied algorithms. Moreover, as our approach works in the case
of dynamical maps, it also enables an easy application of this method in noncontinuous systems.
We show comparisons of efficiencies of algorithms based our approach. In the last paragraph, we
discuss a possibility of the estimation of LLE from maps and for noncontinuous systems and present
results of our initial investigations.

Keywords: numerical simulations; stability control; Lyapunov exponents; largest Lyapunov expo-
nent; nonlinear dynamics

1. Introduction

Lyapunov exponents are invariants characterizing numerous aspects of nonlinear sys-
tems’ dynamics from complexity, stability, loss of information about a system’s dynamical
state, the type and structure of attractor—manifold to which the solution tends. The full
spectrum of LE consists of a number of indicators equal to the analyzed system’s dimen-
sion. As Lyapunov exponents contain information about the limit of an exponential change
of initial perturbation for infinite time range, procedures of LE estimation are very time
intensive. Therefore, new methods which could increase the efficiency of LE estimation are
still being developed. Even a comparatively minor improvement of a method means huge
time savings. As far as investigations into the stability of dynamical systems are concerned,
an application of the largest LE is warranted. Since analyzing the stability of dynamical
systems is one of the most important challenges in science and engineering, we decided to
attempt a development of the LLE estimation method. In the article, we try to demonstrate
that our method is both simple and efficient. Additionally, we present the basics for its
development, allowing further increase of the efficiency and potential for application for
maps and systems with discontinuities.

While the first numerical study of the system behavior using LE dates back to 1964
and the work of Henon and Heiles [1], the LE estimation methods are still being im-
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proved [2–9], as LE’s are employed in many different areas of scientific and engineering
research, including: mechanical systems [5,10–13], electrical systems [14–16] bioengineer-
ing [17], refs. [18,19] astronomy and astrophysics [20,21], materials [22], neuronal models
investigations [23–25] optimal control [26], time series analyses [27], systems with different
types of discontinuities [28–31], systems with parametric oscillations and fluctuating pa-
rameters [32], systems with time delay [12,33–37], systems with hidden attractors [38,39],
chaotic fractional order derivative systems [40,41], hybrid-type systems [42,43] and syn-
chronization phenomena analyses [44–50]. Since LE’s are applied in such a wide spectrum
of scientific and engineering research, all the studies regarding properties of LE’s are
highly justified.

Recently, we have studied different aspects of the nonlinear systems’ control with
the use of different new nonlinear methods. We investigated the stability of continuous
systems [51] and systems with discontinuities [9,28], control system’s optimization [52],
synchronization phenomena of energy flow [48,53,54] and chaos-based control of energy
flow [55–57]. We have also investigated efficiency of our novel method of Lyapunov spec-
trum estimation in [58] and showed that it allows for significant computation time savings.

As far as investigations into the stability of dynamical systems are concerned, applica-
tion of the largest LE is warranted. Aproximately 60% of scientific research utilizes this
simpler and faster indicator. In view of the above, we decided to extend studies of LLE’s
properties and present the results of our new investigations.

2. The Method

Assume that a dynamical system is described by a set of differential equations in
the form:

dx
dt

= f(x, t) (1)

where x is a state vector, t is time and f is a vector field that (in general) depends on x
and t. Consider a situation in which the state vector x is disturbed by an infinitesimal
perturbation z (Figure 1). Evolution of the perturbation z can be determined by linearization
of Equation (1):

dz
dt

= f(x + z, t)− f(x, t) =
∂f
∂x

(x, t)z = U(x, t)z (2)

where U(x, t) = ∂f
∂x (x, t) is the Jacobi matrix obtained by differentiation of f with respect

