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Abstract: This study provides the application of a machine learning-based algorithm approach
names “Multi Expression Programming” (MEP) to forecast the compressive strength of carbon fiber-
reinforced polymer (CFRP) confined concrete. The suggested computational Multiphysics model
is based on previously reported experimental results. However, critical parameters comprise both
the geometrical and mechanical properties, including the height and diameter of the specimen, the
modulus of elasticity of CFRP, unconfined strength of concrete, and CFRP overall layer thickness. A
detailed statistical analysis is done to evaluate the model performance. Then the validation of the soft
computational model is made by drawing a comparison with experimental results and other external
validation criteria. Moreover, the results and predictions of the presented soft computing model
are verified by incorporating a parametric analysis, and the reliability of the model is compared
with available models in the literature by an experimental versus theoretical comparison. Based on
the findings, the valuation and performance of the proposed model is assessed with other strength
models provided in the literature using the collated database. Thus the proposed model outperformed
other existing models in term of accuracy and predictability. Both parametric and statistical analysis
demonstrate that the proposed model is well trained to efficiently forecast strength of CFRP wrapped
structural members. The presented study will promote its utilization in rehabilitation and retrofitting
and contribute towards sustainable construction material.

Keywords: multiphysics model; multi expression programming; carbon fiber-reinforced polymer;
parametric analysis; prediction

1. Introduction

Compared to steel and other retrofitting techniques, carbon fiber-reinforced polymer
(CFRP) possesses significant properties such as high tensile strength, resistance towards
the corrosive environment, minimal maintenance, improved aesthetics, reduced thermal
and electrical conductivity, strong resistance to chemical assaults, stress durability, and ge-
ometric compatibility. Thus, due to the exceptional CFRP’s characteristics, they have been
utilized as exterior confinement to improve further concrete components’ compressive and
flexural capacity when the core reinforcement is inadequate to hold the stresses. However,
when earthquakes inflict damage to concrete structures, their strength and serviceability

Materials 2021, 14, 7134. https://doi.org/10.3390/ma14237134 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-4671-1655
https://orcid.org/0000-0003-2863-3283
https://orcid.org/0000-0003-0298-7796
https://orcid.org/0000-0002-1196-8004
https://doi.org/10.3390/ma14237134
https://doi.org/10.3390/ma14237134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14237134
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14237134?type=check_update&version=1


Materials 2021, 14, 7134 2 of 21

deteriorate, and their restoration requires retrofitting or rehabilitation through different
techniques. In this regard, jacketing through CFRP is also considered dominant in contrast
to steel and concrete jacketing due to many aspects, including convenient handling and
installation, minimal disruption of structure, and reduced time utilization. Moreover,
CFRPs being popular in other domains can also be incorporated for retrofitting and reha-
bilitation of buildings and bridges to enhance the strength and efficacy of structures [1–7].
CFRP composites can also contribute towards bridge structures deteriorated under extreme
loading conditions (dynamic and cyclic excitation scenarios). Structures affected under
these circumstances are rehabilitated through parallel retrofitting strategies like CFRP [8,9].

Furthermore, many experimental studies have been carried out based on CFRP behav-
ior, and several empirical relationships have been developed so far. Moreover, multiple
new studies have also been carried out based on other composites such as GFRP (glass
fiber reinforced polymer) by substituting new variants [10]. However, experimental work
requires more resources in terms of cost, sophisticated efforts, and time-consuming lab-
oratory tests to develop empirical relationships, thus researchers have been employing
artificial intelligence (AI) in multiple engineering fields.

It is vital to mention that multiple AI techniques have been incorporated to explain
the solutions based on civil engineering problems amongst various machine learning
(ML) algorithms [11–13]. Moreover, complex engineering problems can be simplified by
utilizing the pattern recognition abilities of common AI algorithms [14–18]. Therefore,
typical features of conventional AI techniques, i.e., Neural Network (NN), have been
extensively employed by researchers to model various mechanical properties of concrete.
These include forecasting light weight based short column concrete compressive strength,
predicting compressive capacity for green concrete, high performance concrete, foamed
concrete, high strength concrete, lightweight concrete investigation, and prediction of
chloride effect in concrete have been studied [19–26]. Moreover, Ghanizadeh et al. [27],
Khademi et al. [28], and Reddy [29] utilized NN for predicting the ultimate strength of
concrete. Other researchers have utilized NN models to forecast the strength capacity of
confined concrete columns and cylinders laminated with FRP, such as Mansouri et al. [30]
and [31–35]. Several empirical models of confined concrete for extreme scenarios have
been suggested, such as forecasting FRP confined concrete behavior by incorporating
typical neutral networks techniques based on limited database, bond strength behavior
between FRP composite and concrete, and stress–strain behavior of FRP composites based
on ANN [36–46].

It should be noted that even advanced ML algorithms such as ANN can barely per-
form well, and only for an optimized set of problems, and are therefore perceived as
a black-box algorithm. The black box property associated with the algorithm is due to
its inadequacy to account for information and physical phenomena of a problem being
solved [47]. Thus, corresponding models developed by ANN are perceived as a simple
correlation of inputs and outputs, and therefore developed relations will cause new redun-
dancies in models. Such inclusions would result in linear or complex relations based on
prespecified base function [48]. Several computational algorithms such as genetic program-
ming (GP) and the model tree are being employed to model concrete properties [49–55], to
elude corresponding redundancies and complexities.

The dominance of these algorithms is the high generalized capability and substantial
prediction capacity being achieved through the development of practical mathematical
expression. However, AI techniques have been utilized in different civil engineering
problems due to enhanced capability and better predictions capacity. Table 1 demonstrates
the summary of modeling studies conducted on CFRPs from past researchers based on
conventional approaches. The typical aspects of AI techniques have been widely utilized to
build an empiric relationship to evaluate the strength capacity of CFRP confined concrete.
However, most empirical relationships for CFRP confined concrete in the literature were
established by utilizing limited databases, and curve-fit strategies with limited curve fit
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functions, implying that researchers could not cover all interrelations and combinations of
variables to obtain an accurate model.

