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����������
�������

Citation: Bartkowiak, T.;

Grochalski, K.; Gapiński, B.;
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Abstract: The fundamental issue in surface metrology is to provide methods that can allow the
establishment of correlations between measured topographies and performance or processes, or that
can discriminate confidently topographies that are processed or performed differently. This article
presents a set of topographies from two-staged processed steel rings, measured with a 3D contact
profilometer. Data were captured individually from four different regions, namely the top, bottom,
inner, and outer surfaces. The rings were manufactured by drop forging and hot rolling. Final surface
texture was achieved by mass finishing with spherical ceramic media or cut wire. In this study, we
compared four different multiscale methods: sliding bandpass filtering, three geometric length- and
area-scale analyses, and the multiscale curvature tensor approach. In the first method, ISO standard
parameters were evaluated as a function of the central wavelength and bandwidth for measured
textures. In the second and third method, complexity and relative length and area were utilized. In
the last, multiscale curvature tensor statistics were calculated for a range of scales from the original
sampling interval to its forty-five times multiplication. These characterization parameters were then
utilized to determine how confident we can discriminate (through F-test) topographies between
regions of the same specimen and between topographies resulting from processing with various
technological parameters. Characterization methods that focus on the geometrical properties of
topographic features allowed for discrimination at the finest scales only. Bandpass filtration and
basic height parameters Sa and Sq proved to confidently discriminate against all factors at all three
considered bandwidths.

Keywords: discrimination; surface texture; mass finishing; multiscale; hot rolling; roughness

1. Introduction

The objective of this paper is to demonstrate the use of three different multiscale
methods to discriminate between topographies that were created by two stage formation:
hot rolling and mass finishing. The term “multiscale” analysis is used in this study to
emphasize that the surface is studied at multiple scales of observation or calculation [1].
This type of analysis adds extra value and reduces costs in design of products and processes
by providing better understanding of the relations with processing or with performance
and topographies.

From the quality control perspective, it is essential to be able to differentiate or distin-
guish between surfaces that perform and were fabricated, modified, or treated differently.
This ability is called discrimination, and thanks to multiscale analysis, it becomes possible
to identify what surface characterization techniques, relating parameters, and scales are
the most convenient at discerning topographies. The idea comes from the fact that topo-
graphic features of certain sizes and shapes that are signature of particular manufacturing
process can be best discernible at a certain scale or scales of observation [2–4]. The hereby
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presented literature review focuses on the application of different multiscale analyses into
the discrimination problems for surfaces.

Bigerelle et al. [5] studied the ability to discriminate the surface roughness of plastic
parts created by injection molding, concentrating on four processing parameters. In that
research, they focused on standard height parameters calculated as a function of evaluation
length and the degree of polynomial fitted for roughness data. They found the most
convenient combination of the roughness characterization and data processing parameter,
as well as the scale for discrimination of the technological parameters and determined the
scale at which each process leaves its characteristic surface signature.

Geometric multiscale method can be successfully applied to discern manufacturing
conditions. The area-scale method has proven to be successful in discriminating grinding
parameters and scales where they can be distinguished, and using length-scale for showing
the grinding direction, on polyethylene ski bases, textured for achieving the best perfor-
mance [6]. Multiscale characterization based on the area-scale method was employed to
discriminate surface topographies, of pharmaceutical excipient compacts with different
compositions and particle sizes. Relative area and fractal complexity helped to distinguish
for scales of 1000 µm2, when the F-test was applied. This could not be achieved using
conventional parameters [7,8].

Brown et al. studied FDM samples treated with acetone vapor [9,10]. Samples were
discriminated using the area-scale method and conventional analysis. It was shown that at
the scale finer than or approximately equal to the deposition layer thickness, multiscale
outperformed the standard analysis by more than two times. In experimental work on
fracture mechanics, confident distinguishing was achieved for yttria-stabilized tetragonal
zirconia [11] and graphite electrodes [8] using area-scale analysis.

