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Abstract

:

Functionally graded materials (FGMs) structures are increasingly used in engineering due to their superior mechanical and material properties, and the FGMs plate with cutouts is a common structural form, but research on the vibration characteristics of FGMs plate with cutouts is relatively limited. In this paper, the three-dimensional exact solution for the vibration analysis of FGMs rectangular plate with circular cutouts subjected to general boundary conditions is presented based on the three-dimensional elasticity theory. The displacement field functions are expressed as standard cosine Fourier series plus auxiliary cosine series terms satisfying the boundary conditions in the global coordinate system. The plate with circular cutout is discretized into four curve quadrilateral sub-domains using the p-version method, and then the blending function method is applied to map the closed quadrilateral region to the computational space. The characteristic equation is obtained based on the Lagrangian energy principle and Rayleigh–Ritz method. The efficiency and reliability of proposed method are verified by comparing the present results with those available in the literature and FEM methods. Finally, a parametric study is investigated including the cutout sizes, the cutout positions, and the cutout numbers from the free vibration characteristic analysis and the harmonic analysis. The results can serve as benchmark data for other research on the vibration of FGMs plates with cutouts.
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1. Introduction


The laminated composites are widely used in various engineering applications—such as aerospace, mechanical, civil, and automotive engineering—due to high specific strength and stiffness, light weight, and good thermal stability. However, stress-induced failures may occur through large in-plane stress, interlayer slip or transverse normal stress [1,2]. In order to overcome the adverse effects of laminated composites in mechanical properties, the engineering application of functionally graded materials (FGMs) was first proposed in 1984 by a group of aerospace scientists, due to a need for a type of material that can withstand high temperature difference in a space plane project [3]. The FGMs are a new type of advanced composite materials which are generally formed by two materials with smooth and continuous variation in specific direction from one surface to another, thus eliminating inter-laminar problems. The FGMs have received major attention since FGMs can effectively overcome these problems of traditional laminated composites. The corresponding specific material properties are obtained by the gradual variation in material properties and structure over volume fraction. The FGMs are designed to meet varying functionalities, and the FGMs plates and shells are the major structures owing to the wide variety of applications involved. Therefore, the study of the vibration characteristic analysis of FGMs plates and shells is an extremely important subject for engineers in structural design.



With the wide application of FGMs structures, a large amount of research work has been done on the vibration of FGMs plate and shell structures. The FGMs plate and shell structures are three-dimensional elastic bodies, the most accurate and effective way to solve the vibration problem is the three-dimensional elasticity theory; however, the three-dimensional elastic analysis of the structure leads to a partial differential equation system with three independent spatial variables, and the equation is often a transcendental equation about the frequency parameter. Thus, it is difficult to solve the transcendental equation, which requires the use of numerical root-finding algorithm. However, the difficulty of the numerical root-finding algorithm is how to determine the initial trial value, in addition, the algorithms cannot satisfy real-time requirements because of high computational cost. As a substitute, some appropriate assumptions were made about the displacement of the structure in the thickness direction, and the three-dimensional problems were simplified into two-dimensional ones with sufficient accuracy. These theories mainly include classical plate theory (CPT), first-order shear deformation theory (FSDT), and high-order shear deformation theory (HSDT). A brief review of these theories in the context of the FGMs structures will be presented in the following.



Chi and Chung [4,5] investigated three types of elastic, rectangular, and simply supported FGMs plates of medium thickness subject to transverse loading based on the classical plate theory and Fourier series. The results showed that only the bending stiffness formulations of FGMs plates are not similar with homogeneous plates due to their more complicated combination of material properties. Abrate [6] treated the FGMs plates as homogeneous plates, and selected a proper reference surface, the decoupling condition of the motion equation was derived to eliminate the coupling effect between the in-plane and bending deformations. Zhang and Zhou [7] used the physical neutral surface to study the theoretical analysis of the FGMs thin plates based on the classical plate theory. The stretching–bending coupling effect was eliminated, thus it is easier and simpler than classical laminated plate theory based on geometric middle surface.



Zhao et al. [8] presented the element-free-Ritz method for the free vibration analysis of FGMs plates. The first-order shear deformation plate theory was employed to account for the transverse shear strain and rotary inertia, and mesh-free kernel particle functions were used to approximate the two-dimensional displacement field. Hossenini-Hashemi et al. [9] presented analytical solutions for the free vibration analysis of FGMs plates, and a new formula for the shear correction factors used in Mindlin plate theory was obtained. In addition, using the Reissner–Mindlin plate theory, an exact closed-form procedure was presented by Hossenini-Hashemi et al. [10]. By introducing some new potential and auxiliary functions, the displacement fields were analytical obtained for FGMs plates configuration. Qu et al. [11] investigated a general formulation which was derived by means of a modified variational principle in conjunction with a multi-segment partitioning procedure on the basis of the first-order shear deformation shell theory for free, steady-state and transient vibration analysis of FGMs shells of revolution subjected to arbitrary boundary conditions. Ferreira et al. [12] used the global collocation method, the first-order and the third-order shear deformation plate theories, the Mori–Tanaka technique to homogenize material properties, and approximated the trial solution with multiquadric radial basis functions to analyze the free vibration of FGMs plates. Thai et al. [13] presented a simple first-order shear deformation theory which containing only four unknowns for solving the bending and free vibration analysis of FGMs plates by dividing the transverse displacement into bending and shear parts. Fallah et al. [14] used the extended Kantorovich method together with infinite power series solution to obtain semi-analytical solution for the governing equations of moderately thick rectangular FGMs plates.



Neves et al. [15] dealt with the free vibration problems of FGMs shells by radial basis functions collocation, according to a higher-order shear deformation theory that accounted for through-the-thickness deformation. Isogeometric analysis (IGA) [16,17] is an effective method to investigate the static and dynamic behavior of functionally graded carbon nanotube-reinforced composite plates. Phung-Van et al. proposed the higher-order shear deformation theory model and isogeometric analysis method based on Non-Uniform Rational B-Spline (NURBS) basis functions. Thanh et al. presented a size-dependent model based on the modified couple stress theory (MCST) and isogeometric analysis. Dozio [18] used the two-dimensional higher-order kinematic theories based on a powerful indicial notation and the state-space approach to solve the free vibration analysis of thick FGMs plates. Jodaei et al. [19] used the artificial neural network (ANN) method and the state-space-based differential quadrature method (SSDQM) to study the free vibration of FGMs annular plates. The results showed that the ANN method is a useful method to predict natural frequency, and the SSDQM has fast convergence speed.



Nie and Zhong [20] proposed a semi-analytical approach which used the state-space-method and one-dimensional differential quadrature method (SSM-DQM) to investigate the three-dimensional free and forced vibration analysis of FGMs circular plates. Malekzadeh [21] presented an accurate solution procedure based on the three-dimensional elasticity theory and the differential quadrature (DQ) method for the free vibration analysis of thick FGMs plates on two parameter elastic foundations. Dong [22] extended the Chebyshev–Ritz method proposed by Zhou [23,24] to the three-dimensional free vibration of FGMs annular plates. Huang et al. [25] employed the three-dimensional elasticity theory and a variational Ritz method to solve the vibration of rectangular parallelepipeds of FGMs with side cracks. Jin et al. [26] developed a unified and accurate solution method to deal with the free vibration of arbitrarily thick FGMs plates based on the linear, small-strain three-dimensional elasticity theory. The same method was performed by Zhao et al. [27] for the vibration analysis of thick functionally graded porous rectangular plates, and three kinds of porosity distributions including even, uneven, and the logarithmic-uneven were performed.



