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Abstract: In reinforced concrete structures, the fiber-reinforced polymer (FRP) as reinforcing rebars
have been widely used. The use of GFRP (glass fiber-reinforced polymer) bars to solve the steel
reinforcement corrosion problem in various concrete structures is now well documented in many
research studies. Hollow concrete-core columns (HCCs) are used to make a lightweight structure
and reduce its cost. However, the use of FRP bars in HCCs has not yet gained an adequate level of
confidence due to the lack of laboratory tests and standard design guidelines. Therefore, the present
paper numerically and empirically explores the axial compressive behavior of GFRP-reinforced
hollow concrete-core columns (HCCs). A total of 60 HCCs were simulated in the current version of
Finite Element Analysis (FEA) ABAQUS. The reference finite element model (FEM) was built for a
wide range of test variables of HCCs based on 17 specimens experimentally tested by the same group
of researchers. All columns of 250 mm outer diameter, 0, 40, 45, 65, 90, 120 mm circular inner-hole
diameter, and a height of 1000 mm were built and simulated. The effects of other parameters cover
unconfined concrete strength from 21.2 to 44 MPa, the internal confinement (center to center spiral
spacing = 50, 100, and 150 mm), and the amount of longitudinal GFRP bars (ρv = 1.78–4.02%). The
complex column response was defined by the concrete damaged plastic model (CDPM) and the
behavior of the GFRP reinforcement was modeled as a linear-elastic behavior up to failure. The
proposed FEM showed an excellent agreement with the tested load-strain responses. Based on
the database obtained from the ABAQUS and the laboratory test, different empirical formulas and
artificial neural network (ANN) models were further proposed for predicting the softening and
hardening behavior of GFRP-RC HCCs.

Keywords: glass fiber-reinforced polymer (GFRP); hollow concrete-core (HCC); axial load-axial
strain; confinement of columns; ductility; hardening behavior

1. Introduction

The use of glass fiber-reinforced polymer (GFRP) rebars as a replacement for the
internal steel reinforcement is an excellent solution to have durable reinforced concrete (RC)
structures in aggressive environments [1,2]. Therefore, many studies have concentrated on
understanding and simulating the axial behavior of concrete members with internal FRP
bars (i.e., [3–14]). Among them, hollow concrete-core columns (HCCs) are widely used in
civil infrastructures including bridge piers, ground piles, and utility poles to minimize the
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total weight and reduce costs. HCCs are also considered in practice to increase the strength-
to-mass ratio of structures compared with solid concrete columns [15–18]. Designing
HCCs with adequate strength and ductility, however, requires careful consideration of
important variables, such as the details of the hoop confinement and compressive strength
of concrete [15,19–21]. HCCs tested in [15] with a larger spacing of hoop reinforcement
result in brittle failure, premature buckling of vertical bars, and reduced deformation.
Lee et al. [18] reported that decreasing the spacing of the lateral reinforcement from 80 mm
to 40 mm enhanced the ductility by 20% and minimized the damage associated with the
inner concrete core. In addition, Mo et al. [19] found that when the concrete compressive
strength increased from 30 MPa to 50 MPa, it yielded stiffer resistance in compressed
HCCs, but with up to a 50% reduction in deformation capacity because of faster crack
propagation and concrete splitting. Based on these researches, the ductility capacity
of HCCs is significantly influenced by hoop confinement details, and the failure mode
depends largely on the grade of concrete compressive strength.

Moreover, one of the major aspects influencing the seismic capacity of HCCs is the
aspect ratio (length to cross-section depth). The failure pattern and the mechanical per-
formance of the hollow concrete-core columns depend on the effect of the amount of
longitudinal reinforcement [22,23]. Various researches examine the mechanical perfor-
mance of HCCs with internal steel bars under different loading conditions [18,19,22–28].
These studies concluded that the structural behavior of HCCs depends on the ratio of inner
to the outer diameter of the HCCs (Di/D), axial-loading ratio, amount of longitudinal rein-
forcement, and the amount of the lateral confinement. Furthermore, when the Di/D was
increased while keeping the other variables constant, the ductility of steel-reinforced HCCs
was decreased. Due to the brittle failure of HCCs under shear stresses, a sudden decrease
in the axial compressive strength capacity occurred at the ultimate condition [29,30]. The
reduced axial compressive strength was more prominent for the HCCs with larger inner-to-
outer concrete-core diameter ratios [18,20]. Due to buckling failure and limited axial strains
of steel, the axial performance of HCCs was not examined in the post-loading stage. Instead,
when the steel bars start to buckle, the crushing of concrete material occurs [16,31,32].

On the other hand, increasing the inner-to-outer concrete-core diameter ratio in the
GFRP-RC HCCs changed the columns’ failure pattern from brittle to ductile as reported
by AlAjarmeh et al. [6]. After spalling of concrete cover, the failure in the HCCs with
inner-to-outer concrete-core diameter ratio of 0.16 or 0.26 was initiated by the vertical
and lateral GFRP-reinforcing rebars, while the failure of the HCCs with inner-to-outer
concrete-core diameter ratio of 0.36 was initiated by crushing of the hollow concrete part.
AlAjarmeh et al. [6] found that the GFRP HCCs performed better than steel-reinforced
HCCs with a higher inner-to-outer diameter ratio because of the higher contribution of
GFRP bars to the overall stiffness of the column. The GFRP HCCs exhibited 11% higher
axial capacity than the steel-reinforced HCCs. The GFRP-RC HCCs showed 22% and
54% higher ductility and confinement efficiency than the steel RC HCCs, respectively.
In addition, AlAjarmeh et al. [5] found that the increase in the diameter and number of
longitudinal GFRP bars increased the strength and ductility of the GFRP HCCs.

Many analytical models for predicting the strength and ductility of steel-confined
concrete are now available in the literature [33–35]. However, designing concrete structures
with GFRP bars is not straightforward by using steel-reinforced concrete design formulas
and guidelines due to the different properties of FRP bars compared to steel. This is because
concrete columns confined by steel hoops behave differently from columns confined
by internal FRP hoops, and if these models are applied to columns with internal FRP
reinforcement, the strength, strain, and structural response may be inaccurately estimated.
One of the challenges that often face engineers is to estimate the maximum compressive
strength and ductility capacities of FRP-reinforced concrete columns accurately. This can be
achieved using destructive methods through laboratory tests or non-destructive methods
such as analytical design models. A monotonic stress-strain model as an envelope response
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of the cyclic stress-strain model is also necessary for the seismic analysis of FRP-confined
RC columns based on fiber approach [36] or finite element model [37,38].

Therefore, many researchers worked on the finite element modeling (FEM) of GFRP
or CFRP confined solid concrete columns under different loading conditions [39–46]. These
researches confirmed that the FEM simulation can capture the failure pattern and the
structural performance of FRP-RC columns accurately. The FEM explicitly deals with
all the deficiencies of the mathematical models. The FE simulations can save time and
cost as compared with tests by creating suitable computational models that can simulate
the complex damaging behavior of FRP composites accurately [47]. To simplify the FEM
and to speed up the FE simulations, it is essential to make some assumptions, but it is
also important to implement the actual experimental testing environments in FEM. It is
suggested to overcome the model’s complexities by choosing the accurate types and sizes
of elements to significantly reduce the simulation period and to improve the performance
of the numerical findings. Therefore, as stated in Ref. [48] the FEM using ABAQUS
software [49] with strong background knowledge is the most efficient tool to solve various
engineering problems.

The recent work conducted in [50] consists of two aims: the first aim is to propose a
new FEM model for predicting the axial structural performance of HCCs reinforced with
GFRP bars, and the second aim is to propose the new empirical models for predicting
the first and second peak loads of HCCs reinforced with GFRP rebar. To achieve the
major goal of the present paper, a finite element model for HCCs reinforced with GFRP
bars was constructed using the ABAQUS software [49]. This model was calibrated for
various material and geometric parameters of the test specimens using experimental results
from [5]. To date, all the available models regarding FRP-RC hollow columns have not
yet, however, considered the effect of several test variables as discussed previously such
as lateral spiral spacing, concrete compressive strength, and the ratio of inner to the outer
diameter of the HCCs on the failure mode, load-displacement behavior, ductility, and
strength of hollow concrete-core columns.

In addition, authors are now using the power of advanced learning methods in
civil infrastructure systems, and many studies that successfully estimate the mechanical
performance of steel- or FRP-confined concrete have been published (i.e., [51–56]). Among
the studies, Oreta and Kawashima [51] have used artificial neural networks (ANN) to
estimate the axial strength and strain of compressed steel-confined concrete columns of
circular sections. An ANN model with input variables including the concrete‘s compressive
strength, the concrete-core diameter, the column height, the longitudinal reinforcement
ratio, and the effectiveness of hoop confinement was reported. The ANN models are shown
to be very important in simulating physical processes. The ANN models are also found to
provide better results compared with some Regression Analysis (RA) models.