Table 1. FRP confined concrete strength models proposed by scholars.

Researcher Year Developed Model

Richart et al. [58] 1928
f ′cc
f ′co

= 1 + 4.1
fl
f ′co

Newman and Newman [57] 1969
f ′cc
f ′co

= 1 + 3.7(
fl
f ′co

)2

Fardis and Khalili [56] 1982
f ′cc
f ′co

= 1 + 3.3(
fl
f ′co

)0.86

Karbhari and Gao [59] 1997
f ′cc
f ′co

= 1 + 2.1(
fl
f ′co

)0.87

Samaan et al. [60] 1998
f ′cc
f ′co

= 1 + 6.0
(fl)

f ′co

0.70

- - thus fo = 0.872 f ′co + 0.371fl + 6.258

- - E2 = 245.61 f ′co
0.2 + 1.3456

Eft
D

Saafi et al. [61] 1999
f ′cc
f ′co

= 1 + 2.2(
fl
f ′co

)0.84

Lam and Teng [62] 2003
f ′cc
f ′co

= 1 + 3.3
fl
f ′co

Mander et al. [63] 2005
f ′cc
f ′co

= 2.254

√
1 + 7.94

fl
f ′co
− 2

fl
f ′co
− 1.254

Bisby et al. [64] 2005
f ′cc
f ′co

= 1 + 2.425
fl
f ′co

Matthys et al. [65] 2006
f ′cc
f ′co

= 1 + 2.3(
fl
f ′co

)0.85

Shehata et al. [66] 2007
f ′cc
fco

= 1 + 2.4
fl
f ′co

Al-Salloum and Siddiqui [67] 2009
f ′cc
f ′co

= 1 + 2.312
fl
f ′co

Teng et al. [68] 2009
f ′cc
f ′co

= 1 + 3.5(ρk − 0.01)ρε

Realfonso and Napoli [69] 2011
f ′cc
f ′co

= 1 + 3.57
fl
f ′co

Furthermore, strength model presented by Fardis [56] is established upon reviewing
the model published by Newman [57] and Richart [58], based on FRP confined concrete.
All such models have been developed with a small selection of conventional and geometric
variations that becomes their flaw, resulting in no guarantee of future relevance. Experi-
menting with more sample sets and validating the suggested models with comprehensive
statistical measures and evolutionary techniques along with proper evaluation of intro-
ductory variables through parametric analysis can improve the accuracy of the models.
Similar approaches have been adopted by other authors based on conventional tactics
and regression analysis techniques. Therefore, substantial study with a wide range of
experimental values is necessary to establish a diversified empiric connection, along with
an extra thorough strategy.

Therefore, researchers are inquest to collaborate for the assistance of machine learning.
These computational intelligence techniques come up with the ability to instinctively dis-
cover and improve the systems without being programmed explicitly based on experience.
Machine learning emphasizes establishing programs that can access data and manipulate
it to learn for themselves. The learning process begins upon examining data, such as exper-
imental data from the past literature, and examining the data patterns to make effective
recommendations for the future. The main goal is to allow computers to learn on their
own, without the need for human intervention, and attune their actions correspondingly.
Therefore, Multi Expression Programming (MEP) as a versatile technique have the ability to
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encrypt multiple chromosome expressions in a single program exclusively. The best of the
designated chromosome is then adopted as the final illustration of the solution [70]. MEP
being an advanced variant of gene programming (GP) can speculate results accurately if the
complications are unspecified in comparison to other evolutionary algorithms (EAs) [71].

To contemplate the situation, ML program-based algorithm MEP, an advanced tool in
AI more realistic than all other traditional and statistical approaches, has been employed to
construct a mathematical model for forecasting CFRP-constrained concrete’s compressive
strength based on a comprehensive database. Collectively 828 data points have been
incorporated in this study which is another outstanding aspect of this work. Thus, the
corresponding mechanical characteristic of CFRP confined concrete has been developed by
employing MEP, depending upon the majority of affecting and essential factors. A huge
database has been compiled from published research and categorized into different sets
(train, validate, and test) to assure that the model is adequately trained. Comprehensive
statistical analysis and parametric evaluation are performed. The developed model is also
compared with existing empirical relationships for CFRP confined concrete to evaluate
the credibility of the proposed model to guarantee model generality and validity. The
developed empirical relationship can reliably predict confined concrete strength perfor-
mance, which would be useful in analysis and design considerations for composite concrete
structural components made with CFRP. The work is structured as follows: a description
of the MEP methodology, an experimentation database collection, modelling methodology,
interpretation and discussion of results, parametric and sensitivity analysis, and a summary
of the key findings.

2. Research Methodology
2.1. Multi Expression Programming

The widespread assignment in most research-based studies is to present a computa-
tional model to explicate and forecast specific phenomena or actions. Numerous computa-
tional techniques, such as Evolutionary Programming (EP), Multi-Expression Programming
(MEP), Genetic Algorithm (GA), and Gene Expression Programming (GEP), were estab-
lished in this regard to assist these activities [72,73]. The prime focus of AI modeling is
to develop feasible and accurate mathematical illustrations to predict the outputs based
on pre-specified input parameters. However, the GP-based Darwinian principle idea of
natural selection was proposed by [74], which is an evolution of the genetic algorithm
(GA). The paramount variance involved in these methods is GA utilization based on fixed
binary length strings substituted in GP with nonlinear parse trees. An utmost variant of
linear proportionality has already been suggested over the past few years by various EA’s.
Independents can also be illustrated as variable-length units as suggested by [75,76] for
the MEP case. The simulation of MEP output can be demonstrated as an instruction based
on linear strings, where strings are a coalition of mathematical functions and variables.
The MEP schematic process is demonstrated below in Figure 1. Moreover, MEP evolution
operation begins with the production of chromosomes population randomly. Thus genera-
tion begins by utilizing a binary tournament and thereby selecting two parents initially.
Reorganization then happens with a cross-over probability, followed by the production of
binary offspring and genetic reshuffling of designated parents, and mutation of offspring;
replacing begins based on the population of the worst-performing individuals with the
optimized one’s. The whole operation being periodic remains continued unless it conflux
towards convergence [77].

