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Abstract: In the presented study, LPBF 316L stainless steel tensile specimens were manufactured
in three different orientations for the analysis of anisotropy. The first set of specimens was built
vertically on the build platform, and two other sets were oriented horizontally perpendicular to
each other. Tensile test results show that mean Young’s modulus of vertically built specimens is
significantly less then horizontal ones (158.7 GPa versus 198 GPa), as well as yield strength and
elongation. A role of residual stress in a deviation of tensile loading diagrams is investigated as
a possible explanation. Simulation of the build process on the basis of ABAQUS FEA software
was used to predict residual stress in 316L cylindrical specimens. Virtual tensile test results show
that residual stress affects the initial stage of the loading curve with a tendency to reduce apparent
Young’s modulus, measured according to standard mechanical test methods.

Keywords: residual stress; additive manufacturing; finite element analysis; 316L mechanical properties;
mechanical testing; laser powder bed fusion (LPBF)

1. Introduction

The application of laser powder bed fusion (LPBF) in industry is an opportunity to
produce lightweight customized structures of complex shape with exceptional mechanical
performance. However, LPBF metals are very sensitive to a number of process parameters
and conditions, resulting in a great variation of possible mechanical properties depending
on process setup. The understanding of influence of numerous build parameters is key
to achieving the best properties, e.g., steels with high strength and ductility [1–3]. To
characterize the anisotropy of mechanical properties of produced material, many studies
use the analysis of specimens, built in different orientations [4]. In this case, an important
option is to study specimens machined from produced solid parts, or to test specimens in
“as-build” conditions without postprocessing.

Concerning the elastic properties, a strong correlation with the porosity level, as well
as with pore size distributions and morphology is established [5]. Garlea et al. [6] used
resonant ultrasound spectroscopy for elastic moduli measurement of LPBF 316L steel
with a variable porosity level. They found that 9% porosity corresponds to the Young’s
modulus of less than 140 GPa, while the standard value of about 200 GPa was achieved for
the porosity of 0.1%. Jeon et al. [7] explained anisotropy of 316L specimens through the
finite element simulation of solid media with real SEM-based porous microstructure under
different loading conditions, capturing different responses depending on pore orientation
and closing in compression. Mahesh et al. [8] developed a representative volume element
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(RVE) based on the statistical data from microstructure characterization, including grain
size, the crystallographic orientations, and porosity. They applied a crystal plasticity model
with damage evolution for the justification of the hypothesis of influence of the pore shape
on anisotropy.

However, some studies report a deviation of LPBF elastic moduli from the conven-
tional value of very low porosity [9], so a different interpretation is required. Niendorf
et al. [10] associated almost a double decrease of the Young’s modulus with {001} texture
alongside the build direction during processing. The effect of modulus decrease in build
direction was also observed in [11] for the IN738LC superalloy, and authors extracted
crystallographic texture from electron backscatter diffraction in order to estimate Young’s
modulus using Voigt, Reuss and Hill’s methods [12]. Another microstructural explanation
of anisotropy accompanied by higher mechanical properties in the horizontal direction in
terms of grain aspect ratio and orientation is presented in [13].

Charmi et al. [14] presented a detailed study of 316L anisotropy, reporting the highest
Young’s modulus of 225 GPa for horizontal specimens, and the lowest of 180 GPa for
vertical ones, measured by the resonance method. In the mentioned work, a tensile test
showed the maximum modulus of 215 ± 3 GPa in the vertical direction, and the minimum
was 192 ± 7 GPa in the vertical, but the authors were concerned about possible inaccuracies
of the extensometer configured for the large strains. The authors concluded that elastic
anisotropy is driven by a crystallographic texture, since it was captured using single-crystal
elastic constants as inputs for the MTEX [12] simulations. They indicate residual stresses
as negligible factors for elastic and plastic anisotropy. However, the specimens were
machined from the prismatic solids with consequent soft heat treatment, and presented
residual stresses are significantly lower than in the case of “as-build” properties.