The present paper aims to provide a full stress-strain model based on the available
experiments and findings of GFRP-RC HCCs. The model consists of different approaches
of ANN modeling and regression-based models. The database used in the analysis contains
the experimental results of axial compression tests on 17 circular specimens reinforced with
internal longitudinal GFRP rebars and spirals. It is to be noted that the available studies on
GFRP HCCs [5–7] have considered a limited range of inner-to-outer core diameter ratios.
These diameters were chosen based on commercially available PVC pipes and resulted in
inner-to-outer concrete-core diameter ratios similar to those studied in [16,32,57,58]. This
model was, therefore, calibrated for various material and geometric parameters of speci-
mens using the load-strain results in [5–7] as well as new test specimens constructed with
the help of ABAQUS software [49]. Due to limitations in the column tests, a full database
of 60 FRP-reinforced concrete members was obtained using Finite Element Analysis (FEA)
ABAQUS to secure several objectives of the present paper. An easy-to-use approach is
then provided for predicting the compressive strength and strain of FRP-RC columns. The
proposed models for the design of FRP-confined RC columns can guarantee a safe design
in regards to new column parameters.
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2. Research Significance

The design of FRP-reinforced concrete members under flexural loading has been
documented in the literature [59–61]. However, it is recommended by these guidelines
to ignore the axial capacity contributed by the longitudinal FRP bars in the section under
compression. The use of FRP rebars as reinforcement in concrete members under compres-
sion is not suggested by the ACI code [59] due to uncertainty and inadequate information
regarding the variation in properties of compressed FRP bars. CSA-S806-12 [60] suggests
using the FRP bars in compression members without taking into account the compression
contribution of FRP bars for designing. The reinforcing GFRP bars in concrete columns
were investigated in several experimental studies in the last period (i.e., [60,62–69]), which
led to the introduction of many theoretical and numerical models. Table 1 shows a sum-
mary of these models. The existing tests and proposed models confirmed that when the
axial capacity of the longitudinal FRP rebars is ignored, the overall column capacity is
underestimated [3,70]. According to Tobbi et al.’s [3] study on GFRP-RC columns, the
contribution made by the longitudinal FRP rebars at the peak loading condition was 35%
of their maximum strength in tension. Elmessalami et al. [71] have recently reviewed and
analyzed the tests available on FRP-reinforced concrete columns and found that the GFRP
rebars provide an enhancement of about 3 to 14% at peak load and that CFRP bars give
6 to 19% mainly based on the FRP reinforcement ratio. Considering these findings and
determining the axial compression capacity of the column by taking the axial strain of
the FRP rebars equal to that of the unconfined concrete at peak load (i.e., 0.003) reveals
excellent agreement with the test findings [11].

Table 1. Summary of the design equations available in the literature for FRP-RC columns.

Reference Proposed Equation FRP Predicted
Condition

Estimated Errors

AAE (%) MSE (%) SD (%)

CSA-S806-12 [60] pn1 = 0.85 f ′c
(

Ag − AFRP
)

– Peak
Ultimate

15.74
18.01

2.78
5.27

0.31
2.78

ACI318-14 [62] pn1 = 0.85 f ′c
(

Ag − AFRP
)

– Peak
Ultimate

15.74
18.01

2.78
5.27

0.31
2.78

Tobbi et al. [3] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.35 fFRP AFRP G Peak

Ultimate
28.10
28.65

9.06
11.07

1.22
4.19

Afifi et al. [4] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.35 fFRP AFRP G Peak

Ultimate
28.10
28.65

9.06
11.07

1.22
4.19

Afifi et al. [65] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.25 fFRP AFRP C Peak

Ultimate
15.57
19.92

3.10
5.55

0.70
3.61

Mohamed et al. [66] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.002EFRP AFRP G Peak

Ultimate
5.44

13.75
0.43
3.09

0.31
3.00

Maranan et al. [67] pn1 = 0.9 f ′c
(

Ag − AFRP
)
+ 0.002EFRP AFRP G Peak

Ultimate
4.77

14.70
0.35
3.25

0.34
3.34

Hadhood et al. [63] pn1 = α1 f ′c
(

Ag − AFRP
)
+

0.0035EFRP AFRP(α1 = 0.85− 0.0015 f ′c ≥ 0.67)
C Peak

Ultimate
6.02

13.04
0.48
2.77

0.49
2.87

Hadhood et al. [63] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.003EFRP AFRP C Peak

Ultimate
5.31

14.16
0.43
3.09

0.38
3.16

Hadhood et al. [64] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.0024EFRP AFRP C Peak

Ultimate
4.99

13.77
0.34
3.00

0.34
3.06

Xue et al. [68] pn1 = 0.85 f ′c
(

Ag − AFRP
)
+ 0.002EFRP AFRP G Peak

Ultimate
5.44

13.75
0.43
3.09

0.31
3.00

Note: AFRP = area of FRP longitudinal reinforcement; Ag = gross area of column section; EFRP = tensile Young’s modulus of the FRP bars;
fc’ = compressive strength of unconfined concrete; fFRP = FRP tensile strength; Pn1 = nominal capacity corresponding to first peak load.
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However, it is to be noted that all of these experimental tests and theoretical investiga-
tions have been focused largely on solid FRP-reinforced concrete members. Furthermore,
the proposed models mainly estimate the maximum peak axial capacity in the elastic region
of the axial load-axial strain response. Compared with GFRP-reinforced solid concrete
columns, the hollow columns with internal longitudinal and lateral GFRP reinforcement
exhibited significantly different failure patterns and structural responses [6]. Due to the
reduced effective concrete area, the hollow columns failed at a reduced axial load compared
with that of the solid columns. In this paper, to gain sufficient knowledge on the effect of
the published models on stress predictions, Table 1 provides clear comparisons between
the estimated errors (AAE, MSE, SD) obtained by comparing the theoretical predictions
with the results of 60 HCCs provided in the present paper.

Generally, the comparisons of Table 1 reveal that all models that consider the strain
in FRP bars to be similar to the peak strain of unconfined concrete (i.e., 0.003) (i.e., [63]),
provide lower AAE errors as compared with the other models. However, an inspection of
the comparisons with the strengths at the columns’ failures indicates that the AAE errors
of the models are almost three times higher than those calculated at the peak load. If
the results of these models are incorporated into an axial stress-strain model, the overall
structural response of the columns may be significantly different than the experimental
one. In light of research demands, the goal of the following sections of the present paper is
to develop a new axial compression model that can accurately predict the axial load-axial
strain response of concrete columns of both solid and hollow cross-sections reinforced with
longitudinal GFRP rebars and spirals.

3. Experimental Program
3.1. Tests Addressing the Effect of Longitudinal Reinforcement Ratio

The tests in Ref. [5] aimed at addressing the effect of reinforcement ratio as the main
design and test parameter on the behavior of hollow concrete-core columns. To achieve
this goal, six GFRP-reinforced concrete columns 250 mm in diameter and 1000 mm in
height were cast and tested. All the tested columns were reinforced longitudinally with
sand-coated and high-modulus GFRP bars of different diameters (12.7, 15.9, or 19.1 mm)
and amounts of longitudinal reinforcement but with the same configuration of lateral
GFRP spirals. The GFRP spirals were spaced at 100 mm center-to-center in the vertical
direction along 500 mm at the column mid-height and to avoid a sudden premature failure
caused by the stress concentration spiral spacing of 50 mm within the rest of the column’s
region is chosen. The inner-to-outer diameter ratio was constant at 0.36. Figure 1 shows
the cross-sections and reinforcement details of the tested columns, and Table 2 provides
the details of column geometry, configuration and amount of GFRP reinforcement, and
material properties. The specimens corresponding to their tests in Table 1 were designated
with the C that indicates the grade of concrete (i.e., C25), followed by the spiral spacing
(i.e., H100) and then the number and size of GFRP vertical reinforcement. The last code
refers to the inner-hole diameter. For example, specimen C25-H100-6#4-90 is a hollow
concrete-core column reinforced with six #4 GFRP bars and the diameter of the inner hole
is 90 mm. All columns in these tests were made with ready-mix concrete and the average
concrete compressive strength at 28 days was 25.0 MPa.
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Figure 1. Cross-sectional and GFRP reinforcement details. 

 

Figure 1. Cross-sectional and GFRP reinforcement details.