Another method utilized the wavelets theorem [12]. In that study, a multiscale de-
composition involved using a continuous wavelet transform (CWT), which provided the
multiscale transfer function of the surface topography, as measured by a white light inter-
ferometer, by the last stage manufacturing process. The ranking of the transfer function
with respect to grit size varied with scale. The topographies created with various process-
ing parameters were confidently distinguished. This facilitated the understanding of the
tribological mechanisms that governed the process.

A large area of application of discrimination techniques is in archaeological science.
Stemp created plots of the logarithm of root mean square deviation (Rq) as a function of
logarithm of evaluation length (Rq-el) [13,14]. Datasets representing used and unused
chert and obsidian flakes were measured with a laser profilometer. It was shown that
Rq changed with evaluation length. Another study involving Rq-el indicated that chalk
flint flakes used to cut pottery and wood, as measured by laser profilometry, could be
successfully distinguished from the same surfaces prior to the use [15]. Additional research
continued on chalk flint flakes used on shell, wood, dry hide, and soaked antler [16].
Relative length was used in [7] to discriminate used and unused tool regions. Area-scale
analysis helped to distinguish unworn and worn regions of hide-cutting and wood-sawing
obsidian flakes [17]. This was supported by applying statistical analysis—F-test versus
scale. Other successful trials for other samples were described by Stemp et al. [18,19].
Area-scale fractal complexity has been shown to be a credible method that allows for the
discrimination of loading of worn basalt flakes to cut oak branches [20]. Use-wear on
experimental rhyolite stone flakes was discriminated by Álvarez et al. through calculation
of fractal dimension [21,22]. Watson and Gleason applied area-scale analysis to determine
the function and purpose of bone artifacts [23].

Considering all the above examples, research papers tend to focus on a single mul-
tiscale method applied to solve certain discriminating problem. Therefore, there is still a
need to compare each method in terms of performance, i.e., how well they can help find
functional correlations between formation process and resulting topography and its charac-
terization parameters; between topography and their interaction with the environment; or
how well they can facilitate discrimination between topographies. This study addresses the
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last problem by comparing different multiscale characterizations applied to discriminate
topographies created by a combination of hot-rolling and mass-finishing. As a result of
manufacturing processes, textures of apparent similarities and dissimilarities are obtained
which are discernible at a certain scale or scales of observation.

2. Materials and Methods
2.1. Sample Preparations

Surfaces were created in a multistage process, which is schematically depicted in
Figure 1. Firstly, a steel rod of 250 mm diameter was cut into 300 mm pieces, which
were then heated in a furnace up to 1270 ◦C. Two materials were considered in this study:
S355J2N (specimen A) and 42CrMo4T (specimen B). The next process was two-stage forging
in which each piece was swollen, and a hole of 150 mm was cut centrally. The prepared
blanks were then subjected to hot rolling. There were four surfaces shaped in this process
by independent tools. Outer and inner cylindrical surfaces were formed by rollers, and two
cones shaped the upper and lower faces (Figure 2). This allowed rings with a rectangular
cross-sections to be obtained. Dimensions of both rings were as follows: specimen A
ring—630 mm (outer diameter), 460 mm (inner diameter), and height 75 mm, with a weight
of 86 kg, and specimen B—the outer diameter was equal to 620 mm, the internal diameter
was 450 mm, and the height was 85 mm, with a weight of 96 kg (Figure 3). Formed parts
were then mass-finished with spherical ceramic media (diameter between 0.8 and 1.25 mm)
in order to remove scales, which was essential for achieving high fidelity of ultrasound
testing. The medium feed rate was 0.5 and 1.1 m/min for rings A and B accordingly. The
final product is a ring for a large size heavy-duty bearing. The surface topographies of each
specimen and location (inner, outer, upper, and lower) were considered in this study.
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roller, 3—internal roller and 4—external rollers.
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Figure 3. Ring R1 (top row) and R2 (bottom row); images in right column represent the magnified
views of the corresponding rings.