Most of the presented works done in the last few years put intense consideration
upon computational techniques, particularly in Neural Networks and GEP techniques
for modeling different problems related to civil engineering. Despite that, MEP has a
certain dominance on similar Intelligence techniques. Usually, to analyze the characteristic
behavior of concrete, an extensive database is required to forecast the output. Gene
Programming utilizes genetic tree crossing based operators, which results in the production
of an immense population of processed components, or derivation tree which successively
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causes an increase in the production time of the model and thus requires extra storage [74].
Furthermore, GP operates as a genotype and phenotype due to the nonlinear structure that
makes it strenuous for the algorithmic process to predict reliable mathematical operators
for the intended expression [51].
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Contrary to this, MEP can identify among the genome and phenome categories due
to the involvement of linear variants [78]. In GP the rate of success increases up to a
threshold value with the number of genes in chromosomes. Nevertheless, over-fitting is
a significant issue and tends to exist in the forecasted properties beyond the limit. That
over-fitting limits the model feasibility in the construction sector [26,79,80]. Conversely,
MEP is dominant when final expression complications are unspecified, which is a normal
practice involved in material science problems. A slight alteration in parameters can alter
the results considerably [75]. The capability of MEP makes it possible to code multiple
solutions in a single chromosome. In addition, the linear pattern of chromosomes assists
the algorithm in exploring wide and vast space in forecasting the target. The dominance
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MEP has over other computational algorithms makes it able to establish rigorous and
robust models for the construction industry. Few studies in the past employ MEP to
develop the systematic categorization of soil based on the Atterberg limit (to distinguish
the consistency states either plastic limit or liquid limit), gravel occurrence, soil color, the
volume of fine-grained particles, and sand percentage [77]. Thus, nonpiecewise models are
proposed to aid in determining the degree of soil consolidation [81]. Nevertheless, normal
and high strength concrete tangent (E) formulation by [78], models for concrete columns
confined with aramid fiber-reinforced polymer (AFRP) [71], soil deformation modulus
evaluation [82], formulation of suction caisson uplift capacity [83,84], and CS of Portland
cement-based on 28-day strength [85] were among other studies.

However, in the presented study strength model for CFRP confined concrete has been
developed by utilizing the MEP approach. The modeling is linked with comprehensive
analytical and descriptive studies to assure the validity and efficacy of the created model.
The development of credible models will encourage the building industry to use CFRP
confined concrete since it eliminates the sophisticated and laborious experimental proce-
dures required to test such an unusual material for construction. The developed approach
will help to strengthen infrastructure through retrofitting and rehabilitation, and would
also promote viable construction and resource conservation by preventing infrastructure
deterioration. Furthermore, the suggested modeling strategy will allow future accurate
simulations of similar complicated engineering phenomena.

2.2. Experimental Database

For modeling purposes, a thorough database of mechanical and geometrical parame-
ters of CFRP confined concrete was compiled from the publications. The database created
in this study is based on earlier experiments. The compiled database provided an extensive
dataset of 828 specimens and all critical parameters related to the strength enhancement of
concrete enclosed with FRPs. Universal and robust model development was ensured by
incorporating all the variable datasets collection. Cube samples were used in some of the
investigations to evaluate mechanical characteristics. The cube compression strength was
converted to cylinder compression strength by the UNESCO converter coefficients [86] to
ensure data conformance and consistency. To determine the probable parameters impacting
the characteristics of CFRP confined concrete, thorough literature research and statistical
data analysis were performed. Table 2 shows the range and statistical information of
the parameters incorporated and employed in the model’s construction. The proposed
parameters being included comprised of five inputs and one target component as follows:

Input = {d; h; nt; f ′co; EFRP}

Output = {f ′cc}

where f ′cc is the confined compressive strength of CFRP. d; h; nt; f ′co; and EFRP are the
respective section diameter, the corresponding height of specimen, the CFRP layers thick-
ness, unconfined concrete strength, and finally, the elastic modulus of fibers, appear to be
potentially effective parameters in predicting the ultimate load values and thus be utilized
as the input parameters to establish the model. Moreover, εco and εcc are the corresponding
strain values of unconfined concrete and CFRP confined concrete of respective specimens.

The distribution of input parameters has a significant influence on the generaliza-
tion capacity of the generated model. In Figure 2, data is represented using frequency
histograms to depict the distribution of individual variables. As shown in Figure 2, the
distributions of the input variables are not consistent, and the frequency rate of the input
parameters is relatively high. It is important to remember that if input parameters have
a high-frequency rate, we will be able to get a better model. The statistics and ranges of
the individual variables used in the model are summarized in Table 2 to make the data
more comprehensible. The table depicts the data’s center (mean and median), dispersion
(standard deviation and variance), extremes (maxima and minima), and distribution shape
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(skewness and kurtosis), making data interpretation relatively straightforward. The results
reveal that the suggested machine learning models apply to a wide range of input data,
boosting their utility.

Table 2. Statistical data about the variables employed in the model.