3.2. Tests Addressing the Effect of Inner Void’s Size

The goal of the tests in Ref. [6] is to evaluate the effect of the inner-to-outer concrete-
core diameter ratio on the structural response and failure model of both GFRP and steel-
reinforced hollow concrete-core columns. To achieve this goal, five concrete columns
250 mm in diameter and 1000 mm in height were cast and tested. Among them, four
columns were constructed with GFRP bars and spirals, while only one column was con-
structed with longitudinal steel bars and GFRP spirals. It is to be noted that the present
paper has not considered modeling steel-reinforced concrete columns. All the tested five
columns were reinforced with six longitudinal rebars and GFRP spirals with a center-to-
center spacing of 100 mm along 500 mm length at the column mid-height, and to avoid
premature failure by stress concentration a vertical spacing of 50 mm within 250 mm in the
other 250 mm regions of the columns was chosen. A total of 6 longitudinal GFRP and steel
bars were used comprising the same reinforcement ratio of 2.79%, which is within the rec-
ommended range of 1–4%. To determine the effect of the inner hollow core size. The details
of the reinforcement were kept similar for all tested columns. The inner-hole diameters
were 40 mm, 65 mm, and 90 mm. A solid concrete column was also prepared and tested
as a reference specimen. A concrete column with a maximum diameter of 250 mm was
considered due to the limited capacity of the test equipment. A diameter of 90 mm for the
inner core was selected for a sufficient concrete cover for the longitudinal rebars. Similarly,
a hollow column with an inner diameter of 65 mm (Di/D ratio = 0.26) and reinforced with
the same reinforcement details with six 16 mm steel bars was taken as a benchmark for
comparison with the GFRP-reinforced columns. Figure 1 shows the cross-sections and
reinforcement details of the tested columns, and Table 2 provides the full details of the
specimens and reinforcement materials. Similarly, the specimens corresponding to their
tests in Table 1 were designated with the C that indicates the grade of concrete (i.e., C31.8),
followed by the spiral spacing (i.e., H100) and then the amount of vertical GFRP-reinforcing
bars and their size. The last code refers to the inner-hole diameter. For example, specimen
C31.8-H100-6#5-65 is a hollow concrete-core column reinforced with six #5 GFRP bars and
the diameter of the inner hole is 65 mm. The average concrete compressive strength for all
specimens at 28 days was around 31.8 MPa.
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Table 2. Test database of GFRP-RC columns.

Coded Columns with Geometry and Concrete Type Reinforcement Details Longitudinal Reinforcement Hoop Reinforcement Key Experimental
Results

Code D (mm) Di (mm) f c
’ (MPa) ρFRP (%) Reinforcement

Hoop/Longitudinal
f FRP

(MPa)
EFRP

(GPa)
εFRP
(%)

f FRP
(MPa)

EFRP
(MPa)

εFRP
(%)

Pn1
(KN)

Pn2
(KN) εcu (%)

AlAjarmeh et al. [7]

C26.8-H00-6#5-90 250 90 26.8 0.000 - 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1022.0 854.6 0.387
C26.8-H50-6#5-90 250 90 26.8 3.840 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1197.0 1434.0 1.233

C26.8-H100-6#5-90 250 90 26.8 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1189.0 1102.0 1.110
C26.8-H150-6#5-90 250 90 26.8 1.280 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1108.0 1110.0 1.102
C21.2-H100-6#5-90 250 90 21.2 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 907.0 1006.7 0.743
C36.8-H100-6#5-90 250 90 36.8 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1570.0 1424.0 1.347
C44.0-H100-6#5-90 250 90 44.0 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1880.0 1644.0 1.128

AlAjarmeh et al. [5]

C25-H100-6#4-90 250 90 25.0 1.930 9.5φ100 6φ12.7 1282 61,300 2.1 1315 62,500 2.3 1035.3 985.1 1.058
C25-H100-6#5-90 250 90 25.0 1.930 9.5φ100 6φ15.9 1237 60,500 2.1 1315 62,500 2.3 1109.2 1024.4 1.069
C25-H100-6#6-90 250 90 25.0 1.930 9.5φ100 6φ19.1 1270 60,500 2.1 1315 62,500 2.3 1140.0 1247.9 1.148
C25-H100-4#5-90 250 90 25.0 1.930 9.5φ100 4φ15.9 1237 60,500 2.1 1315 62,500 2.3 983.3 875.5 1.062
C25-H100-8#5-90 250 90 25.0 1.930 9.5φ100 8φ15.9 1237 60,500 2.1 1315 62,500 2.3 1267.9 1406.1 1.106
C25-H100-9#4-90 250 90 25.0 1.930 9.5φ100 9φ12.7 1282 61,300 2.1 1315 62,500 2.3 1035.0 1204.2 1.077

AlAjarmeh et al. [6]

C31.8-H100-6#5-00 250 0 31.8 1.490 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1588.0 1368.0 -
C31.8-H100-6#5-40 250 40 31.8 1.560 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1408.0 1295.0 -
C31.8-H100-6#5-65 250 65 31.8 1.690 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1559.0 1458.0 -
C31.8-H100-6#5-90 250 90 31.8 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1411.0 1304.0 -

Finite Element (FE) experiments [49]

C26.8-H00-6#5-90 250 90 26.8 0.000 - 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1007.8 769.2 0.357
C26.8-H50-6#5-90 250 90 26.8 3.840 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1133.2 1477.5 1.310

C26.8-H100-6#5-90 250 90 26.8 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1070.2 1132.3 1.143
C26.8-H150-6#5-90 250 90 26.8 1.280 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1103.6 962.0 1.059
C21.2-H100-6#5-90 250 90 21.2 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 879.5 976.7 0.903
C36.8-H100-6#5-90 250 90 36.8 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1532.4 1337.6 1.144
C44.0-H100-6#5-90 250 90 44.0 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1787.4 1479.8 1.104
C25-H100-6#4-90 250 90 25.0 1.930 9.5φ100 6φ12.7 1282 61,300 2.1 1315 62,500 2.3 1027.3 895.2 1.010
C25-H100-6#5-90 250 90 25.0 1.930 9.5φ100 6φ15.9 1237 60,500 2.1 1315 62,500 2.3 1010.0 1119.2 1.113
C25-H100-6#6-90 250 90 25.0 1.930 9.5φ100 6φ19.1 1270 60,500 2.1 1315 62,500 2.3 1094.6 1480.6 1.315
C25-H100-4#5-90 250 90 25.0 1.930 9.5φ100 4φ15.9 1237 60,500 2.1 1315 62,500 2.3 945.2 932.2 1.029
C25-H100-8#5-90 250 90 25.0 1.930 9.5φ100 8φ15.9 1237 60,500 2.1 1315 62,500 2.3 1155.0 1395.1 1.270
C25-H100-9#4-90 250 90 25.0 1.930 9.5φ100 9φ12.7 1282 61,300 2.1 1315 62,500 2.3 1090.6 1130.7 1.124
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Table 2. Cont.

Coded Columns with Geometry and Concrete Type Reinforcement Details Longitudinal Reinforcement Hoop Reinforcement Key Experimental
Results

Code D (mm) Di (mm) f c
’ (MPa) ρFRP (%) Reinforcement

Hoop/Longitudinal
f FRP

(MPa)
EFRP

(GPa)
εFRP
(%)

f FRP
(MPa)

EFRP
(MPa)

εFRP
(%)

Pn1
(KN)

Pn2
(KN) εcu (%)

C25-H50-6#4-90 250 90 25.0 3.840 9.5φ50 6φ12.7 1282 61,300 2.1 1315 62,500 2.3 1091.4 1226.5 1.194
C25-H50-6#6-90 250 90 25.0 3.840 9.5φ50 6φ19.1 1270 60,500 2.1 1315 62,500 2.3 1249.7 1855.8 1.512
C25-H50-4#5-90 250 90 25.0 3.840 9.5φ50 4φ15.9 1237 60,500 2.1 1315 62,500 2.3 1094.7 1234.9 1.199
C25-H50-8#5-90 250 90 25.0 3.840 9.5φ50 8φ15.9 1237 60,500 2.1 1315 62,500 2.3 1228.0 1741.8 1.456
C25-H50-9#4-90 250 90 25.0 3.840 9.5φ50 9φ12.7 1282 61,300 2.1 1315 62,500 2.3 1155.2 1478.9 1.323

C31.8-H100-6#5-00 250 0 31.8 1.490 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1476.0 1408.6 0.940
C31.8-H100-6#5-40 250 40 31.8 1.560 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1353.5 1280.8 0.977
C31.8-H100-6#5-65 250 65 31.8 1.690 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1438.6 1355.9 1.097
C31.8-H100-6#5-90 250 90 31.8 1.930 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1342.8 1119.4 1.116
C26.8-H50-6#5-00 250 0 26.8 3.402 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1317.9 1864.2 1.175
C26.8-H50-6#5-45 250 45 26.8 3.486 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1275.0 1803.6 1.305

