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Abstract: Composite materials and re-entrant honeycomb structures have superior mechanical
performance in energy absorption capacity. Inspired by laminate composite layers, single-layer
re-entrant honeycomb cylindrical shells (RHCSs) with different orientations were established, and
composite RHCSs were proposed by combining the single-layer RHCSs with different orientations.
The deformation behaviors of single layer RHCSs under quasi-static compression were studied by
experimentation, and single-layer RHCSs with varying orientations did not show negative Poisson’s
ratio effects. The energy absorption capacity of single-layer and composite RHCSs was researched
using simulation. To analyze the energy absorption capacity, we determined the plateau stress, the
mean force and specific energy absorption of single-layer and multi-layer composite RHCSs under
different impact velocities; the following conclusions were obtained: compared with the single-layer
RHCSs, the multi-layer composite RHCSs, which had the same size, the energy absorption capacity
improved significantly under the same impact velocities. The energy absorption capacity of the
multi-layer composite RHCSs improved with increasing number of layers under low velocity.

Keywords: re-entrant honeycomb; composite materials; cylindrical shell; energy absorption

1. Introduction

Lattice cylindrical shells such as re-entrant honeycomb [1], phase-transforming [2],
rigid joint rotation [3], and hierarchical structures [4] have gained attention because of their
excellent mechanical properties such as large shear resistance [5] and enhancement of frac-
ture toughness [6], which have been widely used in the aerospace, automotive, and other
engineering fields [7]. Wang et al. [8] analyzed the Voronoi cylindrical shell structure and
systematically examined the crushing behavior of such honeycomb cylindrical structures
by considering the cell irregularity, the relative density, and the density-graded properties.
Gao et al. [9–11] theoretically and experimentally studied the mechanical properties of
cylindrical auxetic double-arrowed honeycomb. Chiral-type auxetic cylindrical shells also
show good mechanical performance under axial compression [12–17].

Compared with single-layer cylindrical shells, the energy absorption capacity [18–21]
and deformation behaviors [22–26] of sandwich honeycomb cylindrical shells have been
attracting increased attention in recent years. Lee et al. [27] produced re-entrant cylindrical
tubes by 3D printing and studied the effect of the auxetic structure under low velocity.
Guo et al. [28] investigated the impact performance of re-entrant honeycomb cylindrical
shells under axial force and the results showed that the sandwich cylindrical shell had the
best performance in terms of specific energy absorption. Chen et al. [29] theoretically and
numerically studied the dynamic behavior of sandwich cylindrical shells with honeycomb
configurations subjected to constant velocity impact. Additionally, the fiber composite
cylindrical shells [30–32] showed outstanding energy absorption capacity. Bisagni [33]
investigated the strength capacity in the post-buckling range of three composite cylindrical
shells under axial compression. Ochelski and Gotowicki [34] analyzed the influence of the
fiber reinforcement type, structure type, geometry and shape of specimens, and orientation
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of fibers in a layer and stacking sequence of layers on energy absorption capability. Hull [35]
proved that the composite tubes consisting of only one orientation of layers do not possess
a large energy absorption ability. Different orientation of fibers in a layer will improve
energy absorption capacity.

To obtain re-entrant honeycomb cylindrical shells with higher energy absorption
capacity, composite re-entrant honeycomb cylindrical shells (RHCSs) are proposed in this
paper. RHCSs are different from sandwich re-entrant honeycomb cylindrical shells [36–38].
The method of constructing composite RHCSs is the same as for laminate composite
materials. Single-layer RHCSs are similar to the fiber layer in laminate composite layers
and the deformation modes of single-layer RHCSs were studied. The multi-layer composite
RHCSs consisted of different orientations of single-layer RHCSs. The energy absorption
and deformation behaviors of the composite RHCSs were studied using a numerical
method. In addition, the influence of different layers on composite RHCSs was studied.