Plates or shells with cutouts are extensively used in engineering structures, cutouts are made to optimize structures, reduce the weight, or provide operational access to other parts of the structures. Comparatively speaking, most of the earlier investigations on plates with cutouts have been confined to isotropic plates, not much research work can be found for the analysis of FGMs plates with cutouts. Do and Lee [28] combined the isogeometric analysis method with a new quasi-3D higher-order shear deformation theory to analyze free vibration response of functionally graded material plates with complex cutouts. Bansal et al. [29] studied the porous functionally graded plate with geometric discontinuities and partial supports, the displacement field had been refined by dividing the in-plane and out of the plane displacements into bending and shear components. The geometric discontinuities had been incorporated in terms of a circular cutout of different sizes at the center of the plate. Asemi et al. [30] applied the finite element method and Rayleigh–Ritz energy formulation to analyze the static and free vibration of FGMs plate with a circular hole. Rahimabadi et al. [31] studied the free flexural vibration behavior of a centrally located circular or elliptical cutout and cracks emanating from the cutout of FGMs plates in thermal environment, the discontinuity surface was represented independent of the mesh by exploiting the partition of unity method framework. Enab et al. [32] predicted the stress concentration factors (SCFs) at the root of an elliptic hole in unidirectional functionally graded material (UDFGM) plates under uniaxial and biaxial loads by using the FEM. Janghorban et al. [33] investigated the free vibration of functionally graded non-uniform straightsided plates with circular and non-circular cutouts in a thermal environment, including the square plates, skew plates, and trapezoidal plates. Zhao et al. [34] investigated the FG plates that contain square and circular cutouts at the center, and it was found that the size of the cutout presents a considerable impact not only on the buckling loading, but also on the buckling mode shapes of the plate.



Concerning the above review of literature, it can be noticed that there are only a few papers available on the study of vibration analysis of FGMs plates with cutouts, and in the existing research, the main type of cutout is circular cutout. In addition, there is no report which investigated the vibration solution of FGMs rectangular plate with cutouts based on the three-dimensional elasticity theory. The novelty of the present paper lies in the attempt to establish a unified theoretical analysis model of the vibration characteristics of the FGMs rectangular plate with/without cutouts, and provide the three-dimensional exact solution with general boundary conditions. The material properties of FGMs plates are supposed to vary continuously along the thickness direction in power-law distributions in terms of volume fraction. The highlight of the proposed approach is that the p-version method and the blending function method are employed to discretize the domain and map the closed region to the computational space. All displacements of the FGMs plates are expanded in the form of standard cosine Fourier series plus auxiliary cosine series terms which can improve the convergence speed and reduce the computational complexity. The three-dimensional elasticity theory is combined with Rayleigh–Ritz method to solve the vibration problem of FGMs plate with cutouts. Numerical examples have been studied to verify the convergence, efficiency, and accuracy of the method and the predicted results have been compared with the theoretical solutions. The effects of cutout ratios, cutout positions, and cutout numbers on the natural frequencies are further explored by a parametric study in detail.




2. Theoretical Formulations


2.1. Description of the Problem


In this paper, a FGMs rectangular plate with circular cutout composed of two isotropic materials is considered. Figure 1a presents the three-dimensional geometric model of the structure. In order to describe geometric model clearly, the two coordinate systems are established independently on the mid-plane of the structure, the Cartesian coordinate system (O-xyz) for the rectangular plate region which is located in the corner of the plate, and the cylindrical coordinate system (Oc-xcyczc) for the cutout region which is located in the center of the circular cutout. The x-coordinate is taken along the length of the plate and y- and z-coordinates are taken along the width and thickness directions. The length, width, and thickness of the plate are denoted by the symbols a, b, and h, respectively, and the radius of the cutout is denoted by r. The symbols u, v, and w denote the displacement components in the x, y, and z directions, respectively.



For the FGMs composed of two types of isotropic components, such as ceramics and metals, according to the Voigt mixing rule, the equivalent materials properties can be expressed as


   E  e f f   ( z ) = (  E c  −  E m  )  V f  +  E m   



(1)






   μ  e f f   ( z ) = (  μ c  −  μ m  )  V f  +  μ m   



(2)






   ρ  e f f   ( z ) = (  ρ c  −  ρ m  )  V f  +  ρ m   



(3)




where E is Young’s modulus, μ is Poisson’s ratio, and ρ is density, the subscripts c and m represents the ceramic and metal material, Vf is the volume fraction.



The volume fraction, thus the variation of the material properties of each component can be obtained by assuming to be different function distributions, such as power-law functions (P-FGM), exponential functions (E-FGM), or sigmoid functions (S-FGM) [35]. In this paper, the FGMs with power-law scheme is selected as the research object.



The volume fraction Vf can be defined as


   V f  =   (  1 2  +  z h  )  p  , −  h 2  ≤ z ≤  h 2   



(4)




where z is the thickness coordinate, and p is gradient index and takes only positive values. When p = 0, the FGMs degenerates into ceramic material and when p = ∞ indicates a fully metal material. Figure 2 shows the curve of volume fraction variation along the thickness direction corresponding to the different gradient index. The volume fraction can be effectively controlled by changing the value of p, and different kinds of FGMs can be designed by changing the above parameters according to different functional requirements.



In this paper, the FGMs plate is considered to be made of aluminum (Al) and alumina (Al2O3), the material properties for ceramic and metallic constituents of FGMs plate are listed in Table 1.




2.2. Kinematic Equations


The strain–displacement relations of the structure can be obtained as follows based on the linear, small-strain three-dimensional elasticity theory


   ε x   =   ∂ u   ∂ x    



(5)






   ε y   =   ∂  v     ∂ y    



(6)






   ε z   =   ∂  w     ∂ z    



(7)






   γ  y z    =   ∂  w     ∂ y   +   ∂  v     ∂ z    



(8)






   γ  x z    =   ∂  u     ∂ z   +   ∂  w     ∂ x    



(9)






   γ  x y    =   ∂  u     ∂ y   +   ∂  v     ∂ x    



(10)




where εx, εy, εz, γyz, γxz, and γxy are the normal and shear strain.



According to the theory of three-dimensional constraint of a linear elasticity, the corresponding stress–strain relations of the three-dimensional structure are written as


   [       σ x          σ y          σ z          τ  y z           τ  x z           τ  x y         ]  =  [         C  11    ¯  ( z )        C  12    ¯  ( z )        C  13    ¯  ( z )    0   0       C  16    ¯  ( z )          C  12    ¯  ( z )        C  22    ¯  ( z )        C  23    ¯  ( z )    0   0       C  26    ¯  ( z )          C  13    ¯  ( z )        C  23    ¯  ( z )        C  33    ¯  ( z )    0   0       C  36    ¯  ( z )      0   0   0       C  44    ¯  ( z )        C  45    ¯  ( z )    0     0   0   0       C  45    ¯  ( z )        C  55    ¯  ( z )    0         C  16    ¯  ( z )        C  26    ¯  ( z )        C  36    ¯  ( z )    0   0       C  66    ¯  ( z )      ]   [       ε x          ε y          ε z          γ  y z           γ  x z           γ  x y         ]   



(11)




where Cij(z) (i, j = 1, 2,…, 6) are material elastic constants, for isotropic materials, they can be defined as


     C  11    ¯  ( z ) =    C  22    ¯  ( z ) =    C  33    ¯  ( z ) =    E  e f f   ( z ) ( 1 −  μ  e f f   ( z ) )   ( 1 +  μ  e f f   ( z ) ) ( 1 − 2  μ  e f f   ( z ) )    



(12)






     C  12    ¯  ( z ) =    C  13    ¯  ( z ) =    C  23    ¯  ( z ) =    E  e f f   ( z )  μ  e f f   ( z )   ( 1 +  μ  e f f   ( z ) ) ( 1 − 2  μ  e f f   ( z ) )    



(13)






     C  44    ¯  ( z ) =    C  55    ¯  ( z ) =    C  66    ¯  ( z ) =    E  e f f   ( z )   2 ( 1 +  μ  e f f   ( z ) )    



(14)






     C  16    ¯  ( z ) =    C  26    ¯  ( z ) =    C  36    ¯  ( z ) =    C  45    ¯  ( z ) = 0  



(15)








2.3. Boundary Conditions


As illustrated in Figure 1b, three groups of boundary springs are factitiously distributed along the edges to simulate different boundary conditions. The symbols ku, kv, and kw are used to indicate the stiffness of the springs, and through adopting appropriate values of the boundary spring stiffness, the classical boundary conditions and elastic boundary conditions can be achieved. The general boundary conditions mainly include free (F), simply supported (S), clamped (C). The expressions of the different boundary conditions along the edge x = 0 are given as follows.