Parameters d h nt E f ′co f ′cc εco εcc

- (mm) (mm) (mm) (Gpa) (Mpa) (Mpa) (%) (%)

Mean 154.62 307.88 0.82 182.52 40.56 74.58 0.26 1.53
Median 152 304 0.38 230 36.3 66.78 0.24 1.35
Mode 150 300 0.33 230 24.5 63 0.24 0.95

Sample Variance 1927.85 7552.62 0.992 12,592.78 469.98 1125.324 0.0155 0.716
Skewness 2.71 2.85 2.355 0.4467 2.603 2.05988 7.428 0.957

Standard Error 1.53 3.02 0.03 3.899 0.75 1.17 0.004 0.031
Kurtosis 12.59 13.48 5.784 0.3353 11.696 8.54763 60.888 0.658

Standard Deviation 43.907 86.91 0.996 112.218 21.68 33.546 0.1246 0.846
Minimum 51 102 0.09 10 6.2 17.8 0.1676 0.083
Maximum 406 812 5.9 663 188.2 302.2 1.53 4.62

Range 355 710 5.81 653 182 284.4 1.3624 4.537

The multicollinearity problem, which emerges due to the interdependence of input
parameters, is a prevalent challenge in the execution of machine learning techniques [49]. It
has the potential to raise the strength and endurance of correlations between variables, thus
lowering the effectiveness of the produced model. It is recommended that the coefficient of
correlation (R) between two input parameters remains less than 0.8 [87] to overcome the
issue of multicollinearity. R is evaluated for all potential input variable combinations, as
given in Table 3. The table shows that R, whether negatively or positively, is smaller than
the stipulated limit (0.8), indicating that there would be no possibility of multicollinearity
amongst variables during modeling.

Table 3. The coefficient of correlation among different input parameters.

- d h t E f ′co

d 1 0.99 0.02 0.07 −0.09
h 0.99 1 0.02 0.07 −0.09
t 0.02 0.02 1 −0.49 0.19
E 0.07 0.07 −0.49 1 −0.10

f ′co −0.09 −0.09 0.19 −0.10 1

2.3. Modeling Parameters

As previously stated, to build a robust and comprehensive model, several fitting
parameters for MEP must be specified prior to modeling. These fitting parameters are
adopted based on past suggestions using the hit-trial and error procedure [88]. In addi-
tion, the population size is specified so that the number of programs incorporated in the
population is particularized priorly. Converging a model having a huge size of population
would be difficult, sophisticated, and time-consuming. However, once the model’s size
is expanded above a certain point, the issue of overfitting may develop. The process was
actuated to take into account the number of the subset as 100. Table 4 shows the parameters
chosen for the model produced in this study. For the sake of convenience, the function set
contains the following mathematical functions of adding, subtracting, multiplying, and
divisions, as well as certain trigonometric functions to ensure that the final expressions
are robust and accurate. The algorithm’s accuracy level is determined by the number of
generations achieved by the algorithm prior to the termination. The best model can be
accomplished through the run with as many generations as possible, and consequently,
that will result in a model with the fewest anomalies.
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Table 4. Parameter configuration for MEP algorithm.

Parameters Settings

Size of subpopulations 150
Number of subpopulation 100

Mathematical operators +, −, ×, ÷, Cosθ, Sinθ, tanθ
Crossover probability 0.92
Mutation probability 0.01

Variables 0.5
Operators 0.5

Number of generations 10,000

Similarly, mutation and crossover rates represent the likelihood of progeny undergoing
these genetic procedures. The percentage of cross-over ranges between 50% to 95%. The
data was subjected through multiple combinations of modeling configurations, and the
optimum combination was adopted based on overall model subjective evaluation, as shown
in Table 4. Being an advancement in the modeling procedure, one of the common issues
often encountered in AI modeling is data overfitting. A model behaves efficiently with
the source data, conversely, it performs poorly with unknown data. Therefore, it has been
highly endorsed that the trained model be tested on an unknown or test dataset to avoid
conflicts arising from these problems [89,90]. However, the entire database, on the other
hand, has been arbitrarily separated into training sets, validation sets, and testing sets.

These training sets and validation sets were treated appropriately during modeling.
The verified model is next used to test on the third dataset. However, it is a test set that was
not involved in the model’s construction. It must be assured that the data distribution is
uniform across all data sets. To maintain consistency in the presented work, 70%, 15%, and
15% of the data are manipulated based on the train, validate, and test sets, respectively. The
final models exhibit better performances over all datasets. For this purpose, a commercially
accessible computational tool MEPX v1.0 was acquired to employ the MEP algorithm.

The commencement of the algorithm is initiated by producing an initial population of
viable alternatives. The mechanism is recursive, thus converges to approach the conclusion
with every new generation. In each generation, fitness is at first well appraised inside the
solution population. However, in machine learning algorithms, a big concern is model
overfitting due to the data training in excess. This overfitting eventually causes an increase
in testing error, but training error decreases continuously [91]. Therefore, to cumber the
effects caused by the overfitting of the model, the term objective function (OF) is introduced
in machine learning. This OF term is known as a fitness function.

Moreover, from the literature review [49,92] it is proposed that the best model selection
should be made based on minimized objective function (OF). In the current study, to
demonstrate the overall efficacy of the model OF is also being assessed for each trained
model, as it can consider the effects of R, RMSE, and the quantity of input data. Hence, the
model developed by MEP persistently transforms unless there is no transition recorded in
the pre-established fitness function, i.e., RMSE or coefficient of determination. Furthermore,
the process is repeated until its convergence to achieve an accurate and robust model for
these three datasets (training, validation, and testing) by eventually expanding the amount
and size of the subpopulation. Finally, the model selection will be made based on the
minimum value of OF. However, superior performance of some models was indicated for
the training set compared to the testing set, which indicates that the model is overfitted
and must be countered accordingly. It is to be considered here that the accuracy of the
developed model is impacted by the evolution period for the number of generations
developed. With the inclusion of each new variable in the programmer in these algorithms,
the model is constantly evolving. Therefore, in this research, the generated model was
terminated either upon 10,000 generations or when the change in fitness function remained
acceptable, i.e., less than 0.1 percent.
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Furthermore, an optimal model must satisfy multiple performance indicators, as
explained in the following discussion. These performance indicators assess the efficacy of
the proposed model by evaluating statistical error and model indicators. These measures
include Coefficient of Determination R, Relative squared error (RSE), Relative root mean
square error (RRMSE), RMSE, Mean absolute error (MAE), and Fitness function, perfor-
mance index (ρ). The Equations (1)–(7) represent the relationships for statistical indicators
as discussed.

