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Abstract: Nonthermal plasma processing is a dry, environment-friendly and chemical-free method
of improving the wettability, adhesion, self-cleaning and dying quality of fabrics without affecting
their bulk properties. This study presents a green synthesis and coating method for the immo-
bilization of nanoparticles of ZnO on the nonthermal plasma functionalized cotton fabric. The
self-cleaning activity of ZnO-coated cotton was then optimized statistically. The ultraviolet protection
and antimicrobial activity of the optimized and a control sample were also elaborated in this study.
Psidium guajava Linn (guava) plant extract and zinc chloride were used in the ultrasonic biosynthesis
of ZnO nanoparticles and concurrent immobilization over plasma functionalized cotton. Sodium
hydroxide was used as a reaction accelerator. Statistical complete composite design (CCD) based
on the amount of ZnCl2, NaOH and plasma exposure time was used to optimize the role of input
parameters on the self-cleaning ability of the coated cotton. Methylene blue in water was used as a
sample pollutant in the self-cleaning study. The ZnO-coated cotton showed notably high self-cleaning
activity of 94% and a UV protection factor of 69.87. The antimicrobial activity against E. Coli and S.
Aureus bacteria was also appreciably high compared to the control.

Keywords: nonthermal plasma; Psidium guajava; zinc oxide; self-cleaning; antimicrobial activity; UV
protection factor

1. Introduction

Nanomaterials are known for large surface area to volume ratios. The applications
of nanomaterials, especially in environmental settings, depend on the type and physico-
chemical properties of the material. Nanomaterials find their applications in the chemical
industry, aerospace industry, optics, hydrogen fuel cell, sensors, batteries, power pro-
duction devices, electronics, construction industry, thermoelectric devices, automotive
engineering, textile industry, cosmetic industry, pharmaceutics, etc. [1]. For each appli-
cation, the morphological parameters of the nanomaterials can be tuned by altering the
chemical concentration, reaction conditions and method of synthesis. However, nanoma-
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terials still lack a fundamental synthesis mechanism, stability in hostile environments,
modeling factors, biocompatibility and recyclability [2].

Green synthesis of nanomaterials is known for its low cost, high reliability, sustainable
procedure and eco-friendly nature. This method did not produce any harmful byproducts,
but the use of natural resources and ideal solvent systems is essential to meet this objective.
The natural biological systems for the green synthesis of nanomaterials include algae,
bacteria, fungi and plant extracts. Among known green methods for the production of
metal and metal oxide nanomaterials, the use of plant extracts in ultrasonic-assisted green
synthesis is a relatively simpler and easier to handle method to produce a better yield of
nanomaterials [3]. Psidium guajava is a part of the Myrtaceae family, which is familiarly
known as guava. This small tropical tree has been widely used in medical applications
to treat diarrhea, gastrointestinal disorder, cold and swelling [4]. Psidium guajava leaf
extract possesses metabolic activities, such as antioxidant, antimicrobial, antidiabetic and
anticough properties, which are useful in medicine [5,6]. The phytochemicals of guava
leaf extract include flavonoid and squalene. The extract of guava leaves contains all such
compounds, which are important for the synthesis of nanoparticles [7].

Metallic nanoparticles possess antimicrobial properties for which they are being
considered as antibiotics [7]. The green synthesis of TiO2, ZnO, MgO, CaO and AgO
nanoparticles is gaining importance among the research community [8]. ZnO is a metal
oxide n-type semiconductor with a large energy band gap of 3.37 eV. At the nanoscale, ZnO
possesses exceptionally beneficial physicochemical properties for highly sophisticated and
high-tech applications. The suitable band gap and excitation binding energy are responsible
for their excellent properties, such as better photocatalytic activity, UV radiation protection,
anti-inflammatory action, fast wound healing and better optical characteristics. The need
for robust, highly efficient and durable photocatalysts for the degradation of organic dyes
makes ZnO nanoparticles a highly reliable photocatalyst. The UV resistive property of ZnO
nanoparticles makes them a very attractive additive for cosmetics and sunscreens. The
antimicrobial properties of ZnO nanoparticles are a feasible solution to prevent virulent
diseases. Moreover, ZnO nanoparticles also find applications in the biomedical sector [3].
Among various antimicrobial agents, silver and ZnO nanoparticles are said to have the
best properties to stop the growth of microorganisms [9,10].