Free boundary condition:


   σ x  =  τ  x z   =  τ  x y   = 0  



(16)







Simply supported boundary condition:


   σ x  = v = w = 0  



(17)







Clamped boundary condition:


  u = v = w = 0  



(18)







Elastic restraint boundary condition:


  u ≠ v ≠ w ≠ 0  



(19)








2.4. Energy Equations


In the light of Hamilton’s principle, the governing equation of the structure and the boundary conditions are derived in the following work. In this paper, the plate domain and the cutout domain are separated, and the energy functions of the FGMs plate and the cutouts are established independently. The kinetic energy function of the FGMs plate and cutouts can be expressed as


  T =  1 2     ∭ V   [   (   ∂ u   ∂ t   )  2  +   (   ∂ v   ∂ t   )  2  +   (   ∂ w   ∂ t   )  2  ] d V     



(20)







The total linear elastic strain energy function is depicted as


    U =    1 2     ∭ V   [  σ x    ε x   +  σ y    ε y   +  σ z    ε z   +  τ  y z     γ  y z    +  τ  x z     γ  x z    +  τ  x y     γ  x y    ]    d V       =  1 2     ∭ V    {   Q  11   ( z )  [    (   ∂ u   ∂ x   )  2  +   (   ∂ v   ∂ y   )  2  +   (   ∂ w   ∂ z   )  2   ]  + 2  Q  12   ( z )  [    ∂ u   ∂ x     ∂ v   ∂ y   +   ∂ u   ∂ x     ∂ w   ∂ z   +   ∂ v   ∂ y     ∂ w   ∂ z    ]              +     Q  22   ( z )  [    (   ∂ w   ∂ y   +   ∂ v   ∂ z   )  2  +   (   ∂ u   ∂ z   +   ∂ w   ∂ x   )  2  +   (   ∂ u   ∂ y   +   ∂ v   ∂ x   )  2   ]   }  d V    



(21)







The potential energy stored in the boundary springs is expressed as


     V =    1 2     ∬  y z     {     [   k  x 0  u   u 2  +  k  x 0  v   v 2  +  k  x 0  w   w 2   ]    x = 0   +    [   k  x a  u   u 2  +  k  x a  v   v 2  +  k  x a  w   w 2   ]    x = a    }     d y d z      +  1 2     ∬  x z     {     [   k  y 0  u   u 2  +  k  y 0  v   v 2  +  k  y 0  w   w 2   ]    y = 0   +    [   k  y b  u   u 2  +  k  y b  v   v 2  +  k  y b  w   w 2   ]    y = b    }     d x d z     



(22)








2.5. Region Mapping


As described in the above model, the coordinate system of the plate is Cartesian coordinate system, and the coordinate system of the cutout is cylindrical coordinate system. The expression of the displacement components is different for the plate and cutout domain, which leads to the complexity of the energy integration. In order to simplify the solution process, a unified coordinate system is needed. The main purpose of this paper to deal with the vibration of rectangular plate with circular cutout is region mapping. The p-version of the finite element method is applied to discretize the plate with cutout into four curve quadrilateral sub-domains as presented in Figure 3a. The length and width of the rectangular plate are a and b, and the radius of the circular cutout is r, respectively. The sub-domain 1 is regarded as a closed region composed of four curves in the x-y coordinate system. The purpose of region mapping is to map the closed quadrilateral region into a unit square region, as described in Figure 3b,c.



The closed quadrilateral region consists of four curves, and the curve sides are in the parametric form:    C 1  :  X 1  ( ξ ) ,  Y 1  ( ξ )  ,    C 2  :  X 2  ( η ) ,  Y 2  ( η )  ,    C 3  :  X 3  ( ξ ) ,  Y 3  ( ξ )  ,    C 4  :  X 4  ( η ) ,  Y 4  ( η )  , where   − 1 ≤ ξ ≤ 1  ,   − 1 ≤ η ≤ 1  ; the four vertex-nodes are    x i   ,    y i    (  i = 1 , 2 , 3 , 4  ), respectively. The blending function method proposed by Gordon and Hall [36] is well suited for the purpose to map the closed quadrilateral region to the computational space.



The mapping functions are given as


     x ( ξ , η )   = (   1 − η  2  )  X 1  ( ξ ) + (   1 + ξ  2  )  X 2  ( η )      + (   1 + η  2  )  X 3  ( ξ ) + (   1 − ξ  2  )  X 4  ( η )       − [ (    ( 1 − ξ ) ( 1 − η )  4  )  x 1   + (    ( 1 − ξ ) ( 1 + η )  4  )  x 2       + (   ( 1 + ξ ) ( 1 + η )  4  )  x 3  + (   ( 1 + ξ ) ( 1 − η )  4  )  x 4  ]     



(23)






     y ( ξ , η )   = (   1 − η  2  )  Y 1  ( ξ ) + (   1 + ξ  2  )  Y 2  ( η )      + (   1 + η  2  )  Y 3  ( ξ ) + (   1 − ξ  2  )  Y 4  ( η )      −  [ (    ( 1 − ξ ) ( 1 − η )  4  )  y 1   + (    ( 1 − ξ ) ( 1 + η )  4  )  y 2       + (   ( 1 + ξ ) ( 1 + η )  4  )  y 3  + (   ( 1 + ξ ) ( 1 − η )  4  )  y 4  ]     



(24)







Substituting the circular equations and the three linear equations into Equations (23) and (24), the following results can be obtained by


     x ( ξ , η )   =  1 4   X 1  ( ξ ) +  X 2  ( η ) (   ξ η  4  −  η 4  )       +   X 3  ( ξ ) (  1 4  +  η 4  +  ξ 4  +   ξ η  4  )       +    r cos (   π η  4  )  2  −   ξ r cos (   π η  4  )  2      



(25)






     y ( ξ , η )   = (   1 − η  2  )  Y 1  ( ξ ) + (   1 + ξ  2  )  Y 2  ( η )      + (   1 + η  2  )  Y 3  ( ξ ) + (   1 − ξ  2  )  Y 4  ( η )      −  [ (    ( 1 − ξ ) ( 1 − η )  4  )  y 1   + (    ( 1 − ξ ) ( 1 + η )  4  )  y 2       + (   ( 1 + ξ ) ( 1 + η )  4  )  y 3  + (   ( 1 + ξ ) ( 1 − η )  4  )  y 4  ]     



(26)







In the light of above region mapping and coordinate transformation relationship, the displacement components of transformation matrix from the global coordinate system to the local coordinate system are related by


   {        ∂  Ω  ( x , y , z )     ∂ x           ∂  Ω  ( x , y , z )     ∂ y           ∂  Ω  ( x , y , z )     ∂ z        }  = J  {        ∂  Ω  ( ξ , η , γ )     ∂ ξ           ∂  Ω  ( ξ , η , γ )     ∂ η           ∂  Ω  ( ξ , η , γ )     ∂ γ        }   



(27)




where J is the Jacobian transformation matrix, and the mathematical expression of Jacobian matrix is


  J =  [       J  1 , 1        J  1 , 2        J  1 , 3          J  2 , 1        J  2 , 2        J  2 , 3          J  3 , 1        J  3 , 2        J  3 , 3        ]  =  [        ∂  x  ( ξ , η , γ )     ∂ ξ         ∂  y  ( ξ , η , γ )     ∂ ξ         ∂  z  ( ξ , η , γ )     ∂ ξ           ∂  x  ( ξ , η , γ )     ∂ η         ∂  y  ( ξ , η , γ )     ∂ η         ∂  z  ( ξ , η , γ )     ∂ η           ∂  x  ( ξ , η , γ )     ∂ γ         ∂  y  ( ξ , η , γ )     ∂ γ         ∂  z  ( ξ , η , γ )     ∂ γ        ]   



(28)







The inverse of the Jacobian transformation matrix is


   J  − 1   =  1   | J |     J *   



(29)






     | J |  =  J  1 , 1    J  2 , 2    J  3 , 3   +  J  1 , 2    J  2 , 3    J  3 , 1   +  J  1 , 3    J  2 , 1    J  3 , 2       −  J  1 , 1    J  2 , 3    J  3 , 2   −  J  1 , 2    J  2 , 1    J  3 , 3   −  J  1 , 3    J  2 , 2    J  3 , 1      



(30)