R =
∑n

i−1(ei − ei)(mi−mi )√
∑n

i−1(ei − ei)2 ∑n
i−1(mi −mi)2

(1)

RMSE =

√
∑n

i−1(ei −mi)
2

n
(2)

MAE =
∑n

i−1|ei −mi|
n

. (3)

RRMSE =
1
|e|

√
∑n

i−1(ei −mi)
2. (4)

RSE =
∑n

i−1(mi − ei)
2

∑n
i−1(e− ei)

2 (5)

ρ =
RRMSE

1 + R
(6)

OF =

(
nT − nTE

n

)
ρT + 2

(nTE
n

)
ρTE. (7)

Here ei. and mi, denote the ith actual and estimated values respectively, and ei and
mi denote the mean ith experimental and average estimated values, respectively, and n
denotes the total number of observations utilized for modeling. The subscripts T and TE,
respectively, reflect the train and test sets.

Furthermore, several criteria must be observed when evaluating the validity of con-
structed models. Therefore, as a result, it must meet at least the standards outlined in the
literature as follows [93–99].

1. To exist a correlation between the observed and expected values |R| needs to be
between 0.2 < |R| < 0.8.

2. If |R| evaluated to be < 0.2, that depicts a weak correlation among the actual and
predicted values.

3. |R| has to be larger than 0.8 to maintain a strong correlation between expected and
actual values.

Furthermore, a model with a strong R and limited predictive errors is considered
reliable. In general, the |R| value is an important parameter to consider when evaluating
a model. Researchers have suggested that R be used to assess linear relations between
inputs and outputs’ results [22,83]. However, it does not evaluate the overall efficiency
of the model due to its impassive behavior towards division or multiplication of output
with a constant value. The average magnitude of the errors is calculated using the RMSE
and MAE measures. Each has its own set of implications and restrictions. For instance, in
RMSE, the average value error is squared before the estimate, resulting in a preference for
greater deviations.

In contrast, a large RMSE value indicates that such outputs having significant errors
are far higher than anticipated and must be minimized. In comparison to RMSE, MAE
allocates low weightage to larger errors, leading towards less value. Other researchers,
such as Despotovic et al. (2016) [100], have recommended that the RRMSE value for
excellent modeling should be between 0 and 0.10; however, if such calculations were within
0.11 and 0.20, the model is considered good. Other indices, such as ρ and OF, lie between
0 and infinity. However, for the reputation of a good model, ρ and OF must be less than
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0.2 [92]. The parameter OF has significant importance as it considers the effect of three
main statistical parameters involved in training and testing datasets, i.e., RRMSE, R, and
relative percentage.

Furthermore, a lower value of OF indicates that a proposed model efficiency is prefer-
ably sufficient. The computed OF is preferably close to the criteria stated for a good model
in the presented study. As explained earlier, numerous trials were carried out until the
model converged to yield the lowest OF value. Furthermore, the developed model is
externally validated through standards suggested by other scholars, which are presented
in Table 5.

Table 5. Statistical measures of the generated models for external validation.

S. No. Equation Condition Suggested by

1 Rm = R2 ×
(

1−
√∣∣R2 − R2

o
∣∣) Rm > 0.5 (Roy and Roy, 2008)

[101]

-

where

R2
o = 1− ∑n

i=1
(
mi − eo

i
)2

∑n
i=1
(
mi −mo

i
)2 , eo

i = k×mi
R2

o
∼= 1 -

- R′2o = 1− ∑n
i=1
(
ei −mo

i
)2

∑n
i=1
(
ei − eo

i
)2 , mo

i = k′ × ei R′2o ∼= 1 -

2 k =
∑n

i=1(ei ×mi)

∑n
i=1 e2

i
0.85 < k < 1.15

(Golbraikh and
Tropsha, 2002) [102]

3 k′ =
∑n

i=1(ei ×mi)

∑n
i=1 m2

i
0.85 < k′ < 1.15 [102]

3. Results and Discussion
3.1. Mechanical Properties and Formulation

The mathematical equations for the computation of CFRP confined concrete strength
consist of five input parameters derived by decoding the developed model generated
by MEP. The expression for developed mathematical expression is represented by
Equations (8)—(11), respectively. In addition, Figure 3 shows the comparison of actual and
forecasted f ′cc for all data sets: train, validate, and test phase. Furthermore, the slope of
the best fit line for all three data sets and the slope for an ideal fit scenario are displayed
in the graph. The slope of the best fit line should pass through the origin and approach
one for a perfect fit. Figure 3 shows a significant correlation between actual and projected
results for all datasets in the created model. The corresponding slopes for train, validate,
and test phases are evaluated as 0.9299, 0.9357, and 0.9517, respectively. The results are
quite identical and closer to a good fit throughout all sets. This fitting indicates that the
model has been efficiently developed and thus has a strong generalization ability, as it
behaves well enough on unknown data when forecasting output. The generalization of
the established model suggests that the problem of model over-fit has been minimized
and reduced on a broad scale. It is also worth noting that the quantity of data points
needed for forecasting is eminently reliant on the efficiency and applicability of produced
models [103–105]. So far, 828 data points have been added into the assembled database for
forecasting f ′cc, which is another fascinating part of this work; as a result, high precision
with few discrepancies has been obtained.

f ′cc
f ′co

= X + Y + Z (8)

where as
X = cos log (2 ∗ nt ∗ E) (9)

Y = log (4 ∗ nt ∗ E) (10)
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Z = tan (cos (log (2 ∗ nt ∗ E) (11)

Materials 2021, 14, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 3. Assessment of predicted f’cc vs experimental output. 