When it comes to the application of nanomaterials, nanotechnology has found its
uses in the textile industry due to the growing requirement of durable, antimicrobial and
UV protective textiles. Self-cleaning, UV protection, antibacterial activity and mechanical
strength can all be achieved by coating nanoparticles on the fabric’s surface [10]. Microor-
ganisms can easily grow on the textile due to natural chemical components present in
fiber, which can cause issues, such as stains, bad odor and may affect the strength of the
textile. For this reason, textiles with antimicrobial effects are of great concern to keep the
human body safe and healthy. Because there are very few functional groups on the surface
of the fabric, more functional groups must be created in order to improve nanocoating
binding and stability. Nonthermal plasma treatment is one of the chemical and physical
approaches that have been developed to boost the binding and adherence of nanoparticles
to the fabric. Plasma can improve the surface functionality of textiles, such as wettability,
printability, adhesion of coatings, dyeing, desizing and many others without affecting its
bulk properties [11,12]. The adhesion of nanoparticles to the fabric surface can be enhanced
by imparting polar functional groups through plasma exposure [13]. Noman et al. [12] pro-
posed the sonochemical synthesis of ZnO and their optimization for self-cleaning activities.
The maximum color difference (∆RGB = 99) was obtained for methylene blue.

Mostly, the wastewater of the textile industries consists of a cationic dye called methy-
lene blue. In developing countries, industrial water is discharged into the open environ-
ment without any proper treatment [14]. The dye-containing water not only harms the
water bodies and aquatic life but also deteriorates human health. Therefore, it is necessary
to find some practically viable methods of degrading the organic dye waste from the textile
industry. Therefore, methylene blue is taken as a model target pollutant in this study.
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Nosocomial infections are illnesses that are acquired during hospitalization or in a hospital
setting. The gram-negative Escherichia coli (E. coli) is a nosocomial pathogen that spreads
infections of the urinary tract and enterocolitis. On the other hand, the gram-positive
Staphylococcus aureus (S. aureus) causes etiological infection, which is one of the reasons
for the significant rate of mortality and morbidity. According to the report of the Broad
Institute, 17.3% of clinical infections are caused by E. coli and 18.8% are due to S. aureus [15].
This study aims to prepare and coat ZnO nanoparticles onto plasma-pretreated cotton
fabric through an ultrasonic homogenizer bath in a one-pot sonochemical preparation
arrangement. The effect of plasma activation on nanoparticles’ adherence to the fabric
surface was examined. The process parameters, such as plasma activation time, amount
of ZnCl2 and sodium hydroxide were varied to optimize the synthesis conditions for the
self-cleaning property of the raw cotton.

2. Materials and Methods
2.1. Materials

For the experimental work, 100% cellulose cotton was supplied by the National Textile
University, Faisalabad. Zinc chloride (ZnCl2) and sodium hydroxide (NaOH) of Merck
grade and methylene blue were bought at a local science market. Samples of cotton with
dimensions 10 × 10 cm2 were produced and desized. Prior to DBD plasma activation, the
cotton pieces were desized for 1 h in water at 80 ◦C with a wetting agent (2 g/L), enzyme
(3–5 g/L) and sodium chloride (2 g/L). This procedure was carried out to remove the
impurities, proteins and stains of grease on the fabric. The desized samples were dried and
kept in a moisture-free environment for further experimentation.

2.2. Complete Composite Design for Statistical Optimization

There are three kinds of design points in a set of CCD. These points include axial
points (±α), center points (0) and factorial points (±1). The value of alpha (α) is taken
as 1.68 in the case of the three-input parameter design. The quadratic model is fitted in
design to find the maxima and minima of a parameter and the influence of curvature and
the response of the surface. The different quantities of input parameters, such as ZnCl2,
NaOH and plasma exposure time, for CCD-based experiments are illustrated in Table 1.
The amount of zinc chloride (1.5–18.5 g) and of NaOH (3.3–11.7 g) was used as an input
in CCD in Minitab software. The pattern of quantities of ZnCl2 and NaOH was adjusted
automatically by the software. The experimental results of color difference (∆RGB) for
self-cleaning of all CCD-based experiments and a control experiment are also illustrated
in Table 1. Here “M” represents the sample for the control experiment. Equation (1) was
considered to quantify the effect of the input parameters on self-cleaning.