   J *  =  [       J  2 , 2    J  3 , 3   −  J  2 , 3    J  3 , 2        J  2 , 3    J  3 , 1   −  J  2 , 1    J  3 , 3        J  2 , 1    J  3 , 2   −  J  2 , 2    J  3 , 1          J  1 , 3    J  3 , 2   −  J  1 , 2    J  3 , 3        J  1 , 1    J  3 , 3   −  J  1 , 3    J  3 , 1        J  1 , 2    J  3 , 1   −  J  1 , 1    J  3 , 2          J  1 , 2    J  2 , 3   −  J  1 , 3    J  2 , 2        J  1 , 3    J  2 , 1   −  J  1 , 1    J  2 , 3        J  1 , 1    J  2 , 2   −  J  1 , 2    J  2 , 1        ]   



(31)








2.6. Solution Procedure


In this paper, the Rayleigh–Ritz method is used due to it is applicable to arbitrary boundary conditions without requiring any special procedures. Thus, it is very important to construct an admissible displacement function field because the accuracy and the convergence of the solution depend on the accuracy of the expression of the admissible displacement function. In this paper, the improved Fourier series method is further extended to the three-dimensional vibration analysis of FGMs rectangular plate with cutouts. According to the author’s previous research, the admissible displacement functions are consistent with [37], and expressed in the form of complete trigonometric Fourier series, thus the auxiliary terms are also in the form of trigonometric Fourier series. The three-dimensional admissible displacement functions of the FGMs plate are expressed as three variables separated along the x, y, and z directions as


     U ( x , y , z ) =     ∑  m = 0  M     ∑  n = 0  N     ∑  q = 0  Q    A  m n q   cos  λ m  x cos  λ n  y cos  λ q  z             +    ∑  m = 0  M     ∑  n = 0  N    [   a  u _ z    ξ  1 c   ( z ) +  b  u _ z    ξ  2 c   ( z )  ]      cos  λ m  x cos  λ n  y         +    ∑  m = 0  M     ∑  q = 0  Q    [   a  u _ y    ξ  1 b   ( y ) +  b  u _ y    ξ  2 b   ( y )  ]      cos  λ m  x cos  λ q  z       +    ∑  n = 0  N     ∑  q = 0  Q    [   a  u _ x    ξ  1 a   ( x ) +  b  u _ x    ξ  2 a   ( x )  ]      cos  λ n  y cos  λ q  z     



(32)






     V ( x , y , z ) =     ∑  m = 0  M     ∑  n = 0  N     ∑  q = 0  Q    B  m n q   cos  λ m  x cos  λ n  y cos  λ q  z             +    ∑  m = 0  M     ∑  n = 0  N    [   a  v _ z    ξ  1 c   ( z ) +  b  v _ z    ξ  2 c   ( z )  ]      cos  λ m  x cos  λ n  y         +    ∑  m = 0  M     ∑  q = 0  Q    [   a  v _ y    ξ  1 b   ( y ) +  b  v _ y    ξ  2 b   ( y )  ]      cos  λ m  x cos  λ q  z       +    ∑  n = 0  N     ∑  q = 0  Q    [   a  v _ x    ξ  1 a   ( x ) +  b  v _ x    ξ  2 a   ( x )  ]      cos  λ n  y cos  λ q  z     



(33)






     W ( x , y , z ) =     ∑  m = 0  M     ∑  n = 0  N     ∑  q = 0  Q    C  m n q   cos  λ m  x cos  λ n  y cos  λ q  z             +    ∑  m = 0  M     ∑  n = 0  N    [   a  w _ z    ξ  1 c   ( z ) +  b  w _ z    ξ  2 c   ( z )  ]      cos  λ m  x cos  λ n  y         +    ∑  m = 0  M     ∑  q = 0  Q    [   a  w _ y    ξ  1 b   ( y ) +  b  w _ y    ξ  2 b   ( y )  ]      cos  λ m  x cos  λ q  z       +    ∑  n = 0  N     ∑  q = 0  Q    [   a  w _ x    ξ  1 a   ( x ) +  b  w _ x    ξ  2 a   ( x )  ]      cos  λ n  y cos  λ q  z     



(34)




where    λ m  = m π / a  ,    λ n  = n π / b  ,    λ q  = q π / h  , and    A  m n q    ,    B  m n q    ,    C  m n q    ,    a u   ,    a v   ,    a w   ,    b u   ,    b v   ,    b w    are the unknown Fourier coefficients, M, N, and Q are the truncation numbers with respect to variables x, y, and z directions, respectively. In order to unify the form of the admissible displacement functions and simplify the mathematical processing, the supplementary functions are defined as


   ξ  1 a   ( x ) =  1 2   [  sin ( 2 π x / a ) + sin ( π x / a )  ]   



(35)






   ξ  2 a   ( x ) =  1 2   [  cos ( 3 π x / 2 a ) − cos ( π x / 2 a )  ]   



(36)






   ξ  1 b   ( y ) =  1 2   [  sin ( 2 π y / b ) + sin ( π y / b )  ]   



(37)






   ξ  2 b   ( y ) =  1 2   [  cos ( 3 π y / 2 b ) − cos ( π y / 2 b )  ]   



(38)






   ξ  1 c   ( z ) =  1 2   [  sin ( 2 π z / h ) + sin ( π z / h )  ]   



(39)






   ξ  2 c   ( z ) =  1 2   [  cos ( 3 π z / 2 h ) − cos ( π z / 2 h )  ]   



(40)







The total energy of the FGMs rectangular plate with circular cutout is defined by subtracting the energy of cutout domain part from the entire plate domain. Thus, the Lagrangian energy function of the structure can be expressed as


  ∏ =  ∏ p  −   ∑  i = 1  n    ∏ i     



(41)







The subscripts “p” and “i” denote the energy of the plate and cutout domains, respectively.



For the plate without cutout, the energy equation is


  ∏ =  T p  −  U p  −  V p   



(42)







Substituting Equations (20)–(22), (27), and (32)–(34) and into Equation (41), and by minimizing the Lagrangian energy functional  ∏  with respect to each unknown coefficients to be zero, we can get the equation


    ∂ ∏   ∂ X   = 0 ( X =  A  m n q   ,  B  m n q   ,  C  m n q   ,  a u  ,  a v  ,  a w  ,  b u  ,  b v  ,  b w  )  



(43)







The standard eigenvalue equation of motion for rectangular plate with circular cutout can be expressed in the form of matrix


  [ (  K p  −   ∑  i = 1  n    K i    ) −  ω 2  (  M p  −   ∑  i = 1  n    M i    ) ] X = ( K −  ω 2  M ) X = 0  



(44)




where  K ,  M , and  X  are the stiffness matrices, mass matrices and the unknown Fourier coefficients matrices, respectively. All of the natural frequencies and mode shapes of the three-dimensional FGMs rectangular plates with circular cutouts can be obtained by solving Equation (44).





3. Results and Discussion


In this section, according to the unified theoretical analysis model established above, several examples for the three-dimensional vibration analysis of FGMs plate with/without cutouts are presented to illustrate the accuracy and reliability of the proposed method. Firstly, a suitable spring stiffness value is investigated, and then the convergence, efficiency and validation are checked. Secondly, the vibration modal experiment of an aluminum square plate with a center circular cutout is conducted to verify the correctness of the proposed method. Finally, a parametric study of the FGMs plate with cutouts is carried out from free vibration characteristics and harmonic response analysis, including the cutout sizes, cutout positions, and cutout numbers.



For simplicity, the boundary conditions of the structure are described in the form of character combination, unless other stated, the non-dimensional frequency parameter is expressed as:   Ω = ω  a 2     ρ c  h /  D c     , where    D c    is the flexural stiffness of Alumina,    D c  =  E c   h 3  / 12 ( 1 −  μ 2  )  .



3.1. Determination of the Spring Stiffness


In this paper, three groups of linear springs are introduced to simulate different kinds of boundary conditions by changing the values of spring stiffness. The accuracy of the solutions is strongly affected by the selection of appropriate spring stiffness values. Therefore, in this section, the FGMs square plate without cutout is taken as an example to study the determination of the spring stiffness. The variations of the first three non-dimensional frequency parameters of FGMs square plate versus different spring stiffness are given in Figure 4. The geometric dimensions and the material parameters are as follows:   a = b = 1   m  ,   h = 0.05   m  , and   p = 1  . The boundary conditions of the plate are defined as: the edge y = 0 and y = b are completely free and the x = 0 and x = a are elastic supported by one group of spring constrain varying from 10−3Dc to 1012Dc. From Figure 4, it can be seen that the non-dimension frequency parameters are unchanged and approaches 0 when the spring stiffness is smaller than 10−1Dc, and when the spring stiffness is varied from 10−1Dc to 107Dc, the frequency parameters increase rapidly. Finally, when the spring stiffness exceeds 107Dc, the frequency parameters will approach their utmost and tend to be stable. Therefore, we can arrive at the conclusion that the free boundary conditions and clamped boundary conditions can be simulated by assigning the spring stiffness value to be 0 or 107Dc.