to x. If the Jacobi matrix was constant, then the evolution of the perturbation z in directions
of subsequent eigenvectors would be specified by corresponding eigenvalues of that
matrix. However, as long as the system (1) is nonlinear, the Jacobi matrix varies along the
trajectory meaning that the evolution of the perturbation z cannot be directly predicted
from properties of the Jacobi matrix. In such a case, Lyapunov exponents are applied
to describe an average rate of expansion or contraction of a perturbation. Consequently,
Lyapunov exponents can be treated as generalization of eigenvalues [59] of the Jacobi
matrix. Moreover, according to [59] during an evolution of the system, eigenvectors
connected with the largest eigenvalue spans the linear subspace which tends to align with
the direction of the perturbation z(t). As such, all the analyses of LLE can be focused on
this direction. Following this eigenvalue idea, during numerical integration for each i -
step of n integration steps, Equation (2) in the actual zi direction can be presented in the
following scalar form:

dzi
dt

= λizi (3)

where λi tends to the largest eigenvalue of U(x, t), and its average value is equal to LLE.
Equation (3) can be expressed in the form:

dzi
zi

= λidt (4)
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Figure 1. Graphic illustration of the method.

In the case where the perturbation is normalized before each integration step, zi = 1:

dzi = λidt (5)

For n numerical integration steps, from Equation (5), averaged perturbation:

∑n
i=1 dzi

n
=

∑n
i=1(λidt)

n
≡ ∑n

i=1 dzi

n · dt
=

∑n
i=1(λi)

n
= LLE (6)

Finally,
∑n

1 dzn

t
= LLE (7)

From formula (7), one can see that LE can be treated as a dimensionless perturbation
change averaged per time unit. It constitutes the basis for the first of the new methods
(M1). As perturbation change dz is the scalar obtained from the differences between norms
of z before and after each integration step, the method can be applied in the estimation of
LLE from any given map. Additionally, it can be also applied for all the systems with any
given discontinuities.

Moreover, following Equation (3), when the perturbation is normalized before each
integration step:

dz
dt

= v(t) = λ (8)

As the value of λ has to be averaged during evolution of the system to obtain LLE, from
Equation (8), one can see that LLE equals the averaged speed v of perturbation changes:

v = LLE (9)

The above constitutes a basis for the second of the new methods (M2).
Incidentally, both of the methods can be treated as identical. They differ only in the

way the computed values are averaged during numerical integration. In the first one
(Equation (7)), the values of dz are summed up and then averaged by division by time t of
calculations. Additionally, regarding the averaged speed (Equation (9)), the actual speed is
computed and summed up and the final value of LLE is obtained by division by number n
of times of integration. As n·dt = t, both of the methods are equivalent.
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3. Numerical Simulations
3.1. Methodology

All the programs for conducting numerical simulations have been written in C++ by
means of the Code: Blocks environment. The Runge–Kutta method of the fourth order
(RK4) has been used to solve ordinary differential equations. The integration step has been
adjusted for each analyzed system separately, based on its own time scale.

We have studied perturbation change averaged per time unit and averaged speed v of
perturbation change and compared them with three other methods. All of the considered
algorithms of the LLE estimation require integration of the system (1) along with the
Equation (2) in order to obtain the state vector x(t) and the perturbation z(t) in subsequent
moments of time. Depending on the method, the vector z(t) was either normalized before
each integration step or normalized only in the case of excessively high or low values of
perturbation length z(t).

All the programs for estimation of the LLE share the same code for integration of
the systems (1), (2). The only difference between these programs is the method of the
LLE calculation.

3.1.1. Method 1 (M1)

In the first one, the value given by the Equation (7) is calculated after each integration
step. Value dz was obtained from the differences between norms of z before and after each
integration step. Vector z was normalized before each integration step.

3.1.2. Method 2 (M2)

In the second case, the value given by Equation (9) is calculated from projection of the
vector dz

dt onto the direction of normalized vector z according to formula:

λ =
dz
dt ·z
|z|2

=
dz
dt ·z
z·z (10)

As vector z was normalized before each integration step,

λ =
dz
dt
·z (11)

3.1.3. Method 3 (M3)

The third case involves application of the classical method [59] for vector z normalized
in the case of excessively high or low values of perturbation length z(t):

λ =
1
t

ln
z(t)
z(0)

(12)

3.1.4. Method 4 (M4)

The fourth case is application of the classical method [59] for vector z normalized
before each integration step:

λ =
1
t

ln z(t) (13)

3.1.5. Method 5 (M5)

The last case is the application of our effective method presented in [58]. In this case,
the value given by Equation (9) is calculated from the projection of the vector dz

dt onto the
direction of not normalized vector z according to:

λ =
dz
dt ·z
z·z (14)
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In simulation algorithms, conditions for termination of calculations have to be selected.
It seems reasonable to finish the estimation procedure if the obtained value of the LLE
stabilizes at some fixed value and does not display any relevant fluctuations. In order to
measure stabilization of the LLE value, the authors propose to define a buffer of a fixed size.
In this research, the buffer capacity equal to 100 was selected. After each calculation step,
the current value of the LLE was saved to the buffer. When the buffer was full, the standard
deviation of all the LLE values in the buffer was calculated. If the standard deviation
related to actual average LLE was below a specified threshold, the value of the LLE was
considered as stable and the calculations could be terminated. Failing that, the buffer was
cleared and the procedure repeated. The value of the selected threshold corresponded to
the desired accuracy of estimation. Lowering the threshold meant higher accuracy, but,
consequently, a longer estimation time. Considering the standard deviation threshold, two
methods, with relative and not relative deviation value, can be applied. They differ in
accuracy of LLE estimation depending on the dynamical state of the system. In the regions
of higher absolute LLE values for high accuracy, it proves advantageous to use nonrelative
deviation; in the case of quasiperiodic regions, relative value will produce more accurate
results. As insignificant differences in values in the periodic and chaotic regions are not of
considerable importance, and conversely, detection of the exact bifurcation point is one of
the most important considerations in nonlinear systems investigations, relative deviation
was applied in our simulations.

As regards the threshold of excessively high or low values of perturbation’s vector
z length, the normalization condition was associated with the product of the first two
coordinates of vector z. It allowed for introducing a condition, which does not burden
simulation procedures much.

3.2. Results of Numerical Simulations

In order to verify the presented methods of the LLE estimation, two typical nonlinear
systems have been analyzed. What follows are the results obtained for Duffing and Van
der Pol systems with external forcing. Since the details that follow are organized in the
same manner, in order to avoid repeating the same description, specification of the graphs
is provided only once below.

The first type of the graphs that follow provides the obtained values of the LLE along
with computation time lengths for all the investigated methods. Ratios of the program
execution times t1, . . . , t5 for all of the five methods represent the execution time of LLE
estimation for the specified bifurcation parameter and method, respectively. In the article,
we have associated uniform color schemes and types of curves with respective methods.

Subsequently, efficiency analysis is presented. Special efficiency indicators are in-
troduced. Let T1, . . . , T5 be sums of ti values, presenting the time measured from the
beginning of simulations to the moment a specified bifurcation parameter for each of the
five methods has been reached. Let us use these values to introduce efficiency indicators:

ηi =
Ti
T3

(15)

Relations of ηi, with respect to bifurcation parameter of the investigated algorithms
M1, M2, M4, M5 as compared to the classical method M3 are presented on subsequent
charts. The efficiency gain of the four investigated methods in comparison to the commonly
applied method M3 is appreciable.

In the following charts, dependence of LLE on bifurcation parameter is presented
along with focused analyses presenting the accuracy of LE estimation for three different
dynamical states: periodic, quasiperiodic and chaotic.
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3.3. Duffing Oscillator

The Duffing oscillator can be described by the following set of differential equations:{ .
x1 = x2.

x1 = −βx2 − αx3
1 + qcos(ωt)

(16)

Based on Equation (2), the Jacobi matrix is necessary to observe evolution of a pertur-
bation. For the Duffing oscillator, the Jacobi matrix is defined as follows:

U =

(
0 1

−3αx2
1 −β

)
(17)

The plot of the LLE for different values of the parameter q and graphs depicting
computation time ratios are presented in Figure 2.

Figure 2. Diagram of the largest Lyapunov exponent of the Duffing system and computation times
ti[s] graphs. α = 1, β = 0.05, ω = 0.47.