C26.8-H150-6#5-00 250 0 26.8 0.842 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1203.1 1109.2 0.921
C26.8-H150-6#5-45 250 45 26.8 0.926 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1166.7 1097.9 1.015
C21.2-H100-6#5-00 250 0 21.2 1.492 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1027.4 1218.7 1.134
C21.2-H100-6#5-45 250 45 21.2 1.576 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 974.9 1206.2 1.224
C21.2-H50-6#5-90 250 90 21.2 3.840 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 948.5 1376.3 1.077

C21.2-H150-6#5-90 250 90 21.2 1.280 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 860.1 849.2 0.876
C44.0-H100-6#5-00 250 0 44.0 1.492 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 2064.5 1810.1 1.031
C44.0-H100-6#5-45 250 45 44.0 1.576 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1981.1 1724.2 1.055
C44.0-H50-6#5-90 250 90 44.0 3.840 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1846.5 1818.8 1.206

C44.0-H150-6#5-90 250 90 44.0 1.280 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1792.3 1387.1 1.033
C26.8-H100-6#5-00 250 0 26.8 1.492 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1229.7 1308.4 1.036
C26.8-H100-6#5-45 250 45 26.8 1.576 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1185.6 1287.4 1.137
C44.0-H100-6#5-120 250 120 44.0 2.361 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1582.5 1305.1 1.220
C31.8-H100-6#5-120 250 120 31.8 2.361 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1194.9 1094.3 1.000

C26.8-H00-6#5-45 250 45 26.8 0.000 - 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 1105.8 1041.0 0.357
C26.8-H50-6#5-120 250 120 26.8 4.271 9.5φ50 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 999.0 1126.8 0.783

C26.8-H100-6#5-120 250 120 26.8 2.361 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 956.1 942.4 0.744
C26.8-H150-6#5-120 250 120 26.8 1.711 9.5φ150 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 945.4 913.2 0.737
C21.2-H100-6#5-120 250 120 21.2 2.361 9.5φ100 6φ15.9 1237 60,000 2.1 1315 62,500 2.3 785.2 872.0 0.929
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3.3. Tests Addressing the Effect of Varying Amount of Internal GFRP Confinement

The tests in Ref. [7] aimed at investigating the effectiveness of GFRP bars and spirals
as internal reinforcement in HCCs. It focused on evaluating the effect of lateral spiral
spacing and concrete compressive strength on the failure mode, load-displacement behav-
ior, ductility, and confined strength of hollow concrete-core columns. To achieve these
goals, seven concrete columns fully reinforced with GFRP bars with overall dimensions
of 250 mm in diameter and 1000 mm in height were cast and tested. The column section
and its maximum capacity were carefully determined to be successfully tested by the
machine. All columns were longitudinally reinforced with six GFRP bars following the
reinforcement details, and ratio recommended in the AS3600 code [58] for steel reinforce-
ment. Consequently, the reinforcement ratio of 2.79% was similar for all test columns. The
inner-to-outer diameter ratio was constant at 0.36. Among all tests, three columns were
reinforced laterally with GFRP spirals with spacings of 50, 100, and 150 mm at the middle
portion of the samples (500 mm). Another column without lateral reinforcement at the
testing region (500 mm) was prepared to evaluate the effect of the lateral reinforcement.
These lengths were chosen to ensure crushing failure in the bars with lengths of 50, 100,
and 150 mm, and bar buckling failure in the last sample. The remaining specimens were
cast with different concrete strengths (21.2, 26.8, 36.8, and 44.0 MPa) and tested. These
levels of compressive strength were considered normal-strength concrete, as indicated
in the ACI 318 code [59]. The details of the reinforcing bars for all tested columns were
similar, in which the longitudinal reinforcement ratio was 2.79% and 100 mm spacing
between lateral spirals was chosen to determine the effect of varying compressive strengths
of unconfined concrete. Figure 1 shows the cross-sections and reinforcement details of the
tested columns, and Table 2 provides the full details of the specimens and reinforcement
materials. Similarly, the specimens corresponding to their tests in Table 1 were designated
with the C that indicates the grade of concrete (i.e., C21.2, 26.8, 36.8, 44.0 MPa), followed
by the spiral spacing (i.e., H100), and then the amount of GFRP rebars in the longitudinal
direction and their size. The last code refers to the inner-hole diameter. For example,
specimen C44.0-H100-6#5-90 is a hollow concrete-core column reinforced with six #5 GFRP
bars and the diameter of the inner hole is 90 mm.

3.4. Tests with the Help of ABAQUS Software

The Finite Element (FE) experiments consist of 43 specimens with similar dimensions
of 250 mm in diameter and 1000 mm in height. These specimens considered a new range of
test parameters. An example is that Alajarmeh et al. [6] have focused on assessing the influ-
ence of the inner-to-outer diameter ratio on the structural performance of HCCs, while all
their columns were reinforced and constructed with the same materials and reinforcement
configurations. The present paper, therefore, expanded the range of investigated Di/D
ratio from 0.16 to 0.48 (i.e., C44.0-H100-6#5-120, C31.8-H100-6#5-120, C26.8-H50-6#5-120,
C26.8-H100-6#5-120, C26.8-H150-6#5-120, C21.2-H100-6#5-120) to overcome the limited
sizes of PVC pipes that are available in the market. For a comprehensive development of
an empirical axial stress-strain model, solid concrete columns were also provided (C31.8-
H100-6#5-00, C26.8-H50-6#5-00, C26.8-H150-6#5-00, C21.2-H100-6#5-00, C44.0-H100-6#5-00,
C26.8-H100-6#5-00). The detail of the columns’ cross-sections and the configuration and
amount of the GFRP reinforcing rebars.

4. Finite Element Modeling
4.1. Model Geometry, Interaction, Loading, and Boundary Conditions

This sub-section provides the details of the finite element models for predicting
the structural response of GFRP-reinforced HCCs tested under axial compression loads.
The numerical simulations of HCCs were performed using the commercial ABAQUS
software [49]. The initial stiffness, crack propagation behavior, peak load, post-peak
stiffness, and failure mechanism of HCCs were considered by the proposed FEM model.
The complexity in simulating the damage behavior of confined concrete was done by using
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a proposed damaged plastic model, and the behavior of GFRP rebars was modeled as
linear elastic material up to failure. To check the performance of the proposed FEM model,
the experimental results of 17 HCCs were compiled from [5–7].

The concrete and steel plates were modeled as homogenous 3-dimensional solid stress
sections and were assigned C3D8R element types. The GFRP rebars were modeled as
3-dimensional deformable wire elements and were assigned T3D2 element types. The
HCCs were fixed at the bottom and top ends, and only free to translate in the vertical
direction at the top end (θx, θy, θz = 0; Ux and Uy = 0, Uz 6= 0). The interaction between
the concrete material and the GFRP-reinforcing rebars was defined using the ‘embedded
region’ constraint provided by ABAQUS software [49] that connects the compatible degrees
of freedom (DOF) of the truss elements of reinforcement bars to the required DOF of the
3-dimensional stress elements of concrete [71]. Using the displacement control method, a
value of 50 mm was applied on the top end plate for all the specimens. The steel plates of
50 mm thickness to apply the boundary conditions and transfer the loads on column cross-
section were connected using ‘tie’ constraint on the top and bottom ends of the columns for
the application of the boundary conditions. While applying the ‘tie’ constraint between the
steel plates and column, the bottom surface of the top steel plate was considered as a master
surface and the top surface of the HCCs was considered as a slave surface. Similarly, the
bottom surface of HCCs was taken as a slave surface and the top surface of the bottom steel
plate was taken as a master surface. The geometry and modeling details of the simulated
GFRP-reinforced concrete specimens with the applied boundary conditions are shown
in Figure 2, whereas the key characteristics of the FE model are summarized in Table 3,
in which the mesh size of 10 mm for the reinforcement bars provides good performance.
Due to the earlier fracture of the longitudinal reinforcement and their insignificant effects
on the column performance, the mesh size regarding different bar sizes shows no major
impact. More tests with different spiral sizes, which possess a significant effect during the
simulation period and, overall, the column response, should be investigated.
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Table 3. Properties of finite element (FE) simulations.