3.2. Model Performance and Evaluation: 
Before probing into the discussion of model performance, it is equally important to 

assure the validity of the established model. Therefore, the amount of data utilized in the 
model development needs to be analyzed, as the model’s accuracy relies on it. The 
researchers suggested that the proportion of the number of data to the number of input 
parameters employed for trained and unknown (validation and testing) data be greater 
than 5 [106]. However, in light of the previous discussion for the training phase, the f’cc 
model has a ratio of 116. While in the testing stage, the f’cc model has a ratio of 24.8. As 
previously stated, numerous statistical measures assess the efficiency of the developed 
models such as R, RMSE, RSE, MAE, ρ, RRMSE, and OF. The values of various statistical 
measures or Indices for training, validation, and testing sets are demonstrated in Table 6 
for the generated f’cc model. 

Table 6. Statistical indices for training, validation, and testing sets of the established models. 

- RMSE RSE MAE RRMSE R ρ OF 
Training 7.768321 0.010346 6.471356 0.005 0.9948 0.002291 0.009156 

Validation 7.17975 0.009859 5.944429 0.009 0.9950 0.004578 - 
Testing 7.719133 0.009733 6.33431 0.010 0.9953 0.004921 - 

Database 7.6756 0.0102 6.3719 0.004 0.9949 0.00189 - 

However, it can be deduced from the table that both predicted and experimental 
values possess a high correlation between them as inferred by R-value 0.9948, 0.9950, and 
0.9953 for each set of training, validation, and testing, respectively. The values of 
indicators (RMSE, MAE, and RSE) show high accuracy as they are considerably less and 
quite close for each dataset which is another sign of the generalized capability of the 
model. The derived model’s RMSE appears to be 7.76, 7.17, and 7.71 for the three sets, 

Figure 3. Assessment of predicted f ′co vs. experimental output.

3.2. Model Performance and Evaluation:

Before probing into the discussion of model performance, it is equally important to
assure the validity of the established model. Therefore, the amount of data utilized in
the model development needs to be analyzed, as the model’s accuracy relies on it. The
researchers suggested that the proportion of the number of data to the number of input
parameters employed for trained and unknown (validation and testing) data be greater
than 5 [106]. However, in light of the previous discussion for the training phase, the f ′cc
model has a ratio of 116. While in the testing stage, the f ′cc model has a ratio of 24.8. As
previously stated, numerous statistical measures assess the efficiency of the developed
models such as R, RMSE, RSE, MAE, ρ, RRMSE, and OF. The values of various statistical
measures or Indices for training, validation, and testing sets are demonstrated in Table 6
for the generated f ′cc model.

Table 6. Statistical indices for training, validation, and testing sets of the established models.

- RMSE RSE MAE RRMSE R ρ OF

Training 7.768321 0.010346 6.471356 0.005 0.9948 0.002291 0.009156
Validation 7.17975 0.009859 5.944429 0.009 0.9950 0.004578 -

Testing 7.719133 0.009733 6.33431 0.010 0.9953 0.004921 -
Database 7.6756 0.0102 6.3719 0.004 0.9949 0.00189 -

However, it can be deduced from the table that both predicted and experimental
values possess a high correlation between them as inferred by R-value 0.9948, 0.9950, and
0.9953 for each set of training, validation, and testing, respectively. The values of indicators
(RMSE, MAE, and RSE) show high accuracy as they are considerably less and quite close
for each dataset which is another sign of the generalized capability of the model. The
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derived model’s RMSE appears to be 7.76, 7.17, and 7.71 for the three sets, respectively.
The corresponding MAE’s are 6.47, 5.94, and 6.33, respectively, of the developed model.
The results inferred that the computed MAE’s are less than the RMSE, which fulfills the
earlier analysis condition. However, the calculation of RRMSE infused the significance of
the developed model for predicted f ′cc as outstanding. Thus computed RRMSE indices for
each set are less than 0.10, i.e., 0.0045, 0.0098, and 0.0097, respectively.

Furthermore, findings imply that the evaluated RRMSE lies in the range 0 < RRMSE < 0.10
for each of three sets of strength models, which shows that the model lies in the excellent
range. Moreover, there is also another indication that if the ρ value remains less than
0.20 for all three sets, the model will be inferred as reliable and proficient for forecasting
output. In addition to these statistical measures, another indicator OF was incorporated in
this study to counter the overfitting problems. Overfitting not only alters the results but
is also responsible for forecasting inaccurate outputs. However, the OF computed for a
developed model is 0.009. This value is exceptionally close to zero, indicating the validity
and overall performance of the model and overrule the issues of overfitting by addressing it
satisfactorily. The statistics of absolute errors along with respective data points are plotted
in Figure 4.
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The database utilized in modeling represents that the average error in forecasted
values for f ′cc is 6.37 Mpa, with a maximum error recorded as 16.48 MPa. As quoted initially,
the database employed in this study contains 828 points. Among such a huge database, it
is worth noting that only 12% of instances have an error greater than 8%. However, the
maximum error density obtained based on these data points is not considered high. It
is pertinent to mention that approximately 88% of the predictions obtained have errors
computed less than 8% for the f ′cc model.

Moreover, another measure used to examine the prediction capability of a model is
the average absolute error (AAE) or the average percentage discrepancy. In this study, the
percentage discrepancy of the developed MEP model from experimental values is only
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10.16%. This number is low considering the large database, demonstrating the suggested
model’s great accuracy. The suggested model outperforms the existing best-performing
models in the literature, as shown in Figure 5, demonstrating the enhanced performance
of the forecasted model over the existing best-performing models in the literature. Most
of them have employed limited and small databases. Thus, the respective discrepancy in
values may indicate failings in credibility and accuracy to forecast the output.
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The proposed parameters by [102] have been incorporated in this study to perform
an external validation of the established model, as mentioned in Table 7. Therefore, to
compute the model resilience and efficacy, it is indispensable that the regression coefficient
(k or k′) must pass through the origin and be close to 1. In 2008, a researcher [101] proposed
a confirming parameter (Rm) to analyze a model’s external reliability. The Rm value must
be greater than 0.5 to meet the criterion. However, it is shown in Table 7 that the proposed
models meet the external validation criteria, demonstrating that they are credible, resilient,
and not just another simple correlation of input and output variables.