2. Models
2.1. Models Design

A schematic of the laminate composite layers is shown in Figure 1. Laminate composite
layers have better energy absorption than single layers. Inspired by laminate composite
layers, composite re-entrant honeycomb cylindrical shells (RHCSs) can be constructed
in the same way. The θ1 re-entrant honeycomb layer was obtained by rotating the 0◦

re-entrant honeycomb layer, and the θ1 RHCS was constructed by rolling the θ1 re-entrant
honeycomb layer. The [θ1/−θ1] composite RHCSs was fabricated by connecting θ1 RHCS
and −θ1 RHCS. To research structures with the same mass and volume, the θ1 RHCS used
to fabricate [θ1/−θ1] composite RHCS was half the width compared with single-layer θ1
RHCS. The process of constructing [θ1/−θ1] composite RHCS is shown in Figure 2.
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Figure 1. The schematic of laminate composite layers: (a) θ◦ layer; (b) −θ◦ layer; (c) θ◦/−θ◦ laminate
composite layer.
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Figure 2. The process of constructing [θ1/−θ1] composite RHCS: (a) 0◦ re-entrant honeycomb cell;
(b) θ1 re-entrant honeycomb cell; (c) θ1 re-entrant honeycomb layer; (d) θ1 RHCS; (e) −θ1 RHCS;
(f) [θ1/−θ1] composite RHCS.
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To ensure the stability of the structure and avoid structural defects, the honeycomb
cylindrical shells need to be joined to form a complete cell, as shown in Figure 3. Therefore,
the geometric expression of re-entrant honeycomb cell was deduced, and can be found
in Appendix A. The geometric configuration of a re-entrant honeycomb cell is shown in
Figure 4.
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The geometric dimensions of re-entrant honeycomb cell are l1 = 15 mm, l2 = 10 mm,
an angle of θ2 = 60

◦
, and a cell wall thickness t = 2 mm. For honeycomb structures, the

deformation mode and energy absorption performance are highly related to two important
factors: relative density and impact velocity. Based on the previous theoretical analysis [39],
the relative densities of re-entrant honeycomb can be calculated as

ρRH =
ρ∗RH
ρs

=
1
2
· t

l2
· (l1/l2 + 2)
(l1/l2 − cos θ2) sin θ2

(1)

where ρRH is the relative density of hexagon and re-entrant honeycomb, ρ∗RH is the densities
of hexagon and re-entrant honeycomb, and ρs is the density of the bulk material.

The geometrical configuration of RHCS is shown in Figure 5. Based on the geometric
parameters of RHCSs, the values of θ1 were chosen as 0◦, ±30◦, ±60◦, and 90◦ to build 0◦,
±30◦, ±60◦, and 90◦ single-layer RHCS, respectively. The height of the top and bottom
base of RHCS are h = 4 mm, the overall height of RHCS is H = 146.56 mm, and the radial
width of RHCS is b = 3.6 mm. The geometrical dimensions of RHCSs are listed in Table 1.
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Table 1. The geometrical dimensions of RHCSs.

Specimen Radius
(mm)

Radial Width
(mm)

Axial Height
(mm)

Relative
Densities

0◦ RHCS 44.56 3.6 146.56 0.405
30◦ RHCS 44.1 3.6 146.56 0.405
60◦ RHCS 44.56 3.6 146.56 0.405
90◦ RHCS 44.1 3.6 146.56 0.405

[30◦/−30◦] RHCS 44.1 3.6 146.56 0.405
[60◦/−60◦] RHCS 44.56 3.6 146.56 0.405

[30◦/−30◦/30◦] RHCS 44.1 3.6 146.56 0.405
[30◦/−30◦/30◦/−30◦] RHCS 44.1 3.6 146.56 0.405

2.2. Fabrication of Models

A 3D printer was used to fabricate the dog-bones and RHCS structures, in which the
printing feedstock is polylactic acid (PLA). The single-layer and composite of RHCSs were
printed, as shown in Figure 6.
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3. Method
3.1. Experiment and Simulation

The mechanical properties of the PLA can be obtained by tensile tests of dog-bone-
shaped samples. As shown in Figure 7, the Young’s modulus (E) of the PLA material
1.57 GPa and yield stress (σys) is 30 MPa.
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Figure 7. The nominal stress-strain curves of the PLA material.

Quasi-static compression tests were performed to investigate the mechanical proper-
ties of cylindrical structures using a testing machine. The quasi-static uniaxial compression
tests were conducted with a loading speed of 1 mm/min.