2.2. Measurements

All surface were measured using a Hommel T8000 (JENOPTIK Industrial Metrology
Germany GmbH, Villingen-Schwenningen, Germany) contact 3D profilometer equipped
with a TKU 300/600 scanning head. A probe tip with a diamond needle end of 2 µm
radius was used. Scanning speed was 0.15 mm/s. Measured regions were 4 mm by 4 mm.
Sampling intervals differed in x (1 µm) and y (20 µm) directions. Four independent
measurements were taken per every inner, outer, bottom, and upper representative location
of each ring. For each measurement, form was removed using MountainsMap® software
(Digital Surf, Besançon, France).

2.3. Multiscale and Statistical Analysis

In this study, three different multiscale approaches were utilized. The first method
was a series of band-pass filters together with calculation of surface texture parameters,
as described in ISO/DIS 25178-2 and ISO 4287 for the measured datasets. MountainsMap
software (version 8) was used to calculate all surface characterization parameters and to
filter the topographies. Bandpass filtration was adopted from Berglund et al. [24] and was
a combination of low-pass and high-pass Gaussian filters [25]. Firstly, a low-pass filter was
applied using the upper wavelength cutoff, λuc, followed by filtration with a high-pass
filter at the lower wavelength cutoff, λlc. The cutoffs refer to the wavelength where the filter
has approximately 50% transmission. In this work, we used three different bandwidths,
namely 20, 50, and 100µm, which overlapped each other, which is similar to approach
A from [26]. Lower and upper cutoff wavelengths are shown in Table 1. The number of
bands depended on their widths and changed from 13 for the narrowest to 5 for the widest.
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The periodicity of the acquired topographies was evaluated with MountainsMap software
to verify if the Gaussian filter could be applied in this study.

Table 1. Lower and upper cutoff and center wavelengths used in the bandpass filtering method.

Bandwidth = 20 µm Bandwidth = 50 µm Bandwidth = 100 µm

λlc
(µm)

λcenter
(µm)

λuc
(µm)

λlc
(µm)

λcenter
(µm)

λuc
(µm)

λlc
(µm)

λcenter
(µm)

λuc
(µm)

60 70 80 65 90 115 60 110 160
70 80 90 75 100 125 70 120 170
80 90 100 66 110 135 80 130 180
90 100 110 95 120 145 90 140 190

100 110 120 105 130 155 100 150 198
110 120 130 115 140 165 – – –
120 130 140 125 150 175 – – –
130 140 150 135 160 185 – – –
140 150 160 145 170 195 – – –
150 160 170 – – – – – –
160 170 180 – – – – – –
170 180 190 – – – – – –
180 190 198 – – – – – –

The other multiscale analysis was based on length-scale [7] and area-scale methods [27,28].
In the first one, the length of a profile is measured as a function of scale by a stepping
exercise along the profile using what is essentially a virtual ruler. The length of the virtual
ruler is the scale of measurement. Successive measurements are made at different scales
using “rulers” of different lengths. For each measurement at a particular scale, the lengths
of the virtual rulers are the same, and linear interpolations are used to locate the virtual
steps between the sampling intervals in the profile. The relative length (Rel or RelL), as
a function of scale, is determined by dividing the calculated (or measured) length by the
nominal (or projected) length of the measured portion of the profile. The minimum possible
value of Rel is 1 and is observed at the largest scales if the profile is level and long enough.
At large scales, where the relative lengths are close to 1, the surface would be essentially
smooth, whereas at a certain fine scale, called the smooth–rough crossover (SRC), the RelL
has value sufficiently higher than 1. This translates to the observation that the texture can
be regarded as rough below this scale. The extension from length of profiles to areas of
irregular surfaces is conducted by the patchwork method. A measured surface (z = z(x,y))
is covered with triangular patches, in similarity to stepping a profile with line segments [7].
Both methods have been recently implemented in surface analysis software.