3.2. Convergence of the Method


Convergence property for the free vibration analysis of FGMs plate with circular cutout is examined in terms of the limited number of terms in the displacement expressions in actual calculation to verify the accuracy and efficiency of the proposed method. Table 2 shows the convergence studies of the first six non-dimensional frequency parameters of a FGMs square plate with a central circular cutout with different truncated numbers, and the data of [38] are also given out in Table 2. The truncated number of admissible displacement function components in Fourier series expansion is expressed as M × N × Q, and the truncated number of this paper is from 3 to 10. It can be observed that the maximum error with [38] is 1.7898%, and the main reason of the error is that the first order shear theory is adopted by [38]. It can be concluded that the proposed method has fast convergence and good stability, and the truncation numbers will be set as M = N = Q = 10 in the following studies.




3.3. Validity of the Method


3.3.1. Numerical Examples Study


In this section, in order to verify the proposed method is also suitable for solving the vibration characteristics of FGMs plate without cutouts, the comparison study of a FGMs square plate under SSSS boundary condition will be carried out by the present method and other method presented in [25]. Table 3 shows the first eight non-dimensional frequency parameters of FGMs square plate which was studied by Huang et al. The values of the gradient indexes are taken to be 0, 1, 2, 5, 10. The symbol ‘-’ indicates that the frequencies were not considered in the reference work. In the table, the thickness–length ratio is taken as 0.1 and 0.2, it is moderate–thick plate structure. From the comparison, we can see a consistent agreement of the results taken from the current method and the referential data. From the tables, it is obvious that these data show a similar behavior, that is the frequency parameters decrease with the increase of gradient index. When the thickness–length ratio is 0.1, the gradient index increases from 0 to 10, the first-order non-dimensional frequency parameter decreases by 36.95%, and when the thickness–length ratio is 0.1, the first-order non-dimensional frequency parameter decline rate is 38.44%. The main reason is that the increase of gradient index leads to the decrease of the volume fraction of the corresponding ceramic components, which reduces the stiffness of the structure, and finally leads to the decrease of frequency. In addition, the increase of thickness–length ratios leads to decrease of the frequency parameters for all of the cases considered. By way of illustration, as the thickness–length ratio increases, the first-order non-dimensional frequency parameter drops by 8.19% when the gradient index is 0. According to the relationship between the non-dimensional frequency parameters calculation formula and thickness, it can be known that the natural frequencies increase with the increase of thickness. The increase of thickness will increase the stiffness and mass of rectangular plate, but the increase of stiffness plays a decisive role in the influence of natural frequency.



For the next comparison study, a FGMs rectangular plate with a central circular cutout under CCCC-F boundary condition is examined. In Table 4, the first fix non-dimensional frequency parameters are obtained. It is observed that the frequencies are in excellent agreement with those given in [38], which verifies the accuracy and efficiency of the proposed model. The effect of gradient index on the frequency parameters of structure with cutout is consistent with that structure without cutout also can be concluded from the table below. Therefore, the effect of material parameters on structure with cutout is independent of the geometric size of the structure. In addition, it can be seen that the frequency parameters show an increasing trend with the increase of the structural aspect ratio, but it is not a linear trend. Take the gradient index is 0 as an example, when the aspect ratio is 1.5, the first-order non-dimensional frequency parameter is 1.67 times that when the aspect ratio is 1, while it is 2.7 times when the aspect ratio is 2. This is mainly because when the aspect ratio increases, the overall mass and stiffness of the structure will also increase, and the stiffness is the main factor affecting frequency parameters.



Numerous results of the first six non-dimensional frequency parameters are demonstrated in Table 5 for the FGMs square plate with central circular cutout under different boundary conditions. The square plate with boundary restrains, including SSSS-F, SCSC-F, SFSF-F, FCFC-F, FFCF-F, FCCC-F, FSCS-F, and FCCF-F are considered. From the table below, the influence of boundary conditions on the frequency parameters is obvious, the stronger the boundary restrains, the higher the corresponding frequency parameters, this can be clearly confirmed from SFSF-F, SSSS-F, and SCSC-F boundary conditions. Comparing three groups of boundary conditions—FCFC-F, FCCF-F, and FCCC-F—it can be concluded that the clamped boundary constrain plays an important role in the frequency parameters, while frequency parameter of the opposite side constraint is larger than that of the adjacent side constraint.



The first six mode shapes of the FGMs square plate with central circular cutout under SSSS-F boundary condition when the thickness–length ratio is 0.01 and 0.2 are presented in Figure 5 and Figure 6, respectively. From the graphs below, for thin plate structure, the lower order mode shapes are mainly transverse vibration, while for moderate thick plate structure, the shear deformation along the thickness direction gradually appears. The three dimensions of the elastic plate structure have complex deformation forms for different modes, therefore the analysis based on the three-dimensional elastic theory can fully consider the influence of the shear deformation in the thickness direction on the vibration characteristics of the structure.




3.3.2. Experimental Study


In this part, an experimental study of plate with central cutout is conducted to further verify the validity of the proposed method. The experimental setup—including the hammer, accelerometer sensor, charge adapter, dynamic data acquisition instrument, and computer—is shown in Figure 7. In view of the available situation, the gradient index is considered to be infinity, thus the functionally graded material degenerates to be completely aluminum. A square plate with central circular cutout under FFFF-F and CCCC-F boundary condition are examined. It is impossible to realize the complete free boundary condition in the actual experimental environment, two small holes are opened on the edge of the structure, and elastic rubber ropes are used to hang the structure on the frame, as shown in Figure 8a. For the CCCC-F boundary condition, the experimental model adopts two thicker L-shaped plates and arranges bolts uniformly around the rectangular plate structure to simulate the fixed boundary condition, as shown in Figure 8b. The parameters of dimension and the material of the structure are given in Table 6. Table 7 shows the first six natural frequencies of the structure obtained by the present method and the experiment. Through the comparative analysis of experiments and the calculation of the proposed method, the difference is 4.754% for the worst case, which is acceptable. The main reason for the error lies in two aspects. Firstly, the difference of boundary restrains between the experimental simulation and the theoretical calculation will cause a certain error. Secondly, when knocking with a hammer, it requires that the knocking direction is completely perpendicular to the panel surface, the knocking force should be constant, and the hammer shall be evacuated quickly when the knocking is finished to avoid secondary knocking, which is difficult to ensure in the process of experiment. The experimental frequency values are obtained from the vibration analysis software by searching the peak within a certain range of the frequency, and three are some interference items near desired the frequency value, the peak value is automatically identified and selected by the computer, this is also the reason for the error. The experimental values are smaller than the theoretical value, the main reason is due to the additional mass of the accelerometer which is attached to the panel.





3.4. Parametric Study


In this section, the parametric study of three-dimensional vibration characteristics of the FGMs plate with cutouts is carried out. Based on the existing literature, the structural vibration characteristics of different functionally graded material parameters are different, and the predecessors have done a lot of research on this. This section emphasizes the study of the influence of the parameters of the cutout on the free vibration characteristics and harmonic response analysis of the structure, including the cutout sizes, cutout positions, and number of the cutout. The FGMs square plate with circular cutouts under CCCC-F boundary conditions is taken as the analysis object, and the geometric parameters and materials parameters are set as follows:   a = b = 1   m  ,   h = 0.1   m  ,   p = 1  .