Table 7. Statistical indices for external validation of generated model.

Sr. No. Parameters
Sets

Database
Training Validation Testing

1 k 0.991410 0.993896 1.011315 0.994896
2 k′ 0.998249 0.981181 0.979612 0.994932
3 Rm 0.889943 0.892999 0.896258 0.891061
4 R2

◦ 0.999809 0.999783 0.999783 0.999802
5 R′2◦ 0.999823 0.999796 0.999794 0.999816

3.3. Parametric Analysis

An empirical model was proposed and employed for the parametric investigation to
evaluate the efficacy of the parameters, which include:
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(i) Material properties such as modulus of elasticity (E) of FRP, unconfined concrete
(f ′co) strength;

(ii) Geometric properties such as thickness (nt) of FRP composites, and cylinder diameter (d).

The objective involved in analyzing the behavior of each parameter is to study their
effect on the strength of confined concrete. Therefore, it is essential to conduct several
analyses before implementing AI-based models to ensure that models have enough re-
silience and robustness to execute efficiently for all different data combinations. It is to be
intimated here that the superiority of the models does not need to be demonstrated through
their performance over current data sets, i.e., training, validation, and testing. However,
in the presented study, a parametric evaluation technique is being used, as suggested
by numerous scholars, to assess if the model has been well-trained and does not simply
correlate inputs and outputs. To perform this analysis, an average value of each input
parameter needs to be constant and corresponding variance in the output is presented
against the variance in one input parameter across its full range. All the input variables
being involved in model development go through the same procedure. The parametric
analysis results for developed f ′cc for each input parameter are shown in Figure 6. These
observations are aligned with the experimental study conducted in the past.

Materials 2021, 14, x FOR PEER REVIEW 17 of 22 
 

 

observed. Furthermore, it may be stated that an increase in Ef has a considerable influence 
on f’cc. 

3.3.4. Effect of Concrete Compressive Strength (f’co) 
The parametric analysis used several values of unconfined concrete strengths f ‘co 

ranging from 6 MPa to 190 MPa with a 25 MPa increase. Figure 6d shows the variable 
effect on f ‘co. When f’co is increased from minimum to maximum while all other parameters 
remain constant, the forecasted model’s concrete strength rises by 271 percent. In general, 
the confined concrete strength f ‘cc increases linearly by increasing the unconfined 
concrete strength (f’co). 

Therefore, the parametric analysis findings have deduced that f’cc grows as f’co 

increases, as plotted in Figure 6d. This pattern is also consistent with current design 
trends. From the foregoing discussion, it can be stated that the constructed MEP model 
successfully captured the complicated behavior of confined concrete strength and can 
thus be used widely for future prediction. 

  
(a) (b) 

    
(c) (d) 

Figure 6. Variations in presented strength model using Input parameters: (a) d, (b) nt, (c) Ef, (d) f’co, 

4. Conclusions 

0 50 100 150 200 250 300 350 400 450
60

70

80

90

100

110

120

130

Pr
ed

ic
te

d 
f’ cc

 (M
pa

)

Diameter - d (mm)

y = - 0.1255x + 112.82

0 1 2 3 4 5 6
40

60

80

100

120

140

Pr
ed

ic
te

d 
f’ c

c (
M

pa
)

Thickness - nt (mm)

y = 14.772x + 70.247

0 100 200 300 400 500 600 700
30

40

50

60

70

80

90

100

110

120

Pr
ed

ic
te

d 
f’ cc

 (M
pa

)

Elastic Modulus - Ef (Gpa)

y = 0.1558x + 41.929

50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Pr
ed

ic
te

d 
f’ c

c (
M

pa
)

 Unconfined Compressive strength - f’co (Mpa)

y = 0.914x + 55.147

Figure 6. Variations in presented strength model using Input parameters: (a) d, (b) nt, (c) Ef, (d) f ′co.



Materials 2021, 14, 7134 16 of 21

3.3.1. Effect of Diameter (d)

Concrete specimens with diameters ranging from 50 mm to 400 mm were employed
in the parametric analysis, with each increment of 50 mm. The fluctuation of f ′cc due
to a change in concrete diameter (d) is shown in Figure 6a. When the diameter value ‘d’
increases from 50 mm, the f ′cc for concrete increases at first, then continues to decline up
to 400 mm, leaving all other parameters constant. When d increases from the initial to the
final value, an overall decline of approximately 44% was recorded in f ′cc value. In addition,
it can be inferred from the graph that there is a gradual decrement observed in the value of
f ′cc from 118.528 Mpa to 66.977 Mpa up to a final value of d. Therefore, it is convenient to
envision that the effect on f ′cc is significant at smaller diameters.

3.3.2. Effect of Thickness of FRP Layers (nt)

The thickness range for FRP layers used in the parametric analysis was 0.09 mm to
5.9 mm, with a 0.5 mm increment. Figure 6b depicts the effect of change on the thickness
of FRP layers. The rise in f ′cc was outstandingly 147 percent, when nt was increased from
0.15 mm to 1 mm, demonstrating that the impact of raising nt is more considerable at lower
levels. Moreover, for values of nt beyond 1 mm to 5.9 mm, there is no significant increment
observed in f ′cc, i.e., 120.40 Mpa to 140.84 Mpa accounting for a 17% increase in f ′cc. It
can also be concluded that for higher values of f ′cc the effect of raising the thickness of the
wraps appears to be less significant. This trend is consistent with prior studies conducted
on CFRP confined concrete, as the increase observed in strength between min and max
thickness is 188%. However, confined concrete strength (f ′cc) generally has a linear relation
with the unconfined concrete strength f ′co, thus increasing proportionally [107,108]. Apart
from this, increasing the thickness of FRP wraps (nt) has the same effect as observed in the
current study.