Röttger et al. [15] studied vertically and horizontally oriented 316L specimens built
with different process parameters, and while the reduction of Young’s moduli in compari-
son with conventional steel was observed in many cases, they indicate neither texture nor
porosity as the only dominant factor. The authors also assume that reversible dislocation
movements cause a reversible elastic expansion contribution to the total elongation, so the
apparent Young’s modulus decreases. The authors also carried out a hot isostatic press-
ing of the horizontal specimen at 1150 ◦C, which led to a significant increase of Young’s
modulus from 165 GPa to 205 GPa. Eventually, they discussed mechanical properties with
respect to a reduced dislocation density, a homogeneous distribution of the elements, and a
crack-free microstructure after treatment. In contrast to some studies, the authors obtained
the highest modulus of as-build specimens in a vertical direction. The results with high
moduli of vertical specimens in as-build conditions can also be found elsewhere [16], with
some remarks about problematic measurement accuracy.

Zhang et al. [17] compared tensile diagrams of vertical and horizontal 316L dog-bone
specimens in as-build conditions, establishing higher Young’s modulus and yield strength
of horizontal ones. Nevertheless, their build method with preheating at 150 ◦C for vertical
specimens allowed them to surpass properties of horizontally oriented ones. The specimen
produced without preheating was significantly more distorted during processing, and the
authors identify that the effect of residual stress is evident for this case.

Heat treatment allows for the relieving of residual stresses, but a degree of influence
on microstructure may vary depending on temperature and holding time. In other words,
it is problematic to use a heat treatment with the aim of obtaining residual stress-relieved
specimens without an effect on the microstructure. The most common methods for residual
stress measurements are neutron [18,19] and X-ray diffraction [20]. Both methods require
identification of the microstructure in a stress-free state [21], and X-ray diffraction is
additionally strictly limited by penetration depth and sensitivity to surface treatment.

Chao et al. [22] investigated the evolution of microstructure, residual stress and resul-
tant mechanical performance of SLM (Selective Laser Melting) processed 316L after a heat
treatment over a wide temperature range of 400–1400 ◦C, reporting gradual microstructure
change with temperature increase. Suryawanshi [23] found anisotropy in tensile tests of
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specimens after 1 h of heat treatment at 700 ◦C, identifying that this level of treatment does
not correspond to a complete homogenization. Ronneberg et al. [24] used heat treatment of
LPBF 316L steel to isolate the influence of porosity and microstructure on the anisotropy
of mechanical characteristics, categorizing heat treatment in three ranges: recovery, ho-
mogenization, and annealing. The annealing fully recrystallizes the microstructure with
isotropic properties. The authors conclude that porosity does not cause anisotropic yield
behavior, which contradicts the aforementioned references [7,8].

While many studies do not consider the influence of residual stresses on mechanical
properties, Chen et al. [25] used the crystal plasticity model for the explanation of tension-
compression asymmetry through the simulation of residual microstresses [26] in SLM 316L.
Furthermore, experimental studies [27,28] show residual stresses close to yield strength,
which cannot be ignored in the case of mechanical loading.

Although many works found mechanical anisotropy in LPBF processed materials,
it was problematic for us to find a comprehensive study whether residual stress in test
specimens is capable of misrepresenting the characteristics of the material with a standard
test procedure. Since the presence of defects, pores and microstructural specificity mainly
affect yield and strength characteristics of the material, such an essential deviation of elastic
properties can be the key for understanding of main factors influencing anisotropy. This
motivates us to investigate the influence of residual stresses on anisotropy focusing on
elastic response, as the residual stresses are suggested to affect mainly the initial stage of
loading. A coupled thermo-mechanical finite element analysis of standard tensile specimen
during layer-by-layer processing is used for the computation of residual stresses [29–35].
This approach is associated with macro stresses, and ignores the physics of the melting
pool and consolidation, but is computationally effective to capture the residual stress
distribution in the scale of the specimen. The ‘block dump’ activation of elements is used,
where every block corresponds to tens of physical layers [36], and every newly activated
block evolves a temperature history, determined in the heat transfer analysis step. For
the validation of the modeling technique, an experiment with a partial cut of the as-built
cylindrical rod along the midplane was carried out, so halves of the rod deviated due to
residual stresses. Then, the proposed simulation of LPBF processing was performed for
the both vertical and horizontal orientations of tensile specimens for the evaluation of
residual stresses and their degree of influence on the mechanical behavior. In particular, a
tensile virtual test of specimens with the presence of residual stresses was conducted and
compared with a stress—free assumption focusing on Young’s modulus determination.