In the third method, we calculated components of curvature tensor in multiple scales
by applying a 3D normal based method that is an evolution of the approach developed
by Theisel et al. [29]. In order to estimate curvature tensor parameters at each scale in the
analysis used here, height samples were taken from the original measurement. Down-
sampling was used for approximating the appropriate corresponding scale. The point
cloud, a regular array in x and y of measured height samples (z), was tiled to create
triangular patches [30,31]. The statistical parameters (average and standard deviation)
of maximal, minimal, mean, and Gaussian curvature were calculated as presented in [4].
Sixteen parameters were used in total: κ1a, κ1q, κ2a, κ1q, Haabs, Hqabs, Kaabs, Kqabs, κ1aabs,
κ1qabs, κ2aabs, κ1qabs, Haabs, Hqabs, Kaabs, and Kqabs. Please note that the term “abs” in
the subscript refers to the unsigned curvature. The full list of conventional profile and areal
as well as length- and area-scale and curvature parameters used in this study is presented
in Table A1 (Appendix A).

This study aims at comparing the performance of each multiscale method in the
process of discriminating between measured samples. This is done based on characteriza-
tion parameters, calculated using each multiscale methods, at each scale available in the
measurement using two-way ANOVA. p-value is presented for each scale. The ability to
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discriminate surfaces with 95% or greater confidence was considered as sufficient (p < 0.05).
Shapiro–Wilk tests were used to test for normal distributions of residuals.

3. Results and Analysis
3.1. Surface Topographies

Renderings of representative topographic measurements of four different locations
for both rings are shown in Figure 4. Visual differences between those two specimen could
be observed. Height scale was larger for specimen A (up to 410 µm) when compared
to specimen B (170 µm utmost). Feature sizes appeared to follow the same tendency,
as specimen B seemed to have more repetitive fine scale features: holes and hills. This
could be quantified by using multiscale analysis. Topographies of specimen A did not
possess apparent periodical features. The discrepancies in surface texture between rings
might have been related to the different mass-finishing parameters and material properties.
Topographic variety between locations at a single specimen might have been potentially
caused by different tools used during hot-rolling. These differences were quantified using
multiscale analysis. The average periodicity was low and equal to 12.14% (SD = 3.32%)
with two outliers of maximum 21.83% and 22.15%. We considered those results supportive
to the use of the Gaussian bandpass filter in this study.
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3.2. Bandpass Filter