Finite element software ABAQUS/Explicit (2020) was used to simulate the quasi-static
compression process of honeycomb cylindrical shells. The experimental data for the PLA
material were fitted in ABAQUS. The boundary condition is shown in Figure 8. The bottom
plate was fixed and the top plate was given a vertical constant velocity of 1 m/s. The
cylindrical shells were contacted with plates and a surface-to-surface contact was employed
with a fraction coefficient of 0.3. General contact was adopted to simulate the complex
mutual contact during compression. The friction coefficient of the tangential behavior
was 0.15, and the Hard contact was selected for the normal behavior. A 10-node modified
quadratic tetrahedron, namely the C3D10M element, was used to mesh the cylindrical
shells. A mesh sensitivity analysis was carried out to guarantee that the simulation results
were not mesh-dependent; the force-displacement curves of three kinds of mesh size are
shown in Figure 9. A mesh size of 1.5 mm was determined to be optimal, which balanced
the numerical stability, accuracy, and computational efficiency.
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3.2. Validation of Simulation Results

As shown in Figures 10 and 11, the simulation and the experimental results were
compared, including the load–displacement curves and the deformation process of the
structures. Both the deformation modes and the load–displacement curves are in good
agreement by comparing the experimental with the simulation results. This confirms that
the setting of the finite element in this case was correct and effective.
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the experiments.
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4. Results and Discussions
4.1. The Theory of Energy Absorption

There are three parameters used to characterize the energy absorption of honeycomb
cylindrical shells: the specific energy absorption (SEA), the mean crushing force (MCF),
and the non-dimension equivalent plateau stress EA/(L ∗ A ∗ σy) [40].

SEA(L) =
EA(L)

M
(2)

where M is the mass of structure and EA(L) represents the total energy absorption during
the crushing process that can be obtained by integrating the instantaneous crushing force.
L represents the crush deformation displacement, which is set to be the axial deformation
displacement corresponding to 80% strain of the structures [8].

EA(L) =
∫ L

0
F(x)dx (3)

The mean crushing force (MCF) represents the average force during the crushing
process, which is expressed as

MCF =
EA(L)

L
(4)

The equivalent plateau stress EA(L)/(L ∗ A ∗ σy) can reveal the resistance strength of
the structure, where A is the area of the top side of the cylindrical shell. To eliminate the
influence of the cell material yield stress, the equivalent plateau stress is divided by σy to
obtain the non-dimension equivalent plateau stress EA(L)/(L ∗ A ∗ σy).

4.2. Quasi-Static Compression

The force–displacement curves and the SEA curves of RHCSs are shown in Figure 12.
The structures were fabricated using PLA material, which was useful for studying the
deformation modes of RHCSs. The force–displacement curves of RHCSs were divided
into two stages: the elastic stage and the plateau stage. Therefore, the pictures that were
captured in the elastic and plateau stages were chosen to research the deformation modes.
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Figure 12. Quasi-static compression: (a) the force–displacement curves of RHCSs; (b) the SEA curves of RHCSs.

When 0◦ re-entrant honeycomb cells were compressed, the inclined wall D1E1 rotated
around the plastic hinge E1, and the inclined wall D1E1 gradually approached the horizon
wall E1F1. With continuous pressure, the cell occurred contracted and showed the negative
Poisson’s ratio effect. The deformation process of inclined wall B1C1 was similar to that
of inclined wall D1E1. When the part connecting inclined wall D1E1 and plastic hinge E1
broke, the force declined rapidly.

The plastic hinge C2 of the 30◦ re-entrant honeycomb cell connected the vertical wall
B2C2 and the vertical wall C2F2. The plastic hinge D2 connected the vertical wall A2D2
and the vertical wall D2E2. When the cell was impacted, the vertical wall B2C2 pushed
the inclined wall C2F2 down and the vertical wall D2E2 pushed the inclined wall A2D2
up. Therefore, the cell appeared to extend laterally. A long period of lateral expansion
deformation led to the appearance of gentle force displacement curves in the plateau stage.
The inclined wall C2F2 and A2D2 gradually turned to the horizon with continuous pressure.

As shown in Figure 13c, the deformation modes of 60◦ re-entrant honeycomb cell
passed along with the inclined line, which is marked by red lines. The axial compressive
pressure was applied in inclined wall A3D3, D3F3, and D3H3, causing the force on the
plastic hinge A3 to move was downward. The reaction pressure was applied to the inclined
wall C3E3, B3C3, and C3G3, causing upward force on the plastic hinge B3. The force on
the plastic hinge A3 and B3 caused the inclined wall A3B3 to rotate around the plastic
hinge B3. The deformation modes of 60◦ RHCS was hierarchically broken; therefore, the
force–displacement curve of 60◦ RHCS was waved.

When the 90◦ re-entrant honeycomb cell was compressed, the axial compressive
pressure was applied to vertical wall D4H4 to push the plastic hinge D4 downward; the
reaction pressure was applied to vertical wall C2G2 to push the plastic hinge C4 upward.
When the plastic hinge C4 and D4 approached gradually, the 90◦ RHCS displayed bulking.