It is evident that the longest times occur in chaotic regions, and in instances when
the system is approaching bifurcation points. This is related to a longer time which is
required to stabilize LLE in a chaotic regime in the first case. In the second case, the main
reason was given above and is connected with computing relative or not relative standard
deviation in the procedure concluding LLE computations. Since minor differences in values
in the periodic and chaotic regions are not highly important, and, conversely, the detection
of the exact bifurcation point is one of the most important issues in nonlinear systems
investigations, relative deviation was applied in our simulations. Obviously, this increased
the time needed to satisfy the required LLE value stability condition.

The efficiency analysis of four methods M1, M2, M4, M5 with respect to M3 is pre-
sented in Figure 3. From the method of construction of the ηi indicators, one can deduce



Materials 2021, 14, 7197 7 of 16

that these values for the specified bifurcation parameter q show the average efficiencies of
computations of each method from the beginning of calculations until the parameter q is
reached. Therefore, the values ηi corresponding to the last values of bifurcation parameter
present all the average efficiencies of each of the methods. As is evident from Figure 3,
only method M4 has efficiency which is not superior to M3. This is to be expected, as M4
is based on M3 and utilizes normalization of perturbation vector in each integration step,
while, in M3, the normalization is carried out only in the cases of excessively high or low
values of perturbation’s vector z length. The final efficiency η4 is equal to 0.997. Both of the
new presented methods, M1 and M2, offer better efficiency than M3. Method M1, which
has the potential to be applied in non-continuous systems, offers the final efficiency η1
equal to 0.927. Therefore, on average, M1 saves about 7% of the computation time. The
effect will be even more pronounced when applied for the maps. Method M2 has the
final η2 equal to 0.853, so it saves on average about 14% of the computation time. Finally,
method M5 has the best average efficiency η2 equal to 0.780, so M5 saves on average about
22% of the computation time. The results for M1, M2, and M5 will be marginally inferior
for more complex systems, as shown in [58]. However, they will be invariably superior
to M3.

Figure 3. Diagram of efficiencies η1, η2, η4, η5, of LLE computations of the Duffing system. α = 1, β = 0.05, ω = 0.47.

Accuracy comparison of LLE estimation is presented in Figure 3, where the LLE
dependence on bifurcation parameter q on a low scale is shown. It can be seen that there
exists correspondence between the results of all five of the methods. Higher scale results
for the three different dynamical states of the system are presented in the upper part of
Figure 4. There is good agreement for M2 . . . M5 methods and only minor differences exist
for the M1 method in the periodic and quasiperiodic regions. As these are fourth order
level differences, they do not disqualify the M1 method, especially that its efficiency will
be considerably higher when applied in LLE estimation from maps.
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Figure 4. Diagram of accuracy of LLE computations, of the Duffing system. α = 1, β = 0.05, ω = 0.47.

3.4. The Van der Pol Oscillator

The Van der Pol oscillator can be described by the following set of differential equations:{ .
x1 = x2.

x2 = µ
(
−x1

2 + 1
)
x2 + x1 + qcos(ωt)

(18)

Jacobi matrix was used to simulate evolution of a perturbation according to Equation (2).
For the Van der Pol oscillator, the Jacobi matrix is defined as follows:

U =

(
0 1

−2µx1x2 + 1 µ
(
−x1

2 + 1
) )

(19)

The plot of the LLE for different values of the parameter µ, together with computation
times, is presented in Figure 5, whereas graphs depicting computation time ratios are
presented in Figure 6. For the same reasons as in the case of Duffing system, the longest
computations appear in chaotic regions and when the system is approaching bifurcation
points. These effects connected with the application of the relative deviation can be also
observed in the regions with high absolute values of negative LLE. As the demanded
accuracy in these regions decreases together with the values of LLE, one can see short
computation times in these areas. What is important and also evident from the lower
part of Figure 5, the influence of such variable accuracy on the estimated values of LLE is
negligible–no significant noise caused by this effect can be observed on the LLE graph.