Results of bandpass filtration with three different bandwidths—20, 50, and 100 µm—of
an exemplary upper surface of specimen A are depicted in Figure 5. The effect of sepa-
ration of topographic features was the most evident for the narrowest bandwidth. The
topographies filtered with the widest bandwidth seemed to differ the least from each other,
as they contained a larger set of wavelengths that overlapped with others. This can be
supported by presenting the evolution of roughness parameters with bands as a function
of central wavelength. This kind of plot can be presented in linear, log-linear, or log-log
scales [1,32]. In this paper, we visually demonstrated only a selected range of characteriza-
tion parameters, which, by definition, describe the analyzed surface morphologies. This
included arithmetic mean height (Sa) (Figure 6) and Std (Figure 7). Other calculated ISO
standard parameters as a function of band are available in the supplementary materials. Rt
and also Ra tended to increase as the band slid to higher wavelengths. In most engineering
surfaces, when decomposed using Fourier transforms, the amplitude of the longest wave-
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lengths is often the highest [1]. This translates to the trend of observed height amplitude
parameters (Ra, Rt, Rz, Rv, and Rq for profiles as well their respective areal analogs Sa, Sz,
Sv, and Sq), the values of which grow with band progression. For each band, no matter
its width, two groups were visually distinctive, namely the upper surface of Ring A, the
lower surfaces of both Ring A and B, and the other five surfaces. By analyzing the obtained
images, it was found that the application of the mass-finishing treatment and the level
of removal of the layer of surface contamination of the workpiece exposed the original
material and its texture. In addition, a strong abrasive stream affected the asperities of the
primary surface, forming it in a more isotropic way. By using bandpass filters, the share of a
given wavelength component was limited or enhanced, and thus the functional parameters
described mainly roughness. The use of filtration for the 100 µm band was characterized
by more distinct valleys and softer mapping of hills. However, a 20 µm bandwidth filter
showed an impact for slight changes in structure on the surface represented, in particular
those related to hills. This effect was especially important when using multiscale analysis
to quantify the surface condition. Different manufacturing effects could not be noted for
Std. This parameter described the dominant texture direction by indicating its angle with
respect to the horizontal axis (see Figure 7). For the analyzed datasets, it was found to
be the least scale dependent. This suggests that any residual lay potentially resulting
from hot rolling, which by definition was directional, was removed during mass-finishing,
making the surfaces isotropic. As far as hybrid parameters are concerned, attention was
drawn to interesting relationships related to the width of the filtration bandwidth. This
effect was clearly visible, for example, for the Sdq parameter for a bandwidth of 20 µm. It
should be noted that for the surfaces on ring A, there was a monotonic increase in the value
of this parameter, while for isotropic surfaces (ring B) its value stabilized already at the
filtration defined by the following wavelengths: LP = 110 µm/HP = 130 µm. In addition,
this parameter was less sensitive to the filter bandwidth above the specified limit. The
parameters from the volume and feature group showed a tendency to be monotonic as a
function of the filter bandwidth and wavelength.
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3.3. Length- and Area-Scale Analysis

Evolution of relative area and length as a function of scale indicated differences be-
tween surfaces formed on ring A and B (Figure 8). At finer scales (<15,000 µm2 for area and
<150 µm for length), upper, inner, and outer regions of specimen B took evidently smaller
values of the geometric measures when compared to the others. The lower surface of the
same ring appeared to be similar to the lower surface of ring A, when considering the same
range of scales. At larger scales, the results for both rings could be clearly differentiated.
This became even clearer when considering complexity (Figure 9). Surface topographies
measured on specimen B exhibited noticeably lower fractal complexity than their counter-
parts. This might indicate that second-stage processing via mass-finishing plays a dominant
role in the formation of distinctive surface topographies. Differences between surfaces
expressed through area- and length-scale analysis of the corresponding location on both
rings were rather subtle and hard to be visually detected based on the figures.
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3.4. Curvature

For most curvature parameters, evident differences between the two rings became
visible at scales starting from 27 µm. Exemplary results showing the evolution of κ1q as
a function of scale are depicted in Figure 10. At very fine scales, the shape of the surface
topography quantified by the curvature appeared to be similar. This might suggest that
texture formation at the microscale, which is a product of two-stage processing, results
in the similar surface morphology. This observation was true for all parameters apart
from average parameters of signed curvature (maximum, minimum, mean, and Gaussian).
This means that variability of surface curvature as expressed by standard deviation or
mean deviation from flat surface (average parameters of unsigned curvature quantify
how the surface shape differs from curvature equal to zero) appears to be an appropriate
characterization parameter for discrimination. Visually, no clear trends could be used to
analyze the effect of first stage processing through hot-rolling (between corresponding
regions of both specimen). This corresponded to the same observations for length- and
area-scale analysis, where evident distinctions between each ring could be noted at larger
scales. Further illustrations showing the evolutions of other curvature parameters are
shown in the supplementary materials to this study.
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3.5. Discrimination Analysis