Property Value

Mesh size of concrete material (mm) 15/Element Shape: Hex-Structured
Mesh size of steel end plates (mm) 10/Element Shape: Hex-Sweep

Mesh size of GFRP rebars and spirals (mm) 10
Minimum step size 1 × 10−8

Initial step size 0.005
Maximum step size 0.01

Concrete and steel end plate element type Standard C3D8R/Geometric Order: Linear/Family: 3D Stress
GFRP rebars and spiral element type Standard T3D2/Geometric Order: Linear/Family: Truss

Interaction constraint of FRP reinforcement to concrete Embedded Region
Applied displacement (mm) 50

Step-1 type Static, General
Equation solver Direct

Automatic stabilization Use damping factors from previous general steps

4.2. Material Simulations
4.2.1. Concrete

The simulation of the behavior of concrete material is one of the challenging tasks
due to its complex nature. The behavior of concrete was, in the reversible regime, defined
by Young’s modulus and the Poisson’s ratio. The Young’s modulus value was provided
by Equation (1) [72] and the Poisson’s ratio value was 0.2 [73]. The density of the normal
weight concrete was commonly taken as 2400 kg/m3. For the definition of the irreversible
regime of concrete, various models are available in ABAQUS such as the concrete damaged
plastic model (CDPM), brittle crack model (BCM), smeared cracking model (SCM), and
Drucker–Prager model (DPM). In the current work, CDPM was utilized to simulate the
inelastic nature of concrete. This model can capture the complex nature of concrete material
by considering the cracking and crushing of concrete. Therefore, it is commonly accepted
while simulating the nonlinearity of concrete [74–76]. The CDPM considers the definition
of various properties of concrete such as tensile behavior, compressive behavior, plastic
behavior, and damaging behavior of concrete:

Ec = 3320
√

f ′c + 6900 (1)

where fc
′

is the compressive stress of concrete material tested at 28 days.
The plastic behavior of concrete as defined by ABAQUS User Manual 6.14 [49], consid-

ers five parameters of concrete as follows: the dilation angle (ψ), the viscosity parameter,
the eccentricity (ε), the ratio of biaxial to uniaxial stresses (σbo/σco) [65], and the shape
factor of yielding surface (Kc) (see Table 4). All these factors were calibrated to obtain the
best results as compared with the test measurements. To calculate uniaxial compressive
stresses of concrete (σc), Equation (2) was proposed in the current research, mainly based
on models provided in the literature (i.e., [77]) but with some modifications to account
for unconfined and confined concrete as reported by Zeng et al. [78] (i.e., Equation (4)).
For the definition of compressive behavior of concrete, the compressive stiffening model
(Equation (2)) is presented in Figure 3 for a selected specimen.

σc =


2 f ′′c (εc/εcc1)

1+(εc/εcc1)
2 ;

2 f ′′c (εc/εc1)

1+(εc/εc1)
2

(2)
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where fc
′′
= 0.85 fc

′
as considered in the [79] model. Respectively, the terms εc1 and εcc1 are the

peak strains of unconfined and confined concrete (mm/mm), which are calculated using:

εc1 = 0.0014
[
2− e−0.024 f ′′c − e−0.140 f ′′c

]
(3)

εcc1 = εc1 + 800(Ie)
0.2 × 10−6 (4)

Ie =
ρv fFRP

f ′c
(5)

where Ie is the effective confinement index (non-dimensionless parameter); ρv is the volu-
metric ratio of GFRP spirals.

Table 4. Plasticity parameters of concrete for CDP.

Parameter Value

Dilatation angle (ψ), Degrees 30
Plastic potential eccentricity (ε) 0.1

σbo/σco [77] 1.5(fc
′ ′

)−0.075

The shape factor of yielding surface (Kc) 0.6667
Viscosity parameter (µ) 5 × 105
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Figure 3. Stress-strain models for unconfined and confined concrete. Figure 3. Stress-strain models for unconfined and confined concrete.

Similarly, the strains model (Equations (3) and (6)) proposed by Majewski [80] were
used in the present research for the predictions of strains of GFRP-RC HCCs. The strain
provided in Equation (6) was used to predict the ultimate strain of HCCs with no lateral
confinement (spirals’ spacing = 500 mm in the present tests). It was assumed in the present
model that the compressive concrete strength in these two expressions to be fc

′′
. The

uniaxial compressive strength of unconfined concrete cylinders (100 mm × 200 mm as
tested in [5–7]) is usually higher than that of standard cylinders (150 mm × 300 mm);
therefore, the strength was multiplied by a conversion factor of 0.85 to consider column
size effects in the models proposed based on standard cylinders:

εcu = 0.004− 0.0011
[
1− e−0.0215 f ′′c

]
(6)
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The elastic portion of the stress-strain curve can be taken up to 40% of the ultimate
compressive strength of concrete, and the stress in the post-peak branch was considered to
be 30% of the ultimate compressive strength of concrete (i.e., [81,82]) (see Figure 3). The
uniaxial compression and tension damage parameters of concrete in the CDP model were
defined using Equations (7) and (8), respectively. Considering a selected specimen from
Table 2, Figure 4a,b present the predicted relationships between these parameters and the
inelastic strains:

dc = 1−
(

σc

f ′′c

)
(7)

dt = 1−
(

σt

ft

)
(8)

where the maximum tensile strength of concrete (ft) was estimated using Equation (9),
which was proposed in the present paper based on test data published in [83]:

ft =
[
11.954 exp

(
−0.007 ∗ f ′′c

)
/100

]
f ′′c (9)Materials 2021, 14, x FOR PEER REVIEW 14 of 39 
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Figure 4. Relationship between the damage parameter and the inelastic strain of concrete for 
specimen C26.8-H50-6#5-90: (a) Represents the compression behavior; (b) Represents the tension 
behavior. 
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Figure 4. Relationship between the damage parameter and the inelastic strain of concrete for specimen
C26.8-H50-6#5-90: (a) Represents the compression behavior; (b) Represents the tension behavior.
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The cracking strain (εcr) corresponding to ft was determined as εcr = ft/Ec. The com-
pression and tension strain of concrete in the inelastic region are respectively calculated by:

εin
c = εc − εel

oc (10)

εin
t = εt − εel

ot (11)

where εoc
el and εot

el are the elastic strains of concrete under compression and tension stresses
and calculated respectively as εoc

el = σc/Ec and εot
el = σt/Ec. Figure 5 finally defines the

behavior of unconfined concrete under tensile loads (Equation (12)) [84]:

σt = ft

(
εcr

εt

)0.85
(12)
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The confinement made by the FRP spirals provides enhancements in the compressive 
strength and deformation of concrete [85]. This enhancement is usually higher at ultimate 
than that at peak condition resulting in a hardening stress-strain behavior for sufficiently 
confined concrete [86–101]. As the final failure was due to ruptures in the longitudinal 
GFRP bars and crushing of the concrete core at mid-height without damage to the lateral 
spirals [5–7], the confinement strength model proposed by Mander et al. [92] (represented 
by Equation (13)) was, therefore, used to exactly capture the compressive strength of 
confined concrete core (fcc’) obtained from the FE simulations. In case of exceeding the 
range of test parameters that were used to build Mander et al.’s [92] model, Equation (14) 
was herein introduced to have a different form. Finally, an excellent calibration between 
these two expressions is revealed by Figure 6: 

' ''
'' ''

7.942.254 1 2 1.254l l
cc c

c c

f ff f
f f

 
= + − −  

   
(13)

0.67 0.71 0.75
' ''

'' ''191.17 1 8.52 1l i l i
cc c

c s c s

f D f Df f
f D f D

−        
 = + + − +       
           

(14)
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The confinement made by the FRP spirals provides enhancements in the compressive
strength and deformation of concrete [85]. This enhancement is usually higher at ultimate
than that at peak condition resulting in a hardening stress-strain behavior for sufficiently
confined concrete [86–101]. As the final failure was due to ruptures in the longitudinal
GFRP bars and crushing of the concrete core at mid-height without damage to the lateral
spirals [5–7], the confinement strength model proposed by Mander et al. [92] (represented
by Equation (13)) was, therefore, used to exactly capture the compressive strength of
confined concrete core (fcc