First, the variation of the non-dimensional frequency parameters with respect to diverse cutout sizes is investigated. Table 8 presents the first six frequency parameters of the FGMs square plate with a central circular cutout, and the cutout size ratios (r/a) vary from 0 to 0.25. For the small values of cutout size ratio, the frequency parameters of the structure with and without cutout are almost the same. It is found that the change trend of the low-order modal frequency parameters of the structure is relatively simple, a minimum value for the first five modes exists and the frequency parameters first decrease and then increase when the cutout ratio rise, while the change of the high-order frequency parameters is more complicated. The reason may be due to the weight of mass loss and stiffness loss on the frequency parameters is different with the increase of cutout size ratio.



Then, the harmonic analysis is used to analyze the steady-state response of the FGMs plate with cutouts under simple harmonic excitation. In order to overcome the problem of numerical instability caused by structural resonance at the modal frequency of the external excitation, the damping factor will be introduced in the form of complex Young’s modulus, thus    E ¯  = E ( 1 + j η )  ,   η = 0.01  . Assuming that a simple harmonic force is applied to point A along the z-axis, and the magnitude of the force is 1 N. The coordinates of the excitation force application point A and the selected response observation point B are (0.5 m, 0.8 m, 0.05 m) and (0.8 m, 0.8 m, 0.05 m), respectively. Figure 9a,b provide the results obtained from the preliminary analysis of the displacement response curve of the excitation force application point and the response observation point with frequency in the range of 0–5000 Hz. The range of the cutout size ratio is from 0 to 0.25 with a step of 0.025, and the displacement response is   H = 20 * log ( w )  . From the graph below we can see that there has been a slight rise in the displacement response with the gradual increase of the cutout size rate. This is mainly because the stiffness of the excitation force application point and the observation point is weakened by the introduction of the cutout. The resonance peak of the displacement response will shift left and right with the increase of cutout size ratio. To further explain, in Figure 9a, the first-order resonance peak frequency is 1225 Hz when the structure is without cutout, the first-order resonance peak frequency is 1221 Hz when the cutout ratio is 0.05, and the first-order resonance peak frequency is 1246 Hz when the cutout ratio is 0.1, in the case of a larger cutout ratio, it can be clearly seen that the first-order resonance peak frequency is increasing, which is consistent with the change trend of the data in Table 8.



The following part of the study is concerned with the position of the cutout. The radius of the cutout is 0.1 m, and the position of cutout varies along the x-axis. The table below illustrates the first six non-dimensional frequency parameters of the FGMs square plate with different cutout positions. In Table 9, when the cutout position    x c  = 0.5  , it means that the cutout is located in the center of rectangular plate. The table reveals that as the cutout position gradually approaches the edge of the structure, the fundamental frequency parameter of the structure gradually declines, the second order frequency parameters of the structure gradually increases, while the higher order frequency parameters changes are more complicated.



The results of the correlational analysis of displacement response for FGMs square plate with different cutout positions are shown in Figure 10. From the graph below we can see that in the frequency range of 0–3000 Hz, the vibration displacement response at the resonance peak changes slightly, for the excitation force application point, the amplitudes of the first-order resonance peaks are −378.658 dB, −378.957 dB, −379.589 dB, and −379.962 dB, respectively. While the excitation frequency is greater than 3000 Hz, the vibration displacement response at the resonance peak changes obviously.



In actual engineering structures, it is often necessary to evenly arrange multiple cutouts on the structure, so in the final part of the study, the influence of the number of cutout on the vibration characteristics of the structure is investigated. Table 9 provides the first six non-dimensional frequency parameters of the FGMs square plate with different cutout numbers, the cutouts are evenly distributed along the x-axis direction. The radius of the cutouts is 0.05 m, and the other parameters remain the same with the previous data. What can be clearly seen in Table 10 is the decrease with the increasing in the number of cutouts for the frequency parameters of all orders. The results of the harmonic response correlational analysis of are presented in Figure 11. The graph shows that there has been a small change for the amplitude of the displacement response with the increasing of the cutout numbers, while all resonance peaks gradually shift to the left.





4. Conclusions


The aim of the present research is to establish a unified three-dimensional solution to deal with the vibration characteristics of FGMs plate with/without circular cutouts. The material properties vary continuously along the thickness direction according to the power-law distribution. The artificial spring technology is used to simulate the general boundary conditions by setting three groups of linear springs and assigning them with appropriate spring stiffness values. Due to relatively complicated governing differential equations and domain of the problem, the p-version of the finite element method is applied to discretize the plate with cutout into four curve quadrilateral sub-domains, and then map the closed quadrilateral region to the computational space by the blending function method. The independent coordinate coupling relationship is used to derive the Jacobian relationship matrix of the rectangular plate domain and the circular cutout domain, finally the Lagrangian energy equation is used to solve the differential equation. In the analysis of numerical examples, it is found that the calculation results of this method are in good agreement with other results through comparison with the existing literature and finite element simulation analysis results, which verifies that the method proposed in this paper is reliable. Then the effects of cutout sizes, cutout positions, and cutout numbers on the frequency parameters of FGMs plate with cutout are studied and discussed, and all of these factors will have an impact on the frequency parameters. The proposed method can be applicable to solve the vibration of complex shape plate with cutouts, and the numerical results can be useful for future research.
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Figure 1. Model of a three-dimensional FGMs rectangular plate with a circular cutout: (a) The geometry and coordinates; (b) The boundary restraining springs. 
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Figure 2. Variation of volume fraction with different gradient index. 
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Figure 3. Discretization of rectangular plate with circular cutout: (a) geometric region; (b) closed quadrilateral region; (c) calculation region. 
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Figure 4. Variation of non-dimensional frequency parameters versus different spring stiffness for FGMs rectangular plate. 
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Figure 5. The first six mode shapes for SSSS-F FGMs square plate with central circular cutout (h/a = 0.01, p = 1). 
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Figure 6. The first six mode shapes for SSSS-F FGMs square plate with central circular cutout (h/a = 0.2, p = 1). 
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[image: Materials 14 07088 g006]







[image: Materials 14 07088 g007 550] 





Figure 7. The experimental setup: (a) hammer; (b) accelerometer sensor; (c) charge adapter; (d) dynamic data acquisition instrument; (e) computer. 






Figure 7. The experimental setup: (a) hammer; (b) accelerometer sensor; (c) charge adapter; (d) dynamic data acquisition instrument; (e) computer.
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Figure 8. The FGMs plate with central circular cutout: (a) FFFF-F boundary condition; (b) CCCC-F boundary condition. 






Figure 8. The FGMs plate with central circular cutout: (a) FFFF-F boundary condition; (b) CCCC-F boundary condition.
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Figure 9. The displacement response for FGMs square plate with diverse cutout sizes. 
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Figure 10. The displacement response for FGMs square plate with diverse cutout positions. 
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Figure 11. The displacement response for FGMs square plate with different cutout numbers. 
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Table 1. Material properties of the FGMs plate.






Table 1. Material properties of the FGMs plate.











	Properties
	Aluminum (Al)
	Alumina (Al2O3)
	Unit





	  E  
	70
	380
	GPa



	  ρ  
	2700
	3800
	Kg/m3



	  μ  
	0.3
	0.3
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Table 2. Non-dimensional frequency parameters of FGMs square plate with a central circular cutout under FFFF-F boundary condition (  Ω = ω  a 2     ρ c  h /  E c     ,   a = b = 1   m  ,   r = 0.1   m  ,   h = 0.01   m  ,   p = 1  ).






Table 2. Non-dimensional frequency parameters of FGMs square plate with a central circular cutout under FFFF-F boundary condition (  Ω = ω  a 2     ρ c  h /  E c     ,   a = b = 1   m  ,   r = 0.1   m  ,   h = 0.01   m  ,   p = 1  ).