Using two-way ANOVA, height parameters are generally appropriate characteriza-
tions, which can indicate statistically if the results are different when considering hot rolling
and mass-finishing individually or as their product. For all three bands, p-values for Sa and
Sq were lower than 0.05. Skewness and kurtosis failed to be used as a statistical discrimina-
tor against 2nd stage processing for bandwidth equal to 50 µm. Other height parameters
did not generally provide sufficient confidence levels in the analyzed case. Hybrid and
volume groups exhibited strong potential for differentiation between surface topographies
considering all three factors with an exception for Vm (material volume) and Vmp (peak
material volume) for the narrowest and shortest bandwidth (60–80 µm) when considering
both factors as a superposition. This corresponded well to the visual observation noted for
geometric characterization parameters, which allowed significant enough discrimination at
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the finest scales. Most feature parameters could be used to differentiate surfaces taking into
account only the location on each ring. Surface texture ratio (Str) could be utilized as a sole
spatial parameter to discriminate against both factors, and individually only for narrow
ranges of scales. Similar observations could be made for profile parameters evaluated for
corresponding groups.

Fractal complexity exhibited superior performance in discrimination against all factors
and their combinations when compared to relative length and area (Figure 11). The
latter parameters could be used only when finer scales were considered. Discrimination
against mass-finishing was confident no matter the parameter. This confirms the visual
observations as presented in the previous sections. Asfc allowed confident differentiation
between factors for fine and medium scales (<10,000 µm2). The same phenomenon was
noted for Lsfc and scales up to 150 µm.
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Curvature could also be used a discriminant only when considering measures of
variability (Figure 12). For average maximum curvature (κ1a and Ha), p-values generally
exceeded 0.05 for most of scales. Average minimum and Gaussian curvature performed
better for all factors at scales <13 µm. Unsigned curvature, which did not focus on differen-
tiation between convex and concave regions but quantified the magnitude of local surface
bending, provided significantly confident discrimination for scales up to 25 µm. Contrary
to length- and area scale complexity, curvature failed to detect statistically significant
differences between surfaces for the largest analyzed scales, apart from average minimum
curvature (κ2a), as presented in the supplementary materials.
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4. Discussion

The ability to discriminate between surfaces is essential for in-depth understanding of
how topographies should be designed to enhance their performance or optimized in terms
of their fabrication. Discrimination analysis is the important first step in these understand-
ings, as surfaces which cannot be confidently differentiated usually do not perform well
when searching for correlations with the functional behavior or manufacturing parameters.
Multiscale analysis can help in identifying which surface characterization parameter and
at what scales is the most significant for telling surfaces apart.

In this study, we showed that all four studied multiscale methods performed well in
discriminating two-stage processed surfaces. For the bandwidth method, the simplest and
most commonly used height parameters showed good results for all three bandwidths.
These parameters are most sensitive to the longest wavelengths [33] and characterize how,
on average, the topography is rough, which appeared to be enough for differentiating
between the two stages of processing.

Topographic features of certain shape(s) and dimensions are usually signatures of a
particular formation process. Milling, turning, or rolling typically create directional marks,
while selective laser sintering leads to the formation of mosaics of directional wrinkles,
holes, and not fully melted powder conglomerates [34]. These features are best discernible
at particular scale(s) of observation and may manifest themselves differently when observ-
ing across different scales. Discrimination considering narrow scales and using appropriate
geometric characterization parameters becomes essential in better understanding the na-
ture of manufacturing processes and its control [35]. In our study, ISO standard parameters,
which describe the geometric properties of surface topographies, generally performed
well when only a narrow range of scales was considered. Similar observations could be
made for curvature, length-, and area-scale parameters, which also generally failed to tell
surfaces apart at the largest scales.