’) obtained from the FE simulations. In case of exceeding the
range of test parameters that were used to build Mander et al.’s [92] model, Equation (14)
was herein introduced to have a different form. Finally, an excellent calibration between
these two expressions is revealed by Figure 6:
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where fl (MPa) is the confinement stress due to FRP spirals that can be calculated using the
following well-known expression used for confined concrete externally reinforced with
FRP wraps (i.e., [86–101]). To account for the effectively confined concrete core of spirally
reinforced HCCs as in this present paper, some modifications were also introduced in
Equation (15) to use the proposed next form:

fl =
2EFRPεh,ruptFRP

D
(15)

fl =
2 fbentdh
Ds − Di

(16)

where, in Equation (15), EFRP (MPa) = tensile elasticity modulus of FRP wraps; tFRP (mm) = thickness
of all FRP wrapping layers; in Equation (16), the modifications are represented as follows:
The total fiber sheets (tFRP) was replaced by the spiral diameter dh (mm). The diameter of
a circular section wrapped with FRP (D) was replaced with the diameter of the effectively
confined concrete core (Ds − Di) (mm). Finally, the EFRP × εh,rup (the tensile strength of
the FRP wraps) was considered to account for the significantly reduced tensile capacity of
the GFRP spirals at the bent portion when the straight FRP bar is bent to form the hoop
reinforcement (i.e., [102–105]). In the present FEM model, the bent strength is found by
Equation (17) as done by other researchers (i.e., [88]):

fbent = 0.5 fFRP (17)
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Similarly, the strain of confined concrete at ultimate can be determined using Mander et al.’s [92]
model (Equation (18)). It is to be noted that the unconfined concrete strain of 0.002 in their
model was taken in the current model to be equal to the predicted εc1 value (Equation (3)).
Moreover, to account for the effective confined concrete core of spirally reinforced HCCs
as in the present paper, Equation (19) was suggested, based on the test results of all
60 specimens provided in Table 2. The test results of the 17 specimens tested in [5–7] were
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taken as a major control in the model development. An excellent correlation was finally
obtained between the existing and currently proposed expressions (see Figure 7):

εccu = εc1
[
1 + 5

(
f ′cc/ f ′′c − 1

)]
(18)

εccu = εc1
[
1 + 5

(
f ′cc/ f ′′c − 1

)]
×M.S.R. (19)

M.S.R. = 0.1061e
(0.2701× 2 fbentdh

(Ds−Di) f
′′
c
)

(20)
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4.2.2. GFRP Bars

The GFRP reinforcement (longitudinal rebars and spirals) were considered as 3D
deformable wires. An isotropic linear elastic material up to failure model was considered for
simulating the behavior of the GFRP reinforcement [41,42,71]. The mechanical properties
of GFRP bars used for the FEM were presented in Table 2 [5–7]. The behavior of FRP bars
and ties was defined in terms of density (2.1 × 10−9 ton/mm3), elastic tensile modulus,
ultimate strength, and Poisson’s ratio (0.25) [41]. The contribution of the longitudinal GFRP
bars in compression was considered to be 50% of their maximum strength as straight bars
having the same elastic modulus [2]. The contact between the GFRP-reinforcing rebars and
the surrounding concrete was defined using the ‘embedded region’ constraint.

4.2.3. Steel End Plates

The column specimens in the present simulations were tested with deformable 3D
steel end plates. The boundary conditions chosen for these end plates are clearly shown
in Figure 8. The material was considered steel with linear elastic behavior. The linear
elastic behavior of the steel plates was, in the present paper, defined in terms of density
(7.8 × 10−9 ton/mm3), elastic tensile modulus (Es = 200,000 MPa without any yield limit),
and Poisson’s ratio of 0.30.
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4.3. FEM Results and Discussions
4.3.1. Failure Mode

According to the tests in [7], the failure in all columns started as vertically spreading
hairline cracks appearing on the outer concrete surface at advanced loading levels. Once
they appeared, the cracks propagated and widened, leading to different spalling features
of the outer concrete cover, rupturing longitudinal GFRP bars, and damaging the concrete
core. The different features of the column’s failure were mainly dependent on the effect
of the column parameters. For example, specimen C26.8-H00-6#5-90 without internal
GFRP confinement experimentally experienced explosive spalling and failing of both the
concrete cover and core, causing large concrete pieces to fall from the specimen at column’s
mid-height. Figure 9a reveals close agreement between the failed region and the global
buckling of the longitudinal GFRP bars that obtained from the FEM as clearly indicated
by the zero PEEQ value recorded at column’s mid-height: PEEQ values (the material’s
inelastic deformation) are corresponding to the FEM failure of concrete. On the other hand,
for confined specimen, gradual overall concrete-cover spalling was observed, followed by
lateral expansion in the concrete core, which was confined by the GFRP spirals. The rupture
of the longitudinal GFRP bars in different locations throughout the column’s height then
occurs, i.e., C26.8-H50-6#5-90 in Figure 9b, in which the PEEG values are higher compared
with the unconfined specimen.

Figure 10 shows the results of selected simulated specimens with different concrete
compressive strength and spiral spacing. These presented results were recorded when the
damage in the concrete starts to occur (i.e., in this regard, the dc result is close to 0.7 for
all test specimens). The results of Figure 10 declare that the effectiveness of confinement
of FRP is usually limited by the buckling of longitudinal GFRP rebars. The results show
that constructing columns with a larger spacing of the lateral reinforcing bars reduced the
efficiency of concrete-core confinement and cause a global buckling for the longitudinal bars,
i.e., C21-2-H150-6#5-90 and C26-8-H150-6#5-90, which exhibited no inelastic deformation in
the reinforcing bars. The smaller spiral spacing reveals greater inelastic deformation which
results in fracture of the longitudinal rebars, i.e., C21.2-H050-6#5-90 and C26.8-H050-6#5-90.
Moreover, the GFRP spirals remained without any damage in all the experimental tested
columns [7], and this can be seen from the results of Figures 9 and 10.
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However, the mechanism and extent of rupture of the longitudinal and transverse
GFRP reinforcement varied among the columns constructed with different inner diame-
ters [6]. It was concluded that increasing the inner-to-outer diameter ratio (Di/D) in the
hollow columns changed the failure behavior from brittle to pseudo ductile. After spalling
of concrete cover, the failure in the hollow columns with a Di/D ratio of 0.16 and 0.26 was
initiated by the longitudinal and spiral GFRP reinforcement, while the failure of columns
with a Di/D ratio of 0.36 was initiated by crushing of the hollow concrete-core. It is seen in
Figure 11a,b that both the longitudinal and spiral GFRP reinforcement in C31.8-H100-6#5-
00, C31.8-H100-6#5-40 are subjected to stress and damage. To explore this effects up to the
failure of the specimens, the results of Figure 11 are corresponding to the final increment of
the analysis (i.e., applied displacement = 50 mm). Figure 11c shows only the rupture of
the longitudinal GFRP bars in C31.8-H100-6#5-90 with no rupture of GFRP spirals even
after the bar rupture. Moreover, a clear comparison of the specimens’ results provided in
Figure 11 with those of Figure 9b (spiral spacing = 50 mm) indicates that the damage in
concrete along the entire column height is more obvious than the damage shown by the
specimens in Figure 11 due to smaller amount of confinement (i.e., spirals with spacing
equals to 100 mm). From Figure 11a–d, it can be also seen that the inelastic deformation
(PEEQ) exhibited by the lateral and longitudinal GFRP reinforcement slightly decreases as
the inner-hole diameter increases. This is because the rupture of the longitudinal GFRP re-
bars is dominant in the case of HCCS with a larger inner-hole diameter. However, Figure 12
shows a slight enhancement in the PEEQ observations for the tested HCCs, noting that
these results were recorded when the damage in concrete was initiated (i.e., in this regard,
the dc result is close to 0.7 for all test specimens). Generally, the HCCs with larger Di/D
ratio values, i.e., C31.8-H100-6#5-90, showed better deformation capacity (represented by
the PEEQ index) than those with a low Di/D ratio, i.e., C31.8-H100-6#5-00. This is due to
the increased contribution of the GFRP bars to overall column stiffness and strength after
spalling the concrete cover [6].

4.3.2. Load-Strain Response

Figure 13 represents the comparison of the complete load-strain responses of HCCs
obtained from experimental and numerical results. The HCCs show different types of
failure behavior: a softening behavior with one peak load (i.e., C26.8-H150-6#5-90) with
a ductility factor of 1.5 and ductile behavior (i.e., C26.8-H50-6#5-90) with a two-peaks’
failure mode with a ductility factor of 2.1 comparing with the C26.8-H00-6#5-90 with no
GFRP confinement. Overall, the axial load-strain responses of the finite element model
agree well with the tested responses. Although there are some discrepancies between the
experimental and numerical stress-strain responses (i.e., C25-H100-9#4-90), the comparison
in Figure 14 showed a satisfactory correlation between the experimental and numerical
axial capacities in pre-peak and post-peak zones.
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5. Artificial Neural Network (ANN) Technique 
5.1. Model Development  

The ANN technique is used widely for many purposes such as classification, pattern 
recognition, and modeling. In particular, the use of ANN for predicting the compressive 
strength and strain of FRP-confined concrete has been studied (i.e., [52]). However, the 
use of ANN for GFRP HCCs has not yet been explored. In the aim of this, using the ANN 
toolbox provided in MATLAB R2020b [106], a model was developed to estimate the axial 
compressive load capacities for HCCs’ columns that exhibited softening and hardening 