	
M × N × Q

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6






	
3 × 3 × 3

	
10.1684

	
14.8912

	
18.6946

	
27.6210

	
27.7461

	
49.5969




	
4 × 4 × 4

	
10.0023

	
14.4524

	
17.7520

	
26.5533

	
26.5588

	
46.3665




	
5 × 5 × 5

	
9.9825

	
14.4184

	
17.6390

	
26.4671

	
26.4685

	
46.0454




	
6 × 6 × 6

	
9.9729

	
14.4053

	
17.5977

	
26.4291

	
26.4292

	
45.9154




	
7 × 7 × 7

	
9.9640

	
14.3993

	
17.5772

	
26.4032

	
26.4036

	
45.8507




	
8 × 8 × 8

	
9.9589

	
14.3969

	
17.5719

	
26.3910

	
26.3912

	
45.8319




	
9 × 9 × 9

	
9.9597

	
14.3961

	
17.5695

	
26.3918

	
26.3923

	
45.8232




	
10 × 10 × 10

	
9.9564

	
14.3944

	
17.5670

	
26.3846

	
26.3849

	
45.8131




	
Ref. [38]

	
9.9070

	
14.4660

	
17.8200

	
26.4110

	
26.4120

	
46.6480




	
Error(%)

	
0.4984

	
0.4947

	
1.4196

	
0.1001

	
0.1028

	
1.7898











[image: Table] 





Table 3. The first eight non-dimensional frequency parameters of FGMs square plate without cutout under SSSS boundary condition (  Ω = ω  a 2  / h    ρ c  /  E c     ,   a = b = 1   m  ).






Table 3. The first eight non-dimensional frequency parameters of FGMs square plate without cutout under SSSS boundary condition (  Ω = ω  a 2  / h    ρ c  /  E c     ,   a = b = 1   m  ).





	
h/a

	
p

	
Methods

	
Modes

	

	




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8






	
0.1

	
0

	
Present

	
5.7771

	
13.8062

	
13.8062

	
19.4833

	
19.4833

	
21.2174

	
25.8742

	
25.8742




	
Ref. [25]

	
5.7770

	
13.8100

	
13.8100

	
19.4800

	
19.4800

	
-

	
-

	
-




	
1

	
Present

	
4.4267

	
10.6291

	
10.6291

	
16.2033

	
16.2033

	
16.4006

	
20.0477

	
20.0478




	
Ref. [25]

	
4.4260

	
10.6300

	
10.6300

	
16.2000

	
16.2000

	
-

	
-

	
-




	
5

	
Present

	
3.7728

	
8.9308

	
8.9308

	
12.6410

	
12.6410

	
13.6246

	
16.5482

	
16.5482




	
Ref. [25]

	
3.7720

	
8.9270

	
8.9270

	
12.6400

	
12.6400

	
-

	
-

	
-




	
10

	
Present

	
3.6424

	
8.5886

	
8.5886

	
11.5282

	
11.5282

	
13.0602

	
15.8326

	
15.8326




	
Ref. [25]

	
3.6410

	
8.5870

	
8.5870

	
11.5200

	
11.5200

	
-

	
-

	
-




	
0.2

	
0

	
Present

	
5.3037

	
9.7417

	
9.7417

	
11.6456

	
11.6456

	
13.7768

	
16.8826

	
19.4833




	
Ref. [25]

	
5.3040

	
9.7420

	
9.7420

	
11.6500

	
11.6500

	
-

	
-

	
-




	
1

	
Present

	
4.0996

	
8.0899

	
8.0899

	
9.1088

	
9.1088

	
11.4184

	
13.3121

	
15.8149




	
Ref. [25]

	
4.0990

	
8.0890

	
8.0890

	
9.1070

	
9.1070

	
-

	
-

	
-




	
5

	
Present

	
3.4057

	
6.2979

	
6.2979

	
7.3454

	
7.3454

	
8.8643

	
10.5497

	
12.4190




	
Ref. [25]

	
3.4050

	
6.2960

	
6.2960

	
7.3430

	
7.3430

	
-

	
-

	
-




	
10

	
Present

	
3.2647

	
5.7508

	
5.7508

	
6.9751

	
6.9751

	
8.1082

	
9.9525

	
11.3994




	
Ref. [25]

	
3.2640

	
5.7490

	
5.7490

	
6.9750

	
6.9750

	
-

	
-

	
-
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Table 4. The first six non-dimensional frequency parameters of FGMs rectangular plate with central circular cutout under CCCC-F boundary condition (  b = 1   m  ,   r = 0.1   m  ,   h = 0.01   m  ).






Table 4. The first six non-dimensional frequency parameters of FGMs rectangular plate with central circular cutout under CCCC-F boundary condition (  b = 1   m  ,   r = 0.1   m  ,   h = 0.01   m  ).





	
a/b

	
p

	
Methods

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6






	
1

	
0

	
Present

	
36.5358

	
71.4352

	
71.4386

	
105.4876

	
127.5262

	
138.6374




	
Ref. [38]

	
36.4200

	
71.1900

	
71.1900

	
105.1500

	
127.0900

	
138.1200




	
0.5

	
Present

	
31.1424

	
60.8977

	
60.9032

	
89.9195

	
108.7118

	
118.1773




	
Ref. [38]

	
31.2000

	
61.0800

	
61.0800

	
87.5700

	
106.3200

	
116.2600




	
1

	
Present

	
27.8990

	
54.5626

	
54.5691

	
80.5628

	
97.4015

	
105.8843




	
Ref. [38]

	
28.1200

	
55.0500

	
55.0500

	
78.9700

	
95.8300

	
104.7800




	
2

	
Present

	
25.3673

	
49.6041

	
49.6103

	
73.2430

	
88.5495

	
96.2584




	
Ref. [38]

	
25.5700

	
50.0500

	
50.0500

	
71.7600

	
87.1200

	
95.2600




	
10

	
Present

	
22.6006

	
44.1827

	
44.1910

	
65.2574

	
78.8860

	
85.7766




	
Ref. [38]

	
23.4400

	
45.8800

	
45.8900

	
65.7700

	
79.8800

	
87.3300




	
1.5

	
0

	
Present

	
61.1085

	
92.9936

	
146.0148

	
149.5540

	
177.0082

	
221.1563




	
Ref. [38]

	
60.9700

	
92.7900

	
145.6600

	
149.2100

	
176.5700

	
220.6000




	
0.5

	
Present

	
52.0759

	
79.2583

	
124.4491

	
127.4684

	
150.8639

	
188.5330




	
Ref. [38]

	
52.1800

	
78.3200

	
123.7200

	
126.1200

	
147.0100

	
187.3000




	
1

	
Present

	
46.6604

	
71.0142

	
111.5217

	
114.2040

	
135.1729

	
168.9314




	
Ref. [38]

	
47.0300

	
70.5900

	
111.5100

	
113.6600

	
132.5000

	
168.8900




	
2

	
Present

	
42.4268

	
64.5684

	
101.3901

	
103.8366

	
122.8967

	
153.5787




	
Ref. [38]

	
42.7500

	
64.1800

	
101.3800

	
103.3300

	
120.4500

	
153.5300




	
10

	
Present

	
38.2502

	
58.1810

	
91.3882

	
93.5478

	
110.7397

	
138.2982




	
Ref. [38]

	
39.2200

	
58.8500

	
92.9500

	
94.8000

	
110.4300

	
140.6000




	
2

	
0

	
Present

	
98.7524

	
126.9054

	
178.8877

	
250.1018

	
252.4322

	
282.2987




	
Ref. [38]

	
98.5100

	
126.6400

	
178.5500

	
249.6700

	
251.7700

	
281.5500




	
0.5

	
Present

	
84.1596

	
108.1565

	
152.4540

	
213.1582

	
215.1543

	
240.6124




	
Ref. [38]

	
83.9400

	
106.4700

	
151.3800

	
210.3000

	
212.7000

	
234.3100




	
1

	
Present

	
75.4040

	
96.9035

	
136.5945

	
190.9989

	
192.7910

	
215.5763




	
Ref. [38]

	
75.6500

	
95.9500

	
136.4300

	
189.5400

	
191.7000

	
211.1900




	
2

	
Present

	
68.5630

	
88.1106

	
124.1989

	
173.6566

	
175.2810

	
196.0024




	
Ref. [38]

	
68.7700

	
87.2400

	
124.0300

	
172.3300

	
174.2800

	
191.9900




	
10

	
Present

	
61.7974

	
79.4025

	
111.9418

	
156.5118

	
157.9518

	
176.5748




	
Ref. [38]

	
63.1300

	
80.0100

	
113.8000

	
157.9200

	
159.8000

	
176.0800
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Table 5. The first six non-dimensional frequency parameters of the FGMs square plate with central circular cutout under different boundary conditions (  a = b = 1   m  ,   r = 0.1   m  ,   h = 0.2   m  ).