The height amplitude of surface topography is significantly different between the
two rings (roughly twice when comparing sample A with B). This was caused by different
processing and material properties of the two rings. The difference in height amplitude is
reflected in height parameters (both profile and areal), and relative length and area and
their derivatives. Curvature analysis revealed that the shape of the topographic features, as
quantified with the curvature statistical parameters, is similar at the finest scales (≤17 µm)
and cannot be discriminated against mass finishing at this range of scales. This might mean
that the microgeometry of the samples is affected in the same manner no matter the second
stage process, while the manufacturing and material are factors when considering shape
characteristics of large scale features.
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There is an abundance of multiscale methods [1], but they are most often used as
a single tool aimed at describing particular topography-related effect. Recently, new
studies have emerged that discuss the differences in the performance of each method.
Guilbert et al. focused on three segmentation techniques, namely patchwork, box, and
motifs multiscale decomposition, to study PEEK polymer surfaces subjected to various
abrasive processes [36]. The authors found that all the methods successfully detected
crossover scale, separating larger and smaller abrasion regions. In terms of discrimina-
tion, those three techniques complemented each other. In another work, Serafin et al.
investigated length-scale and profile curvature of pure iron in terms of their oxidation
performance [37]. They found that both methods are useful for discrimination of differently
treated samples at the scale close to the scale of ions that take part in a chemical reaction
of oxidation. Relating to curvature only and its ability to confidently tell surfaces apart,
Maleki et al. showed that the hereby presented 3D curvature method and the Bigerelle–
Nowicki approach exhibited the best performance for computer-generated fractal surfaces,
sine waves, and real engineering examples [38]. In [32], the authors found that motifs and
curvature differentiate EDMed textures well when analyzing scales associated with the
size of the most typical features of their morphology, i.e., craters, which were formed as a
result of electric discharges. All the aforementioned studies did not conclude that there
is a one single universal multiscale method that can be applied successfully in any case.
Our study also proved that statement, as most of the hereby studied methods indicated
that looking at the finest scales allows the most confident differentiation. This was also
intuitively noted by visual inspection of the measured surface topographies.

From a practical perspective, the most favorable tools in surface metrology are the
ones which are the simplest to understand and easiest to use. For the studied case, basic ISO
standard parameters Sa and Sq exhibited superior performance in discriminating between
both factors and their combination for all three analyzed bandwidths. Bandpass filtering
is also easy to comprehend and widely applied in computational software. Although
that method inherently lacks the insightfulness of the other multiscale techniques, its
aforementioned advantages cannot be neglected.

The limitation of this study is mostly based on the applied measurement technique
(3D profilometry), which resulted in differences in x- and y-sampling intervals. The larger
sampling interval in the latter direction (between measured profiles) set constraints in the
shortest possible cut-off wavelengths and, as a consequence, reduced the number bands.
It also had an effect in area-scale analysis and curvature estimation, as they both involve
tiling the measured surface at some step of the calculation procedure. Considering the
evolution of curvature parameters with scale, the evident distinction between results for
Ring A and B can be discerned for scales starting from circa 20 µm, which is equal to
sampling intervals in the y-direction. Nonetheless, the discrimination versus both factors
and their combination was possible with any of the studied method. The effect of sampling
technique and a detailed analysis of the mechanisms that stood behind the obtained results
for each of the methods deserve a separate study with, perhaps, low- or non-periodic
artificially generated datasets of deeply well-known characteristics.

The hereby presented study focused on two types of multiscale analysis: bandpass and
geometric (curvature, length- and area-scale). Other studies concentrate on methods within
one [36–38] or two groups [33]. To fully study the performance of multiscale methods,
more effort is needed to verify other techniques applied for discrimination of surfaces of
various morphologies. In the future, this can lead to the creation of a multiscale analysis
framework that can assist potential users in the challenges they face while characterizing
the complexity of topographies they study. This paper, among others, is a step ahead in
this journey.