Figure 14. Comparison of tested and numerically obtained first and second axial peak capacities
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5. Artificial Neural Network (ANN) Technique
5.1. Model Development

The ANN technique is used widely for many purposes such as classification, pattern
recognition, and modeling. In particular, the use of ANN for predicting the compressive
strength and strain of FRP-confined concrete has been studied (i.e., [52]). However, the
use of ANN for GFRP HCCs has not yet been explored. In the aim of this, using the ANN
toolbox provided in MATLAB R2020b [106], a model was developed to estimate the axial
compressive load capacities for HCCs’ columns that exhibited softening and hardening
behaviors. The number of experimental data used to construct and test the ANN model
was 60 in total. In the development processes of the ANN model, an appropriate selection
and reshaping of the input variables is a very important process. The axial load capacity of
GFRP-reinforced HCCs should depend on the geometric dimensions and the properties of
unconfined concrete and the confining material (i.e., GFRP spirals). As a result, the input
variables, which appear to have significant effects on the axial load capacity [5–7], were
taken into account with the following factors: (1) λvb represented by Equation (21) is a
non-dimensional factor to account for the effect of the longitudinal GFRP rebars, (2) λlb
represented by Equation (22) is a non-dimensional factor to account for the effect of the
GFRP confinement by spirals, (3) fc’ is the compressive strength of concrete, (4) Ac is
the effective concrete area without considering the longitudinal rebars, (5) Di/D is the
inner-to-outer core diameter ratio.

λvb =
ρe fFRP

f ′c
(21)

λlb =
keρv fFRP

f ′c
(22)

ke =
Ace

Acc
=

π
4

((
Ds − s′

4

)2
− D2

i

)
π
4
(

D2
s − D2

i
)
(1− ρe)

(23)

The database was randomly divided into training (70%), validation (15%), and test
(15%). Using one layer of hidden nodes based on previous suggestions [98], the optimum
model parameters (i.e., the number of the hidden nodes, the rate of learning) were found
by a proposed training approach. This can be performed by various available approaches,
in which the network was trained with a set of random initial weights, hidden nodes’
numbers varying from 0 to 10, and the learning rate from 1 × 10−2 and 1 × 10−1. The
Levenberg–Marquardt denoted by Trainlm [106,107] was selected as the training function.
The performance function is MSE, and the transfer functions in both hidden and output
layers are Pureline transfer functions. It is to be noted that the default transfer functions
in the ANN toolbox are Tansig [106,107]. By transforming the data in the first and last
ANN layers using the log function (Equations (24) and (25)) and choosing Pureline transfer
functions, the ANN model reveals an acceptable performance:

x = (log10[x1, x2 + 1, x3, x4, x5 + 1])T (24)

y = (log10[y1, y2])
T (25)

Once the ANN model is built and the first and last data layers are chosen and normal-
ized, the network can now be trained. Based on the overall model performance and the
least mean square error achieved across a wide range of training parameters, the optimal
number of hidden nodes was found to be 3 and the learning rate was close to the range
of 0.005–0.01. Using these resulted parameters in a training approach, the most accurate
results can then be obtained. Figure 15 clearly shows such a result for the train, validate,
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and test data, which have almost similar mean square errors. The predictions from the
ANN model are practically generated following the Equations (26)–(32).[(

y− ymin

ymax − ymin
− 0.5

)
× 2
]
= 10.̂

[
w
((

x− xmin

xmax − xmin
− 0.5

)
× 2
)
+ a
]

(26)

w = w2 × w1 (27)

a = w2 × b1 + b2 (28)

w1 =


0.0761 −0.4257 0.7646 1.0214 0.4346
−0.4925 −1.0612 0.8116 0.0099 −0.9388
−0.7003 −1.1121 −0.0234 −0.8322 0.3971
−0.4369 0.4104 0.3133 −0.4325 0.7582
0.0827 0.0960 −1.0293 0.6293 −0.2225

 (29)

w2 =

[
0.3792 0.0417 −0.4201 −0.0688 −0.6323
0.4938 −0.2168 −0.8262 −0.2278 −0.9131

]
(30)

b1 =


−0.8411
−0.4814
−0.6591
0.0193
−0.2438

 (31)

b2 =

[
−0.0381
−0.2204

]
(32)

where y in Equation (26) represents the predictions; the inputs (x) and outputs (y) data of
the ANN model are scaled using the minimum and maximum values provided in Table 5;
w1 and w2 are essential findings of the ANN network. These contain the weights utilized
between the x data and the hidden layer, and the hidden layer and the y data, respectively.
The b1 and b2 are the matrices containing the bias of the hidden and output layers (see
Figure 16).
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Table 5. Data to scale the inputs’ data.

Input/Output Maximum Minimum Mean Standard Deviation

λvb – 2.04 0.68 1.19 0.35
λlb – 2.09 0.00 0.68 0.51
fc’ MPa 44.00 21.20 26.80 6.57
Ac mm2 47,916.14 36,601.86 41,551.86 3138.02

Di/D (mm/mm) 0.48 0.00 0.36 0.14
pn1 Kn 2064.49 785.21 1155.13 291.75
pn2 Kn 1864.16 769.17 1241.42 279.56
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5.2. Performance of Proposed Axial Load Capacities

The performance of the proposed ANN (N5-5-2) models of peak axial load capaci-
ties of GFRP-reinforced HCCs is verified by the database used to develop these models.
The default generated figures from ANN toolbox [106,107] show excellent correlation.
Figure 17 shows the overall accuracy of the proposed N5-5-2 model. Figure 18a,b provide
comparisons of the ANN results with the test data. Due to the unavailability of models
that consider GFRP-reinforced columns, only the AlAjarmeh et al.’s [7] model was, in
this assessment, studied. Generally, these comparisons show that the estimated errors of
the proposed ANN models were significantly lower than those of other methods. More
specifically, the predictions of the first peak load resulted in less error by the proposed
and existing models. However, the predicted peak loads of HCCs exhibiting a hardening
failure model exhibited significant errors. This approves that the five variables of the ANN
model (i.e., λlb, Di/D) have a more significant effect on the second peak compared with
their effects on the first peak load, which is well-taken into account by the ANN model
with a high R2 of about 95.2%.
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5.3. Complete Axial Load-Strain Model

First, the stress-strain monotonic curve drawn by Equation (33) is used as a control
model for the tested GFRP-RC HCCs. The model details are shown in Equation (33). The
first expression was firstly reported by Guo et al. [108] from results of tests on unreinforced
rectangular concrete prisms, whereas the second one was used in many analytical studies: fc = fcc1

[
A
(

εc
εcc1

)
+ (3− 2A)

(
εc

εcc1

)2
+ (A− 2)

(
εc

εcc1

)3
]

εc ≤ εcc1

fc = fcc1 + E2(εccu − εcc1) εcc1 ≤ εc ≤ εccu

(33)

where E2 (MPa) is the slope of the post-peak linear portion of the stress-strain response
and determined by Equation (34); the strain at the first peak εcc1 and second peak εccu
can be obtained from Equations (4) and (19), respectively. The shape parameter A, which
controls the polynomial portion, is derived from the boundary condition of dσc/dεc = Ec at
εc = 0. The parameter A can be obtained as A = Ec/Ep by substituting the boundary value
in Equation (33):

E2 =
fccu − fcc1

εccu − εcc1
(34)

where Ec (MPa) is predicted using Equation (1); Ep = fcc1/εcc1 (MPa) is the second modulus
at the peak point; the terms fcc1 and fccu are calculated by dividing the first and second peak
loads obtained using the ANN model over the effective concrete area without considering
the longitudinal rebars. The fcc1 and fccu can be also predicted using Equations (35) and (36),
additionally proposed in the present work with a correlation factor R2 of about 95.1 and
91.4% (see Figure 19). Overall, the comparison between the predictions made by this model
and the ANN model as well as the test results shows that the accuracy is almost typical
(ANN model’s R2 = 95.2% and RA model’s R2 = 93.5% (on average)).

pn1 = α1 f ′c
(

Ag − AFRP
)
+ 0.0032EFRP AFRP(

α1 = 0.713 + 37× 10−4 f ′c ≥ 0.798
) (35)

pn2 = Ac f ′c

(
0.41 + 0.07(λvb)