It can also be seen in Figure 5 that, even in the Van der Pol system, its divergence
varies in time of oscillations—as its dumping is nonlinear, less time is needed to stabilize
LLE in chaotic and qusiperiodic regions than in the case of the Duffing system. Maximal
values of time for Van der Pol are approximately 120 [s], while, for the Duffing system, they
are approximately 160 [s]. As divergence of the system is equal to the Lyapunov exponents’
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sum, it would appear that the varying divergence could disrupt the stabilization process of
LLE values. Apparently, not only does it disrupt the process, but it speeds it up.

Figure 5. Diagram of the largest Lyapunov exponent of the Van der Pol system and computation
times ti[s] graphs. q = 12.95, ω = 4.64.

Figure 6. Diagram of efficiencies η1, η2, η4, η5 of LLE computations of the Van der Pol system.
q = 12.95, ω = 4.64.

The effects of variable divergence can be also observed in the values of LLE in periodic
regions. In the case of the Duffing system, the values of LLE are constant and equal to half
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of the divergence (the second Lyapunov exponent is equal to LLE). In the case of Van der
Pol, there exist no regions of constant LLE.

Efficiency analysis of the four methods M1, M2, M4, M5 with respect to M3 is presented
in Figure 6. For the same reasons as in the case of the Duffing system, it is only method
M4 that has no superior efficiency compared to M3. Both of the new presented methods,
M1 and M2, have better efficiency than M3. Method M1, which has the potential to be
applied in non-continuous systems, has the final efficiency η1 equal to 0.928 (Duffing
0.927). Therefore, on average, M1 saves about 7% of the computation time. The effect
will be even more pronounced when applied for maps. Method M2 has the final η2
equal to 0.867 (Duffing 0.853), so it saves on average about 14% of the computation time.
Finally, method M5 has the best average efficiency η2 Equal to 0.837 (Duffing 0.780), which
translates into an average of approximately 16% savings of the computation time. These
results confirm conclusions for the Duffing system.

Accuracy comparison of LLE estimation is presented in Figure 7. In the bottom section,
one can see LLE dependence on bifurcation parameter q on a low scale. Similarly to the
Duffing system, there exists a good agreement between the results of all five methods.

Figure 7. Diagram of the accuracy of LLE computations of the Van der Pol system. q = 12.95, ω = 4.64.

Higher scale results for the three different dynamical states of the system are presented
in the upper part of Figure 4. It can be appreciated that, unlike for the Duffing system, the
results instead merge and cannot be accurately determined.

4. Largest Lyapunov Exponent (LLE) from Maps

As it was proved in [60], with the use of our method, perturbation behavior of a
perturbation can be reconstructed based on the time series of the dynamical system, without
reconstruction of the Jacobi matrix. It can be combined with the approach presented above
and then applied for dynamical maps.

The first approach comes directly from application of the method M1. In this case,
the value of the sum of perturbations was averaged while the trajectory x(t) crossed the
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hyperplane π—see Figure 8. A time series comparison with the method M1 is shown in
Figure 9. It can be seen that estimation error is within the same range as for the method M1.

Figure 8. Graphical illustration of the method for maps.

Figure 9. Time series comparison.

The second approach requires an extended analysis. In Figure 8, a trajectory x(t) of
a dynamical system and the perturbed system trajectory y(t) can be seen. While these
trajectories cross the hyperplane π, one obtains perturbation z and then next perturbation
z1 from the next points of crossing trajectories through the hyperplane π. After projection
of the difference of the vectors z1 − z on to the direction of perturbation z, one obtains
a differential dz. It allows for substituting the lengths z and dz into Equation (4) to find
λ value. Alternatively, dz can be calculated from the difference of the norms of vectors
|z1| − |z|. However, in this case, the estimation error is expected to be higher. During
the evolution of the system, obtained values have to be averaged and then recalculated
according to the error correction analysis presented below.
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Error Correction Analysis

Between the trajectory crossing the hyperplane π, there were calculated i steps of
numerical integration. During numerical calculation of LLE, in each integration step, values
λi are obtained, and then averaged in time in order to obtain LLE. Following reasoning
that justified scalar notation of Equation (3), we can continue in the same vein in the case
of maps. Then, the value of the proposed indicator for a map is:

λmap =
zi − z0

z
(20)

Consider
zi+1 = zi + dzi and dzi = λizidt (21)

λmap

dt
= λ0 + λ1 + . . . + λi−1 + λi + δ (22)

where δ is LLE estimation error.
While the final value of LLE is an average of λi:

λmap

idt
=

λmap

T
= LLE +

δ

i
(23)

where T is the time from one to the next crossing the map. To simplify the analysis of the
correction error, let us start with i = 5. Then,

δ = dt(λ0λ1 + λ0λ2 + λ0λ3 + λ0λ4 + λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)+
+dt2(λ0λ1λ2 + λ0λ1λ3 + λ0λ1λ4 + λ0λ2λ3 + λ0λ2λ4 + λ0λ3λ4 + λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4)

+dt3(λ0λ1λ2λ3 + λ0λ1λ2λ4 + λ0λ1λ3λ4 + λ0λ2λ3λ4 + λ1λ2λ3λ4)
+dt4λ0λ1λ2λ3λ4

(24)

Finally, n-th power of dt is connected with
(

i
n− 1

)
combinations of products of

(n + 1) of λj , where: j = 0 . . . i−1. Obviously, λj are unknown while calculating λmap. In
order to estimate the value of the correction error, we have assumed that λj equals the
average value λav. Then:

δ =

dt
(

i
2

)
λav

2 + dt2
(

i
3

)
λav

3 + dt3
(

i
4

)
λav

4 + dt4
(

i
5

)
λav

5 + . . . + dti−2
(

i
i− 1

)
λav

i−1 + dti−1
(

i
i

)
λav

i

i
(25)

As λav = LLE and for nondimensional T = 1 i = 1
dt , we obtain the final correction

error CE:

CE =
i

∑
j=2

dtj
(

i
j

)
LLEj (26)

Finally, LLE can be estimated from the following dependence:

λmap

T
= LLE + CE (27)

The presented approach was applied to estimate LLE of the Duffing system
(Equations (16) and (17)). Time series of LLE obtained from numerical simulations can be
seen in Figure 10. As is evident, the estimated value of LLE = −0.0237. As the dumping
coefficient b = −0.05 and the system remains within the range of the periodic regime
LLE = b/2 = −0.025. Thus, the error of the estimated value is 0.0013. From Figure 11, it
can be seen that the correction error is within the range of 0.0025. After correction of the
obtained LLE value, finally LLE = −0.0262. It means that the error of the presented LLE
estimation is about 5%. However, as the value of LLE is computed only while the trajectory
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intersects the map, the method is expected to be much faster than the continuous ones. In
our next article, we will present an extended study of the presented method.

Figure 10. Time series of the largest Lyapunov exponent of the Duffing system. α = 1, β = 0.05,
ω = 0.47.

Figure 11. Correction error dependent on number of components (Equation (26)).

5. Conclusions

The present article introduces new methods of LLE estimation for continuous systems
and maps.

We have proved that the sum of dimensionless perturbations, averaged per time unit
of measuring the evolution of the system, constitutes the value of the LLE. We have shown
that this approach works also in the case of dynamical maps. Additionally, we have proved
that LLE can be also equated to the average speed of perturbation change.

The basic background of the methods was presented. The results were compared with
other methods. Investigations were carried out for two typical nonlinear systems. We have
shown a good agreement of the results obtained with the use of the new approaches with
respect to the other methods.



Materials 2021, 14, 7197 14 of 16

In the case of continuous systems, we have also compared efficiencies of algorithms
based on these methods. We have shown that the new presented methods have better
efficiency than the commonly applied M3. We have shown that M1 can save about 7%
of the computation time. Method M2 is faster and saves on average about 14% of the
computation time. We have also shown that the fastest method, M5, saves on average
about 16–22% of the computation time.

We have also discussed basic aspects of the application of the presented methods in
estimation of LLE from maps and for noncontinuous systems and showed the initial results
of our approach. An extended study of this section of the article will be presented in the
next publication.
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