5. Conclusions

In this study, we evaluated the discrimination performance of four multiscale methods,
namely bandpass filtration, length- and area-scale analysis, as well as multiscale curvature
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analysis, applied to a set of topographies from two-staged processed steel rings, measured
at four different locations with 3D contact profilometer. The ability to tell the surfaces apart
was quantified using two-way ANOVA and calculating p-value, considering mass-finishing
and location as two independent factors. The conclusions of this study can be summarized
as follows:

• All four studied multiscale methods performed generally well in discriminating
against each factor and their combinations;

• Bandpass filtration using Sa and Sq exhibited the best performance as p-value < 0.05
for all three bands. Skewness and kurtosis failed to be used as a statistical discriminator
against mass finishing for a bandwidth equal to 50 µm. Other height parameters
did not generally provide sufficient confidence levels in the studied case. Hybrid
and volume group parameters performed well at differentiation between surface
topographies considering all factors with the exceptions of Vm and Vmp for the
narrowest and shortest bandwidth (60–80 µm) when considering both factors as
superpositions. Most feature parameters can be used to discriminate surfaces taking
into account only the location on each ring. Spatial parameters were found to perform
poorly. Similar conclusions can be drawn for profile characterization counterparts;

• Asfc and Lsfc both exhibited superior performance in discrimination against all factors
and their combinations when compared to RelL and RelA. The latter parameters could
be used only when finer scales were considered. Discrimination against mass-finishing
was confident no matter the parameter derived from those methods;

• Curvature can be used as a discriminant only when considering measures of variability.
Unsigned curvature provides significantly confident discrimination for finer scales.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14227044/s1. The additional material include the detailed computations of all ISO standard
parameters, each presented as a box-and-whisker plot and as a function of band. Three bandwidths
are available: 20, 50, and 100 µm. The materials also contain the evolution of all considered curvature
parameters, each also presented as a function of scale and in the form of a box-and-whisker plot.
Rose plots and height distributions for representative bandpass filtered surfaces are also included,
together with the calculations of isotropy and periodicity for unfiltered datasets.
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Appendix A

Table A1. Abbreviations of standard surface characterization parameters and their full meanings.

Abbreviation Full Name

Rp Maximum peak height of the roughness profile
Rv Maximum valley depth of the roughness profile
Rz Maximum height of roughness profile
Rc Mean height of the roughness profile elements
Rt Total height of roughness profile
Ra Arithmetic mean deviation of the roughness profile
Rq Root-mean-square (RMS) deviation of the roughness profile
Rsk Skewness of the roughness profile
Rku Kurtosis of the roughness profile
Sq Root-mean-square height
Ssk Skewness
Sku Kurtosis
Sp Maximum peak height
Sv Maximum pit height
Sz Maximum height
Sa Arithmetic mean height

Smr Areal material ratio
Smc Inverse areal material ratio
Sxp Extreme peak height
Sal Autocorrelation length
Str Texture-aspect ratio
Std Texture direction
Sdq Root-mean-square gradient
Sdr Developed interfacial area ratio
Vm Material volume
Vv Void volume

Vmp Peak material volume
Vmc Core material volume
Vvc Core void volume
Vvv Pit void volume
Spd Density of peak
Spc Arithmetic mean peak curvature
S10z Ten point height
S5p Five point peak height
S5v Five point pit height
Sda Mean dale area
Sha Mean hill area
Sdv Mean dale volume
Shv Mean hill volume
Sku Core roughness depth
Spk Reduced summit height
Svk Reduced valley depth

Smr1 Upper bearing area
Smr2 Lower bearing area
RelL Relative length
RelA Relative area
Lsfc Length-scale fractal complexity
Asfc Area-scale fractal complexity
κ1a Average maximum curvature
κ1q Standard deviation of maximum curvature
κ2a Average minimum curvature
κ2q Standard deviation of minimum curvature
Ha Average mean curvature
Hq Standard deviation of mean curvature
Ka Average Gaussian curvature
Kq Standard deviation of Gaussian curvature
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Table A1. Cont.

Abbreviation Full Name

κ1aabs Average absolute maximum curvature
κ1qabs Standard deviation of absolute maximum curvature
κ2aabs Average absolute minimum curvature
κ2qabs Standard deviation of absolute minimum curvature
Haabs Average absolute mean curvature
Hqabs Standard deviation of absolute mean curvature
Kaabs Average absolute Gaussian curvature
Kqabs Standard deviation of absolute Gaussian curvature
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