2. Materials and Experimental Methods
2.1. Selection and Preparation of the Specimens

An experimental set is schematically represented in Figure 1a and consists of a subset
of vertically oriented (“V”) specimens and two subsets of horizontally oriented tensile
specimens, indicated as “H_0” and “H_90”, depending on orientation in the plane of
build platform. In addition, one vertically oriented cylindrical specimen is used as a
validation experiment for the LPBF simulation, which is simpler than analysis of complex
cantilevers [37–39] and allows for the estimation of residual stresses of the tensile specimen
with a similar cylindrical gage zone. The X-Y square scan strategy with the base pattern
size of 4.0 mm is applied with the rotation of every subsequent layer by 90◦ with respect to
the previous one (Figure 1b), as described in [40]. Pattern formation is implemented in a
checkerboard order, as shown in the example of Figure 1c for the case of the H_0 specimen,
and the base square pattern is truncated following target geometry boundaries.

The geometry of cylindrical tensile specimens is selected according to ISO 6892-1
(Figure 2). While vertical specimens are appropriate for testing with the gage zone in
as-built conditions, i.e., without additional machining, horizontal specimens have to be
relieved from large building supports alongside the full length. Thus, all vertical specimens
were considered in as-built conditions and were not subjected to mechanical or thermal
processing, excluding separation from the build platform and threading for tensile fixture.
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In contrast, horizontal specimens were subjected to sufficient machining, which is further
considered in the context of residual stresses.
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The powder of 316L stainless steel (Oerlikon, Freienbach, Switzerland) was used
for the building of all specimens. A manufacturing process was conducted using the
3D metal printer TruPrint 1000 (Trumpf) with parameters according to manufacturer
recommendations for 316L steel, summarized in Table 1. The relative porosity of produced
parts analyzed with the optical microscope Axio Scope.A1 (Carl Zeiss, Jena, Germany),
according to ASTM E1245, does not exceed 0.1%.



Materials 2021, 14, 7176 5 of 17

Table 1. Build parameters.

PBF Parameter Values

Laser power 113 W
Laser spot diameter 55 µm

Hatch spacing 80 µm
Layer thickness 20 µm

Laser scan speed 750 mm/s
Gas speed (Ar) 2.5 m/s
Oxygen level <0.3 at. %

Pressure in chamber 1 bar

2.2. Tensile Tests

Tensile tests were carried out in accordance with ISO 6892-1 standard on an Instron
5969 machine. The loading rate was 0.001 s−1. Strain measurements were done using the
virtual extensometer method from a digital image correlation system (Correlated Solutions,
Irmo, SC, USA) based on a gauge length of 36 mm. Full experimental tensile diagrams
for all three subsets are shown in Figure 3, and an initial part of the diagrams below 1%
strain is presented in detail in Figure 4. Notice that diagrams in Figure 4 do not depict
raw data directly from the testing system, but rather the refined one from the noise using
the filtration procedure and shifted to zero stress point due to a slight initial offset. The
mechanical characteristics are summarized in Table 2 for vertical (“V”) set, in Table 3 for
“H_0” set, and in Table 4 for “H_90” set.
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Table 2. The measured mechanical properties of “V” set.

Spec. # Young’s Modulus, GPa YTS, MPa
(0.2% Offset) UTS, MPa Elongation at

Fracture, %

Reduction of
Cross-Sectional

Area at Fracture, %

V_1 160 535 630 41 48
V_2 163 535 615 37 46
V_3 157 530 610 38 43
V_4 161 535 615 46 42
V_5 159 525 605 36 40
V_6 152 510 600 36 41

Average 158.7 528.3 612.5 39.0 43.3
Standard deviation 3.8 9.8 10.4 3.6 3.1

Table 3. The measured mechanical properties of “H_0” set.

Spec. # Young’s Modulus, GPa YTS, MPa
(0.2% Offset) UTS, MPa Elongation at

Fracture, %

Reduction of
Cross-Sectional

Area at Fracture, %

H_0_1 200 630 725 32 58
H_0_2 198 615 710 31 55
H_0_3 201 610 705 30 56
H_0_4 185 610 705 30 54

Average 196 616.2 711.2 30.8 55.8
Standard deviation 7.4 9.5 9.5 0.8 1.7

From tensile test results in Figures 3 and 4, the difference of mechanical response
between horizontal and vertical sets is clearly observed, while there is no significant
difference between H_0 and H_90 sets of specimens. Moreover, a variation of characteristics
between the specimens of the vertical set is higher. The average Young’s modulus of vertical
specimens is 158.7 GPa, which is significantly lower than the moduli of horizontal sets of
196 GPa and 199 GPa, whose values are typical for conventionally produced steel. Yield
tensile strength (YTS) and ultimate tensile strength (UTS) characteristics of horizontal sets
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also exceed ones for the vertical set. The ductility of vertically built specimens is slightly
higher and is within 5%.