The composite [60◦/−60◦] RHCS were fabricated by 60◦ RHCS and −60◦ RHCS with
radial width 1.8 mm, which transformed the composite RHCSs to the isotropic structure.
The deformation modes of composite [60◦/−60◦] RHCS are shown in Figure 14. In the
elastic stage, the composite [60◦/−60◦] RHCS tended to contract in the middle part. In
the plateau stage, the middle part displayed bulking with the increasing strain. The
deformation shape of composite [60◦/−60◦] RHCS converted into an S shape.
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4.3. Low Velocity Impact

The experimental results showed that the PLA material has a brittle fracture property,
which is inconvenient for observing the subsequent overall deformation of structures.
Therefore, when discussing the energy absorption characteristics of honeycomb cylindrical
shells under impact, the aluminum alloy was chosen as the bulk material to eliminate the
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influence of brittle fracture: Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.3, material
density ρ = 270◦ kg/m3, and yield stress σy = 130 MPa. To study the energy absorption of
RHCSs, we used a low velocity (V) of 10 m/s and a high V of 60 m/s.

Figure 15 shows force–displacement and the SEA curves of RHCSs with a crushing
velocity of 10 m/s. The force–displacement curves of RHCSs were divided into three stages:
the elastic stage, the plateau stage, and the dense stage. In the elastic stage, the peak force
of composite [30◦/−30◦] RHCS was the highest. In the plateau stage, the force curves of
single-layer RHCSs were close to the others, and the force curves of single-layer RHCSs
were lower than the curves of composite RHCSs. In the dense stage, the crushing force
of composite RHCSs was much higher than single-layer RHCSs. The SEA curves were
closely related to the force–displacement curves, which represent the energy absorption
capacity of the structures. The SEA curves of composite RHCSs were higher than those of
single-layer RHCSs, which meant that the energy absorption capacity of composite RHCSs
is better than that of other RHCSs. In addition, 0◦ RHCS had the best energy absorption
capacity in single-layer RHCSs under low velocity.
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Figure 15. (a) The force–displacement curves of RHCSs and (b) the SEA curves of RHCSs when V = 10 m/s.

Figure 16 shows the deformation process of composite RHCSs with a crushing velocity
of 10 m/s. The force on the composite RHCSs was uniform; therefore, the structures did
not appear to expand or shrink. The initial deformation part of [30◦/−30◦] RHCS occurred
in the bottom part, and the S-shape buckling piled up with increasing axial strain, which
led to the composite RHCSs being more dense than single-layer RHCSs in the dense stage.
This can explain the reason why the energy absorption of composite RHCSs was much
higher than that of single-layer RHCSs in the dense stage.
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4.4. High Velocity Impact

Figure 17 shows force–displacement curves and SEA curves of RHCSs under high
velocity. The peak force of 30◦ and 60◦ RHCSs was around 80 mm, which is marked in
the picture. The force–displacement and SEA curves of composite RHCSs were higher
than the single-layer RHCSs under high velocity impact, and it presented better energy
absorption than the single-layer RHCSs under high velocity impact. The deformation
modes of A and B are shown in Figure 18. When ε = 0.5 and the displacement was 73.5 mm,
the porous structures were filled. The structures reached the peak force when ε = 0.55, and
the structure was completely compacted and the bottom parts tended to expand. When
ε = 0.6 and the displacement was 88.2 mm, the structures were unstable; the bottom parts
were broken and radial expansion appeared, which led to a rapid decline in force. The
deformation modes of composite RHCSs under high velocity are shown in Figure 19. The
initial bulking part of [30◦/−30◦] and [60◦/−60◦] RHCSs were in the top part, the bulking
section was an S shape, and the S-shaped buckling piled up from the top to the bottom.
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Figure 20 shows the MCF of RHCS. The MCF of composite RHCSs were higher
than that of single-layer RHCSs. The non-dimension equivalent plateau stress of RHCSs
are listed in Table 2. The non-dimension equivalent plateau stress of composite RHCSs
improved significantly compared with that of single-layer RHCSs under low velocity. The
non-dimension equivalent plateau stress of [30◦/−30◦] RHCS improved by 106.8% under
low-velocity impact and improved by 68.39% under high-velocity impact compared to the
30◦ RHCS.
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Table 2. The non-dimension equivalent plateau stress of RHCSs.