2.65 + 0.91 exp(λlb
0.61) exp

(
1 +

Di
D

)−1.24
)(

1 +
Di
D

)0.23
(36)
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After predicting the stress-strain relationship of HCCs by Equations (33) and (34), the
load-strain curve can be generated. To evaluate the proposed model in terms of significant
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effects of the key parameters considered in the present paper as respectively demonstrated
in Figures 20–23, comparisons between load-strain responses of the present model with
selected experimental results of specimens with various test parameters from both the
experiments provided in [5–7] and the FE simulations are provided in Figure 24. Inspection
of the comparisons with the results demonstrates that the model can capture well the
major features of the response such as the axial load capacities pn1 and pn2. Generally, the
pre-peak and post-peak regions of the simulated response are also described in a good way.
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Figure 24. Comparison between predictions of proposed concrete axial load-axial strain curves, and experimental and 
numerical results. 
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6. Proposed Minimum Thresholds for Acceptable Performance
6.1. Thresholds of Inner-to-Outer Core Diameter (Di/D) Ratios

Tests [6] have confirmed that the hollow columns (Di/D > 0) failed at a lower load
than the solid column (Di/D = 0) due to the reduced effective area. To gain sufficient
understanding about this issue, Figure 25 presents the results of specimens C26.8-H50-6#5
and C21.2-H100-6#5 selected from Table 2. It is seen that when the Di/D ratio is being less
than 0.2, the difference in concrete compressive loads of the hollow and solid columns is
insignificant. As stated in previous discussions, the failure of the HCCs having an inner-
to-outer concrete-core diameter ratio of 0.16 and 0.26 was initiated by the longitudinal
reinforcement and spiral, while the failure of the HCCs having an inner-to-outer concrete-
core diameter ratio of 0.36 was initiated by crushing of the inner concrete core. This also
demonstrated that both the longitudinal and lateral GFRP reinforcement contributed to the
load enhancement when the Di/D ratio is less than 0.26 since they appear to be subjected
to stress up to column failure, while only the longitudinal reinforcement contributed to the
improvement of the load capacity for columns with larger Di/D ratios (i.e., Di/D = 0.36),
which ultimately resulted in lower loads than the solid sections. The hollow concrete-
core C26.8-H50-6#5-120 with a Di/D ratio of 0.48 exhibited 24.2% and 39.6% lower axial
capacities at the first and second peak loading conditions than the solid specimen C26.8-
H50-6#5-00, respectively. The effect of increasing the Di/D ratio is more pronounced on
the second peak load at a higher Di/D ratio. It is suggested in Figure 26 that the averaged
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Di/D ratio for all tests of the present paper that causes an averaged reduction of almost
10% in the load-carrying capacity is equal to 0.33. The reduced load can be compensated
by sufficient confinement of GFRP as discussed next.
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6.2. Minimum Amount of FRP for Adequate Confinement

A designed column needs a minimum amount of reinforcement materials for sufficient
confinement [86–101,109]. In these cases, if the compression load ratio (i.e., pn2/pn1) is greater
than one, the resulting threshold represents the sufficiently confined concrete [86–101,109].
Based on an analytical investigation by Pham and Hadi [109] on FRP-confined circular
and non-circular columns under concentric compression, the minimum threshold value of
effective confinement stress ratio was suggested to be 0.15. For GFRP-reinforced hollow
concrete-core columns, the test results with different geometric and material characteristics
were studied.

The response between the effective confining pressure ratio and the confined axial
load ratio is given in Figure 27. Based on an averaged trend-line made between the
experimental, FEM, and parametric data, when the load ratio is equal to 1.0, then the
confinement pressure ratio (Equation (22)) should be over 0.66 for the present tests, and
such a threshold is larger than that of FRP-confined circular columns due to the reduced
effects caused by different material properties and that of the tensile strength of the bent
GFRP rebars.
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7. Conclusions

The present work aims to investigate the structural behavior of hollow concrete-
core columns reinforced with GFRP bars by performing detailed numerical simulation,
analytically provided in this work, and the key conclusions are summarized below.

During the calibration of the FEM model, it was found that the dilation angle of 30◦

and the concrete’s viscosity parameter of 5 × 10−5 gave a good performance while using
the concrete damage plasticity model (CDPM). Moreover, the mesh size of 15 mm for
C3D8R elements of concrete and 10 mm for both C3D8R and T3D2R elements of end plates
and GFRP bars presented good performance for predicting load-strain behavior and failure
patterns of HCCs.
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• The proposed FEM model captured the structural response of GFRP-reinforced HCCs
with high accuracy. The average correlated R2 value between the available testing
results and numerical data was 88% for both the peak and ultimate loads.

• The failure modes of the HCCs were numerically obtained and compared with the
tested ones. Both the experimentally tested and numerically obtained patterns were in
a good match. The influence of varying test parameters (i.e., amount of longitudinal
and lateral reinforcement) on these patterns can be seen.

• To estimate the maximum axial load capacity of GFRP-RC HCCs, the contribution of
the reinforcement is necessary. The authors proposed a new model for predicting the
peak axial load capacity of GFRP-RC HCCs based on a database of 60 FRP-reinforced
columns with R2 = 0.95.

• To capture the overall stress-strain response of FRP-reinforced columns, artificial neu-
ral network (ANN) models are proposed to estimate both the axial compressive loads
at the first and second peak conditions. The effects of different amounts of longitudinal
reinforcement, volumetric radios of GFRP confinement, inner-to-outer diameter ratios,
and compressive strengths of the standard cylinder were all considered in the model.
Besides, several RA (Regression Analytical) models to predict the different compo-
nents of the axial strength and strains have been introduced and some of them are
compared with the ANN models. For this purpose, the proposed ANN models have
been successfully applied using transformed easy-to-use equations rather than using
their complex computational models. The predicted results of the proposed analytical
model agree well with the tested and numerically obtained results. They yield better
results with marginal errors as compared with the existing analytical models.

• A design-oriented stress-strain model that can capture the softening and hardening
behaviors of GFRP-reinforced HCCs was suggested. The model features and the
test parameters appeared to be accurately considered when the experimental and
analytical load-strain responses matched closely.

• Based on parametric, experimental, and numerical data, the sufficiently confined
concrete threshold of FRP-reinforced columns was proposed to be at least 0.66. This
guarantees a safe and good design for HCCs resulting in a hardening behavior.
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Abbreviations
Ac concrete section area (without taking into account the longitudinal GFRP bars) (Ag-AFRP) (mm2):
Acc concrete-core area (without taking into account the longitudinal GFRP bars) (Acore-AFRP) (mm2);
Ace area of the concrete core (mm2);
Ag gross cross-sectional area of concrete column (mm2);
Acore effective core area denoted by the center-to-center spacing of the GFRP spirals (mm2);
AFRP the total cross-sectional area of the vertical GFRP bars (mm2);
Ah the cross-sectional area of GFRP spiral (mm2);
Di diameter of the inner hole (mm);
Ds diameter of the GFRP spirals (center-to-center of spirals) (mm);
D diameter of the whole concrete column section (mm);
EFRP elastic modulus of the GFRP rebars (MPa);
f c
′

compressive strength of concrete cylinder (MPa);
f cc
′

confined concrete stress (MPa);
f c
′′

unconfined concrete strength considering size effects (MPa);
fl lateral confining stress (MPa);
fl
′

effective lateral confining stress (MPa);
fFRP ultimate tensile strength of the GFRP reinforcements (MPa);
εFRP ultimate tensile strain of the GFRP reinforcements (mm/mm);
ke reduction factor regarding the vertical unconfined area between spirals (mm/mm);
Pn1 peak load in the elastic region (kN);
Pn2 peak load in the post-peak region (kN);
Pf load at column’s failure (kN);
s center-to-center vertical spacing of spirals (mm);
s
′

clear vertical spacing between spirals (mm);
α1 influence factor for the concrete compressive strength;
ρe effective longitudinal reinforcement ratio concerning the effective core area;
L.S.R. hoop confinement stiffness ratio;
ψ dilation angle of concrete;
Kc the shape factor of yielding surface;
Ec elastic modulus of unconfined concrete (MPa);
σc the axial compressive stress of concrete (MPa);
εc

in the inelastic strain of concrete in compression (mm/mm);
εc

pl the plastic strain of concrete in compression (mm/mm);
ft maximum tensile strength of concrete (MPa);
dc compression damage parameter;
dt tension damage parameter;
εc1 peak strain of unconfined concrete (mm/mm);
εcc1 peak strain of confined concrete (mm/mm);
dh diameter of GFRP spiral (mm);
εcu ultimate strain of unconfined concrete (mm/mm);
εccu ultimate strain of confined concrete (mm/mm);
fbent tensile strength of the bent GFRP bars ACI (2015) (MPa);
εc1 axial strain of concrete (mm/mm);
εoc

el elastic strain of compressed unconfined concrete (mm/mm);
εot

el elastic tensile strain of unconfined concrete (mm/mm);
εcr crack strain of unconfined concrete (mm/mm);
ρv ratio of GFRP spirals.
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