Table 4. The measured mechanical properties of “H_90” set.

Spec. # Young’s Modulus, GPa YTS, MPa 1234567
(0.2% Offset) UTS, MPa Elongation at

Fracture, %

Reduction of
Cross-Sectional

Area at Fracture, %

H_90_1 199 615 705 29 52
H_90_2 211 620 705 30 58
H_90_3 188 605 695 28 56
H_90_4 198 610 700 28 49
Average 199.0 612.5 701.3 28.8 53.7

Standard deviation 9.4 6.5 4.8 0.8 4.3

2.3. Validation Experiment

The cylindrical rod with a diameter of 8.0 mm and length of 80.0 mm was built
vertically. After removal from the chamber, the rod was sectioned from the build plate,
and then a cut by 0.2 mm wire EDM along the midplane was carried out starting from the
bottom base (Figure 5). An Accutom-100 machine with a cooling water system was used
for the cut. The tip of the cut is located 5.85 mm away from the top base of the cylinder.
After the cut, two pairs of corner vertices on the bottom surface deviated to the distances
of 7.84 mm and 8.17 mm from each other, as shown in Figure 5.
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3. Simulation Approach
3.1. General Details

Simulation of the LPBF process is implemented via a special module of the Abaqus
FEM software for additive manufacturing. The first step involves transient heat transfer
FEA during layer-by-layer activation of elements, which corresponds to deposition of the
powder layer, with a subsequent SLM process. The scheme of the approach is shown in
Figure 6. Recent studies show an opportunity to replace a detailed modelling of laser
scanning on a microscale level by a point-based heat source concept and using a block-
dumping approach to reduce unfeasible computational time [36]. A mesh sensitivity study
of particular cases shows [41], that a Gauss-type [42] or Goldak laser beam model can be
reasonably replaced by an equivalent point-based heating source with a great reduction
of the number of elements in the mesh, so a detailed simulation of local instantaneous
temperature peaks under laser scanning is not critically important for the accuracy of
mechanical analysis step.
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The obtained thermal history during the build process is used for the static mechanical
analysis step with the similar activation of elements. The element is initially activated at a
certain ‘stress-free’ temperature Tsf, and is cooled down to a temperature obtained on a
corresponding increment of thermal analysis step. Thus, the temperature of the element
in the static analysis step after activation evolves according to the temperature history
from the thermal step, and element shrinkage causes internal stresses. The ‘stress-free’
temperature Tsf has no clear physical definition, and commonly is defined as the melting
temperature, but it can be numerically or experimentally calibrated [41]. The lack of data for
modelling, e.g., mechanical characteristics at an elevated temperature, can be resolved by
the use of a combination of conventional properties taken from the literature and measured
on-site for produced material.

Considering the mechanical analysis step, the process is driven by thermal shrinkage
with the temperature change ∆T, inducing thermal strain εthermal . It requires the input
of temperature dependencies of elastic moduli and thermal expansion coefficient α of
isotropic material, which in this work are taken from [43] for conventional steel. Eventually,
the basic relations are formulated as follows:

εthermal = α∆T, (1)

εtotal = εelastic + εplastic + εthermal , (2)

σ = C(T) : εelastic (3)

fyield =

√
2
3

S : S − σ0
(
εeq, T

)
, (4)

where fyield = 0 is yield condition, elastic stiffness tensor C(T) is temperature-dependent,
εeq is equivalent plastic strain, S is the stress deviator used in von Mises yield criterion
with the yield stress σ0, defined as a function of εeq and temperature T. In this work de-
pendencies for σ0

(
εeq, T

)
in Equation (4) for T = 20 ◦C are based on experimental diagrams

for horizontal specimens (Figure 3) with transformation into true stress-strain dependency.
The choice of diagrams only for horizontal specimens is questionable, but is caused by our
hypothesis of the significant residual stresses in vertical specimens, which misrepresent ex-
perimental results. In other words, mechanical characteristics from residual stress-relieved
specimens are more appropriate. This statement will be discussed further in this work with
the support of a validation experiment. Similarly, Young’s modulus of 198 GPa is used for
the elastic tensor formulation.