3.3.3. Effect of Elastic Modulus of FRP (Ef)

Figure 6c depicts the effect of changing Ef. The Ef values vary from 10 GPa to 663 GPa,
with each increment of 50 GPa. When the parameter Ef value exceeds from 10 GPa up to
390 GPa, the f ′cc increases by 143 percent. Similarly, when Ef increases beyond 390 Gpa,
a slight increase in f ′cc can be observed up to 663 Gpa. However, it should be noted that
with the increment in Ef from its initial to the final value, an overall improvement in f ′cc
can be observed. Furthermore, it may be stated that an increase in Ef has a considerable
influence on f ′cc.

3.3.4. Effect of Concrete Compressive Strength (f ′co)

The parametric analysis used several values of unconfined concrete strengths f ′co
ranging from 6 MPa to 190 MPa with a 25 MPa increase. Figure 6d shows the variable
effect on f ′co. When f ′co is increased from minimum to maximum while all other parameters
remain constant, the forecasted model’s concrete strength rises by 271 percent. In general,
the confined concrete strength f ′cc increases linearly by increasing the unconfined concrete
strength (f ′co).

Therefore, the parametric analysis findings have deduced that f ′cc grows as f ′co in-
creases, as plotted in Figure 6d. This pattern is also consistent with current design trends.
From the foregoing discussion, it can be stated that the constructed MEP model successfully
captured the complicated behavior of confined concrete strength and can thus be used
widely for future prediction.

4. Conclusions

The primary goal of this study was to utilize and examine the capability of the MEP
technique in evaluating the compressive strength of concrete confined by CFRP composite.
Thus, to present a reliable and efficient model, a large database has been compiled based
on extensive research published in the literature. For this reason, a suitable model has
been devised to forecast the compressive strength of CFRP confined concrete. The derived
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findings are in close agreement with the observed/actual data and have a high capacity to
anticipate output. Other performance measures such as RRMSE, RMSE, R, RSE, and MAE
were also computed to assess the adequacy and serviceability of the generated models.

The reliable and generalized capability of the established model is verified through
ρ and OF indicators which confirms that the problem of overfitting has been managed
effectively. The parameter R is exceptionally in the range between (0.9948–0.9953), which
depicts the firm relationship among the forecasted and experimental findings for all the
datasets incorporated in the study. Higher R and lower MSE, on the other hand, imply that
a high degree of prediction was anticipated for all sets, demonstrating the universality of
the suggested model.

The proposed investigation fulfilled the criteria for model external validation satisfac-
torily. The parametric analysis affirms that the proposed model is capable of forecasting
the true behavior for geometrical and mechanical properties of CFRP confined concrete.
All the parameters give us an insight that the MEP model in conjunction with validation
analysis proved to be an efficient tool to increase the strength capacity. The MEP model
was generated by optimizing the training algorithm along with other datasets that assist
in decoding the best formulae that are suitable for practicing engineers. The suggested
model was also compared to the current strength enhancement ratio (f ′cc/f′co) published
and recommended in the literature by various scholars. Thus, the proposed strength
model outperformed all existing models by minimum error projection. The proposed
study evaluates the compressive strength of CFRP confined concrete very well by utilizing
the developed model. Thus, the corresponding developed empirical relationships have
the ability to forecast confined concrete behavior efficiently, which would be useful for
analyzing and designing various composite concrete structural members.
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14. Yumashev, A.; Ślusarczyk, B.; Kondrashev, S.; Mikhaylov, A. Global Indicators of Sustainable Development: Evaluation of the
Influence of the Human Development Index on Consumption and Quality of Energy. Energies 2020, 13, 2768. [CrossRef]

15. Nie, D.; Panfilova, E.; Samusenkov, V.; Mikhaylov, A. E-Learning Financing Models in Russia for Sustainable Development.
Sustainability 2020, 12, 4412. [CrossRef]

16. Bagheri, M.; He, X.; Oustriere, N.; Liu, W.; Shi, H.; Limmer, M.A.; Burken, J.G. Investigating plant uptake of organic contaminants
through transpiration stream concentration factor and neural network models. Sci. Total Environ. 2021, 751, 141418. [CrossRef]
[PubMed]

17. Wang, L.; Chen, L.; Tsang, D.C.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as green additives in cement-based
composites with carbon dioxide curing. J. Clean. Prod. 2020, 258, 120678. [CrossRef]

18. Wang, F.; Song, G.; Mo, Y. Shear loading detection of through bolts in bridge structures using a percussion-based one-dimensional
memory-augmented convolutional neural network. Comput. Civ. Infrastruct. Eng. 2021, 36, 289–301. [CrossRef]

19. Ashteyat, A.; Obaidat, Y.T.; Murad, Y.Z.; Haddad, R. Compressive strength prediction of lightweight short columns at elevated
temperature using gene expression programing and artificial neural network. J. Civ. Eng. Manag. 2020, 26, 189–199. [CrossRef]

20. Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete
incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [CrossRef]

21. Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and High-Performance Concretes
using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020, 232, 117266. [CrossRef]

22. Nguyen, T.; Kashani, A.; Ngo, T.; Bordas, S. Deep neural network with high-order neuron for the prediction of foamed concrete
strength. Comput. Civ. Infrastruct. Eng. 2019, 34, 316–332. [CrossRef]

23. Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M. Modeling compressive strength of EPS lightweight concrete using regression, neural
network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [CrossRef]
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