Table 5. The first six non-dimensional frequency parameters of the FGMs square plate with central circular cutout under different boundary conditions (  a = b = 1   m  ,   r = 0.1   m  ,   h = 0.2   m  ).





	
p

	
Modes

	
BC




	
SSSS-F

	
SCSC-F

	
SFSF-F

	
FCFC-F

	
FFCF-F

	
FCCC-F

	
FSCS-F

	
FCCF-F






	
1

	
1

	
13.3179

	
17.9178

	
6.7214

	
14.0532

	
2.5402

	
14.8664

	
8.7123

	
4.7443




	
2

	
27.4857

	
27.5032

	
10.8235

	
15.7097

	
5.5009

	
22.8422

	
12.9261

	
14.5219




	
3

	
27.4857

	
30.1875

	
20.8144

	
24.0629

	
8.7486

	
31.9077

	
19.9885

	
16.5373




	
4

	
28.7276

	
34.5120

	
21.9500

	
25.0945

	
13.3916

	
32.4554

	
25.2352

	
20.8138




	
5

	
28.7276

	
44.1081

	
23.9487

	
31.6279

	
16.8760

	
37.6186

	
26.8349

	
26.2324




	
6

	
31.7165

	
46.3976

	
24.1150

	
34.1495

	
18.5060

	
38.5433

	
34.1060

	
26.5989




	
2

	
1

	
12.0147

	
16.0673

	
6.0818

	
12.6100

	
2.3036

	
13.3293

	
7.8648

	
4.2878




	
2

	
24.7467

	
24.7801

	
9.7578

	
14.0563

	
4.9551

	
20.3974

	
11.6737

	
12.9999




	
3

	
24.7467

	
27.0203

	
18.7829

	
21.4707

	
7.9140

	
28.7278

	
17.9049

	
14.8286




	
4

	
25.7677

	
30.7681

	
19.6557

	
22.6303

	
12.0132

	
28.9185

	
22.6299

	
18.8357




	
5

	
25.7677

	
39.6501

	
21.4900

	
28.1874

	
15.1534

	
33.6924

	
24.2132

	
23.4904




	
6

	
28.5742

	
41.3629

	
21.7518

	
30.3788

	
16.5759

	
34.2556

	
30.4527

	
23.9566




	
5

	
1

	
11.1106

	
14.4756

	
5.6752

	
11.3425

	
2.1641

	
11.9720

	
7.2773

	
3.9791




	
2

	
21.3820

	
21.3939

	
9.0126

	
12.5809

	
4.5625

	
18.2732

	
10.0846

	
11.7849




	
3

	
21.3820

	
24.0287

	
16.2282

	
19.3610

	
6.8440

	
24.8314

	
16.2413

	
13.4594




	
4

	
23.0528

	
26.9232

	
17.9878

	
19.5523

	
10.9596

	
25.3154

	
20.4136

	
16.2938




	
5

	
23.0529

	
34.1756

	
18.7834

	
24.6607

	
13.9533

	
29.7157

	
20.9315

	
20.5253




	
6

	
24.6644

	
36.2624

	
19.4196

	
26.6505

	
14.9960

	
29.9962

	
27.1231

	
21.2598




	
10

	
1

	
10.6718

	
13.7473

	
5.4669

	
10.7539

	
2.0888

	
11.3491

	
6.9882

	
3.8236




	
2

	
19.5447

	
19.5491

	
8.6564

	
11.9249

	
4.3773

	
17.3586

	
9.1971

	
11.2591




	
3

	
19.5447

	
22.6779

	
14.8131

	
17.8576

	
6.2340

	
22.7150

	
15.5103

	
12.8460




	
4

	
21.8196

	
25.2270

	
17.1491

	
18.4902

	
10.4910

	
23.7362

	
19.1146

	
14.8380




	
5

	
21.8197

	
31.2776

	
17.2891

	
23.1096

	
13.4264

	
27.8644

	
19.4074

	
18.7537




	
6

	
22.5428

	
33.9918

	
18.4730

	
25.0619

	
14.2976

	
28.1971

	
25.6807

	
20.1745
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Table 6. Dimensions and material parameters of the structure.






Table 6. Dimensions and material parameters of the structure.













	Parameter
	Value
	Unit
	Parameter
	Value
	Unit





	length
	245
	mm
	  E  
	70
	Gpa



	width
	245
	mm
	  ρ  
	2700
	Kg/m3



	thickness
	5
	mm
	  μ  
	0.3
	



	radius
	15
	mm
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Table 7. The first six natural frequencies of the square plate with a central cutout.






Table 7. The first six natural frequencies of the square plate with a central cutout.





	
BC

	
Methods

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6






	
FFFF-F

	
Present

	
264.661

	
386.901

	
484.493

	
694.383

	
694.432

	
1235.285




	
Experiment

	
257.680

	
375.950

	
469.310

	
674.490

	
678.260

	
1176.560




	
Error(%)

	
2.638

	
2.830

	
3.134

	
2.865

	
2.329

	
4.754




	
CCCC-F

	
Present

	
732.448

	
1489.322

	
1489.796

	
2179.902

	
2642.341

	
2678.284




	
Experiment

	
724.370

	
1448.740

	
1453.420

	
2102.870

	
2584.650

	
2608.280




	
Error(%)

	
1.103

	
2.725

	
2.442

	
3.534

	
2.183

	
2.614
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Table 8. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout sizes.
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Cutout Size Ratio r/a

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6






	
0

	
25.5012

	
49.1018

	
49.1093

	
69.2248

	
81.9838

	
82.7225




	
0.025

	
25.4001

	
48.9005

	
48.9060

	
68.7938

	
81.4039

	
82.0926




	
0.05

	
25.3638

	
48.6206

	
48.6221

	
68.4080

	
80.8594

	
82.0073




	
0.075

	
25.4796

	
47.9396

	
47.9450

	
67.9465

	
80.2203

	
83.0599




	
0.1

	
25.8668

	
46.8228

	
46.8359

	
67.3965

	
79.4324

	
85.4772




	
0.125

	
26.6235

	
45.5138

	
45.5164

	
66.7080

	
78.3640

	
89.1572




	
0.15

	
27.8147

	
44.3487

	
44.3506

	
65.7601

	
76.8849

	
93.7810




	
0.175

	
29.5120

	
43.6500

	
43.6633

	
64.5325

	
75.1048

	
95.0332




	
0.2

	
31.8213

	
43.7553

	
43.7609

	
63.2576

	
73.5462

	
94.6269




	
0.225

	
34.8721

	
44.7776

	
44.7829

	
62.1695

	
72.6640

	
93.7299




	
0.25

	
38.8206

	
46.9072

	
46.9150

	
61.6343

	
73.0458

	
92.8681
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Table 9. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout positions.
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Cutout Position xc

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6






	
0.5

	
25.8668

	
46.8228

	
46.8359

	
67.3965

	
79.4324

	
85.4772




	
0.55

	
25.8376

	
46.8694

	
47.1622

	
67.3042

	
79.1040

	
83.9540




	
0.6

	
25.7714

	
47.0096

	
48.0869

	
67.1039

	
77.9703

	
82.3428




	
0.65

	
25.6586

	
47.2151

	
49.2026

	
66.8924

	
77.2401

	
82.1270




	
0.7

	
25.5036

	
47.4987

	
49.8348

	
66.8156

	
78.4654

	
82.8420




	
0.75

	
25.2945

	
47.8175

	
49.5779

	
66.9872

	
80.1950

	
84.1670




	
0.8

	
25.0313

	
48.1433

	
48.6649

	
67.4224

	
81.0591

	
83.9047
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Table 10. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout numbers.






Table 10. The first six non-dimensional frequency parameters of the FGMs square plate with diverse cutout numbers.





	
Cutout Numbers

	
Modes




	
1

	
2

	
3

	
4

	
5

	
6






	
0

	
25.5012

	
49.1018

	
49.1093

	
69.2248

	
81.9838

	
82.7225




	
1

	
25.3638

	
48.6206

	
48.6221

	
68.4080

	
81.4594

	
82.0073




	
2

	
25.4322

	
48.4312

	
48.7497

	
68.2540

	
81.1932

	
81.7552




	
3

	
25.3848

	
48.0834

	
48.4720

	
67.6411

	
80.7516

	
80.8624




	
4

	
25.3126

	
47.8140

	
48.3909

	
67.1717

	
80.3960

	
80.4916
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