Specimen
When V = 10 m/s, the

Non-Dimension Equivalent
Plateau Stress (MPa)

Improvement
(Compared with

30◦ RHCS)

When V = 60 m/s, the
Non-Dimension Equivalent

Plateau Stress (MPa)

Improvement
(Compared with

30◦ RHCS)

0◦ RHCS 0.0602 14.2% 0.0989 2.17%
30◦ RHCS 0.0527 0 0.0968 0
60◦ RHCS 0.0472 −10.4% 0.0934 −3.51%
90◦ RHCS 0.0471 −10.6% 0.0891 −7.95%

[30◦/−30◦] RHCS 0.109 106.8% 0.163 68.39%
[60◦/−60◦] RHCS 0.104 97.3% 0.137 41.53%

4.5. Multi-Layer Composite RHCSs

The composite RHCSs had better energy absorption capacity than the single-layer
RHCSs. Therefore, it was necessary to research the influence of multi-layer RHCSs on the
energy absorption capacity of composite RHCSs. The multi-layer RHCSs are shown in
Figure 21.
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Figure 21. The composite RHCSs: (a) double-layer RHCS; (b) three-layer RHCS; (c) four-layer RHCS.

The force–displacement curves and SEA curves of multi-layer composite RHCS under
low velocity impact are shown in Figure 22. The force of the double-layer composite RHCSs
was lower than that of the multi-layer composite RHCSs in most force–displacements,
and the SEA curves of the double-layer composite RHCSs were the lowest. This showed
that the energy absorption capacity of multi-layer composite RHCSs is better than that of
double-layer composite RHCSs at low velocity. In addition, the SEA curves of four-layer
composite RHCSs were higher than those of the three-layer composite RHCS. It can be
inferred that when the impact velocity was 10 m/s, the energy absorption capacity of
multi-layer composite RHCS improved as the number of layers increased.
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that of double-layer composite RHCSs at low velocity. In addition, the SEA curves of four-
layer composite RHCSs were higher than those of the three-layer composite RHCS. It can 
be inferred that when the impact velocity was 10m/s, the energy absorption capacity of 
multi-layer composite RHCS improved as the number of layers increased. 

  
(a) (b) 

Figure 22. (a) The force–displacement curves of multi-layer composite RHCSs and (b) the SEA curves of multi-layer com-
posite RHCSs when V = 10m/s. 

Figure 22. (a) The force–displacement curves of multi-layer composite RHCSs and (b) the SEA curves
of multi-layer composite RHCSs when V = 10 m/s.

The deformation modes of multi-layer composite RHCSs under low velocity are
shown in Figure 23. The initial deformation section appeared in the bottom part, and the
deformation shape was ‘S’. With increasing axial strain, the buckling in initial deformation
section was piled up from the bottom to the top.

The force–displacement curves and SEA curves of multi-layer composite RHCSs under
high-velocity impact are shown in Figure 24. The force–displacement curves and SEA
curves are similar to each other. The curves show that the multi-layer composite RHCSs
are similar to each other in energy absorption capacity under high velocity. Compared with
double-layer composite RHCSs under high velocity, the multi-layer composite RHCSs are
not much different in deformation mode. The deformation modes of multi-layer composite
RHCSs under high velocity are shown in Figure 25. When the impact velocity was 60 m/s,
the deformation modes of multi-layer composite RHCSs and double-layer RHCSs were
similar with each other. The deformation from the top to the bottom.
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5. Conclusions

In this paper, the different orientations of re-entrant honeycomb cylindrical shells
(RHCSs) were determined by rotation of the re-entrant honeycomb cell. The deformation
modes of the different orientations of single-layer RHCSs were studied by quasi-static
compression experiments, and the different orientations of single-layer RHCSs did not
show the negative Poisson’s ratio effect. The energy absorption capacity of different
orientations of single-layers RHCSs were similar to the conventional RHCSs, measured
using experimental and simulation methods.