There is a lack of experimental data on hardening at an elevated temperature for the
316L steel. Therefore, temperature scaling is assumed to be the same as for conventionally
manufactured 316L material [43] and is defined with respect to melting temperature
Tm = 1400 ◦C and reference temperature T0 = 20 ◦C. The diagrams used in the simulation
are presented in Figure 7.
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3.2. Finite Element Model

Following the mentioned block-dumping approach, the element height for meshing
of the cylindrical rod is chosen as 0.4 mm, which corresponds to ~20 physical layers in
one element. The number of hexagonal elements in a cross section is 390, so the total
number of elements in the model for the entire cylinder with a height of 80 mm is 78,000
(Figure 8a,b). A preliminary heat transfer modelling showed that after deposition of each
layer the conduction of heat occurs rapidly. This effect is caused by a simple geometry and
a sufficient time period between layer deposition for the heat outflow. Thus, the thermal
gradient within the sample and substrate is relatively small in comparison with a great
temperature drop from the ‘stress-free’ state instantly after laser heating. For this reason,
it is effective to skip a direct thermal analysis and to use the ‘eigenstrain’ method. This
method involves only the static mechanical analysis for sequential shrinkage of every
newly activated layer from Tsf = 850 ◦C to the temperature of the substrate at the end
of the pattern scanning, equal to 80 ◦C (Figure 8b). The proposed assumptions allow
us to ignore the build platform in the analysis, so the bottom surface of the cylinder is
assumed to be fixed in all degrees of freedom. In addition, direct thermal analysis is faced
with uncertainties in the heat transfer parameters, which are difficult to measure in the
manufacturing chamber, e.g., convection and emissivity.

The characteristic element size in FEM of the vertical tensile specimen is 0.4 mm, the
length is 40 mm and the diameter is 6 mm to match gage dimensions of the tensile specimen
(Figure 9a). In contrast, the horizontally built tensile specimen suggests a considerable
machining after LPBF processing due to the adjustment to the build platform alongside
the specimen (Figure 9b). In this case, the only analysis is residual stress prediction in the
specimen of such form directly after sectioning from the built platform, since the simulation
of the machining is not rational. The scheme of element activation is shown in Figure 1c,
following the base square pattern of 4 mm.
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4. Simulation Results
4.1. Simulation Results of Validation Problem

Distribution of residual stresses in the cross section of the build cylindrical rod after
separation from the build platform and before the longitudinal cut is shown in Figure 10.
The complex stress state is clearly observed: the radial and circumferential stress compo-
nents reach relatively high values, but they are lower than the tensile yield limit. However,
the axial stress component along the build Z-direction is significantly above the plasticity
limit, and the region in the vicinity of the outer surface is in tension, while the interior is
in compression. It is interesting to note that this distribution is opposite to the quench-
ing process, when, due to the nonuniform cooling, areas near the outer surface become
compressed, and the interior is under tension [44]. Peak values of shear components
are about one order of magnitude less and are not presented. The equivalent von Mises
stress distribution in Figure 10d shows that plasticity prevails within the entire part with a
sharp transition zone between the outer and interior zones. These results are qualitatively
similar to the residual stress distribution published in [45,46], including experimental
measurements.
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As is shown in Figure 11, the stress distribution within the as-build part is similar in
every cross section, which is located sufficiently far from the end faces, and affected by
boundary conditions. Thus, a transversal cross section in the middle of the rod is selected
to study a stress state along the radial path, as shown in Figure 10. To characterize the
stress state, a triaxiality parameter ξ = −p/σ0 is introduced, where p = −σii/3 is the
hydrostatic stress, and σ0 is the von Mises stress. It can be concluded from the plots of
Figure 11 that the triaxiality parameter is strongly driven by uniaxial stress σZ. Moreover,
the interval 2–6 mm from the path is in a predominant biaxial compression state (ξ ≈ −0.6),
and outer regions are under the condition of biaxial tension (ξ ≈ +0.6).
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Figure 11. Stress characteristics along the diametral path.