In addition, the composite RHCSs were constructed by connection of the different
orientations of single-layers RHCSs. The double-layer composite RHCSs had the same
size as the single-layer RHCSs. However, the double-layer composite RHCSs had a better
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energy absorption capacity than single-layer RHCSs, measured using experimental and
simulation methods. Furthermore, when the composite RHCSs were impacted by low
velocity, the energy absorption capacity of composite RHCSs improved as the number of
layers increased.
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Appendix A

To ensure the stability of the structure and avoid structural defects, the honeycomb
cylindrical shells need to be joined to form a complete cell. Points A1 and A2 on the
horizontal line L3, as well as points A1 and A2 in the same position of re-entrant honeycomb
cell are depicted in Figure A1. By drawing vertical lines L1 and L2 through point A1 and
point A2, the right section of vertical lines L1 and the left section of vertical lines L2 can form
complete honeycomb cylindrical shells. Point A1 and point A2 are called coincident points.
The geometrical configuration between point A1 and point A2 are shown in Figure A2. The
red lines represent the re-entrant honeycomb unit which were analysed, and the blue lines
represent horizontal and vertical lines.
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Figure A2. The geometrical configuration between point A1 and point A2.

Therefore, the distance between point A1 and point O is m times the width of the
re-entrant honeycomb cell. The distance between point A2 and point O is n times the width
of the re-entrant honeycomb cell, which can be expressed as:

tan θ1 =
n · LN
m · LM

(m = 1, 2, 3, . . . . . . ; n = 1, 2, 3, . . . . . .) (A1)

Figure A3 shows the geometrical configuration of a re-entrant honeycomb cell; LN and
LM can be expressed as:

LN = 2L2 sin θ2 (A2)

LM = 2(L1 − L2 cos θ2) (A3)
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In this paper, the experiments mainly focused on the different orientations of honey-
comb cylindrical shells. The geometrical configuration of re-entrant honeycomb cell did 
not change, which means that 2θ  and k  did not change when 1θ  changed. 

When 0
2 60=θ , 3=k , 2=n , 3=m , 0

1 30=θ ;  

When 0
2 60=θ , 3=k , 2=n , 1=m , 0

1 60=θ . 

Reference 
1. Harkati, E.; Daoudi, N.; Bezazi, A.; Haddad, A.; Scarpa, F. In-Plane elasticity of a multi re-entrant auxetic honeycomb. Compos. 

Struct. 2017, 180, 130–139, https://doi.org/10.1016/j.compstruct.2017.08.014. 
2. Liu, J.; Qin, H.; Liu, Y. Dynamic behaviors of phase transforming cellular structures. Compos. Struct. 2018, 184, 536–544, 

https://doi.org/10.1016/j.compstruct.2017.10.002. 
3. Grima, J.N.; Evans, K.E. Auxetic behavior from rotating triangles. Int. J. Mech. Sci. 2006, 41, 3193–3196, 

https://doi.org/10.1007/s10853-006-6339-8. 
4. Lakes, R. Materials with structural hierarchy. Nature 1993, 361, 511–515, https://doi.org/10.1038/361511a0. 
5. Ju, J.; Summers, J.D. Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. 

Mater. Des. 2011, 32, 512–524, https://doi.org/10.1016/j.matdes.2010.08.029. 
6. Bianchi, M.; Scarpa, F.L.; Smith, C.W. Stiffness and energy dissipation in polyurethane auxetic foams. J. Mater. Sci. 2008, 43, 

5851–5860, https://doi.org/10.1007/s10853-008-2841-5. 
7. Zhang, X.; Yang, D. Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs. Ma-

terials 2016, 9, 900, https://doi.org/10.3390/ma9110900. 

Figure A3. Geometrical configuration of a re-entrant honeycomb cell.

Substituting (A2) and (A3) into (A1) provides:

tan θ1 = n·LN
m·LM

= n
m · 2L2 sin θ2

2(L1−L2 cos θ2)

= n
m · L2 sin θ2

(L1−L2 cos θ2)
(m = 1, 2, 3, . . . . . . ; n = 1, 2, 3, . . . . . .)

(A4)
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To find a real number k to make L1 = k · L2 cos θ2, the expression (A4) can be expressed as:

tan θ1 = n
m · L2 sin θ2

(k·L2 cos θ2 − L2 cos θ2)
= n

m · L2 sin θ2
(k−1)·L2 cos θ2

= n
m · 1

(k−1)
L2 sin θ2
L2 cos θ2

= n
m · 1

(k−1) tan θ2(m = 1, 2, 3, . . . . . . ; n = 1, 2, 3, . . . . . .)
(A5)

In this paper, the experiments mainly focused on the different orientations of honey-
comb cylindrical shells. The geometrical configuration of re-entrant honeycomb cell did
not change, which means that θ2 and k did not change when θ1 changed.

When θ2 = 60
◦
, k = 3, n = 2, m = 3, θ1 = 30

◦
;

When θ2 = 60
◦
, k = 3, n = 2, m = 1, θ1 = 60

◦
.
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