After the build process has been modelled, a simulation of longitudinal cut was
performed by the removal of a row of elements along the midplane. In addition, the
fixed boundary condition on the bottom face was released in FEM, which corresponds
to sectioning from substrate. This boundary condition release was compensated by the
introduction of an artificial inertia force to satisfy equilibrium. The thickness of the removed
row is 0.4 mm and is in approximate accordance with the thickness of the eroded material
in the experiment. Element removal was performed in static assumption, and there are no
significant differences between the instant cut of the entire row or in element-by-element
removal. After the cut, the axial stresses were slightly decreased, as shown in Figure 12.
The distance between the deviated vertices on cut surface is 7.9 mm (Figure 13), and almost
exactly coincides with the experiment (Figure 5).
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4.2. Residual Stress in Horizontal Specimen

The von Mises equivalent stress distribution within the longitudinal section of the
horizontally built specimen (Figure 9b) after release from the build platform is shown
in Figure 14. Compared with the results of Figure 10 for the vertical specimen, one can
conclude that the overall stress level is drastically lower in this case. The major region
of the built part is in the range of equivalent stress at 200–300 MPa, and only the thin
region near the outer surface is in a stress state close to the yield limit. In addition, the real
specimen was machined in order to obtain circular shape, so the final expected residual
stresses decreased. The visible periodicity in distribution is caused by the checkerboard
scanning strategy.
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4.3. Virtual Tensile Test of Vertical Specimen

To study the effect of residual stresses in the vertical specimen on the loading diagram,
the virtual tensile test was performed using the proposed model. After simulation of layer-
by-layer processing and separation from the build platform, boundary conditions were
re-applied in restart analysis to simulate tension. The simulation results of tension without
consideration of residual stresses are also presented. A comparison of tensile loading
curves within 1% elongation were obtained through simulation and experiment, and are
shown in Figure 15. Notice that the presented curve for residual stress-free conditions
(the green line of Figure 15) is also associated with the test for horizontal specimens, since
it is used as an input for simulation. The presence of the residual stress after the build
process causes the reduction of the slope angle of the loading diagram at the initial stage
of loading in comparison to the analysis of the residual stress-free specimen. In other
words, the residual stress affects the measurements of Young’s modulus, and the presented
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virtual test gives the approximate value of 150 GPa, while the experimental mean value is
158.7 GPa for the vertical specimen. The simulation under residual stress-free assumption
gives the one used in the model, i.e., 198 GPa, which is a common result for conventionally
produced steel.
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The evolution of total axial stress in the cross section of the test sample is illustrated for
three selected levels of load. The presented stress value corresponds to a sum of residual
stress in the axial direction, and for the axial stress due to external tensile force. The
compression of the interior of the specimen is gradually compensated by the increase of
external tension and a reduction of tensile stress near the outer surface, so at 1% tensile
strain only a weak stress gradient remains (point 3 of Figure 15).

5. Conclusions

In this study an established modelling approach was implemented to estimate residual
stresses in cylindrical 316L specimens, built in horizontal and vertical orientations. The
validation experiment with the distortion of a specimen with cut was performed and
compared to simulation. The simulation revealed significant residual stress components
with values near the yield limit for the vertically built specimens. The overall residual
stress level in horizontal specimens is at least three times lower than for the vertical one. A
virtual tensile test of the cylindrical sample was performed with the assumption of residual
stresses present after the build process. The apparent Young’s modulus, measured in the
specimen with the presence of residual stresses, is reduced to 25% in comparison with the
value of 198 GPa at room temperature, obtained with a residual stress-free assumption.
The physical tests of 316 steel specimens show a similar reduction of Young’s modulus for
vertically oriented specimens, and obtained plasticity characteristics are also reduced. The
horizontal specimens were sufficiently affected by machining due to the removal of the
build substrate, and this is considered as an additional stress relieving factor. Thus, the
residual stress is a potential explanation of the apparent anisotropy of elastic properties,
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and it should be considered in conjunction with other factors of anisotropy, such as porosity
and microstructure. Moreover, this fact complicates the use of “in-house” mechanical
characteristics for the simulation, since in the presented case, test results can be incorrectly
interpreted as the true anisotropy of mechanical properties.
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