Y = b0 + ∑ biXi + ∑ bi.jXiXj + ∑ bi.iX2
i i ≥ j, i, j = 1, 2, 3 (1)

In this equation, b0 is a coefficient of a constant term and bi is the coefficient of a linear
term, while bi.j and bi.i express the coefficients of two factors’ interaction and quadratic
terms, respectively [13].

2.3. Configuration of Nonthermal Plasma

The configuration of a nonthermal plasma system (dielectric barrier discharge) in-
volved a grounded movable cylindrical aluminum electrode and a cylindrical anode of
copper. As shown in Figure 1, the copper electrode was covered with a 1.5 mm dielectric
layer of glass. The gap between electrodes is filled with micro-discharges or filaments
when a high voltage or frequency is applied across the electrodes. In this work, a 30 kV
transformer was used to produce DBD micro-discharges between electrodes. A dielectric
layer between electrodes was used to limit the flow of current across the electrodes and to
protect the circuit from breakdown or gas sparking. The dielectric also limits the heating
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effect due to the formation of a displacement current. The main advantage of DBD is its
large electron density, which leads to the uniform surface treatment of textiles [16].

The desized samples were pasted on a moveable cylindrical electrode with paper
tape. The movable electrode was rotated at 100 rpm by an electric motor. The DBD system
was operated in the open air with an electrode gap of 2 mm at room temperature. At an
input voltage of 140 V, the output voltage and current were recorded as 26 kV and 3.80 mA,
respectively. The cotton pieces were plasma-activated for different treatment times by
following the statistical design in Table 1.

Table 1. Actual values of input parameters along with the experimental results of all CCD-based
experiments and a control experiment.

Sr. No ZnCl2 (g) NaOH (g) DBD Plasma Time (s) Self-Cleaning Value
(∆RGB)

1 17.5 5.0 70.2 95.6

2 11.0 8.4 47.6 87.6

3 17.5 5.0 25.0 90.2

4 4.5 5.0 70.2 74.4

5 17.5 11.7 70.2 100.4

6 11.0 2.7 47.6 79.1

7 4.5 11.7 25.0 65.7

8 11.0 8.4 47.6 82.3

9 21.9 8.4 47.6 96.8

10 11.0 8.4 47.6 84.2

11 11.0 8.4 9.6 59.7

12 11.0 8.4 85.6 89.1

13 17.5 11.7 25.0 80.3

14 11.0 8.4 47.6 88.6

15 11.0 13.9 47.6 85.3

16 4.5 11.7 70.2 85.6

17 4.5 5.0 25.0 66.1

18 11.0 8.4 47.6 85.5

19 0.1 8.4 47.6 62.4

20 11.0 8.4 47.6 86.1

M 17.5 11.7 0.0 94.2

2.4. Guava Plant Extract and Synthesis of ZnO Nanoparticles

Guava is a small tree or shrub of the Myrtaceae family. Guava leaves are a popular
medicine for ulcers, wound dressing, rheumatic pain and diarrhea [17]. The leaves of guava
also have anticancer, antibacterial and anti-inflammatory properties [17]. Guava is chosen
in this research work due to the presence of polyphenols (caffeic acid, elligic acid, ferulic
acid, gallic acid), flavonoids (kaemp ferol, quercetin), carotenoids (lutein, rubixanthin,
phytofluene, lycopene, nechrome) and triterpenes (uvaol, ursolic acid, oleanolic acid) in
the crude extract. In the synthesis of ZnO nanoparticles, the functional groups of the
aforementioned bioproducts can coordinate Zn (II) and help in the process of stabiliza-
tion [18]. Nechrome and β-carotene are used in the guava extract work as chain-breaking
antioxidants. Therefore, the extract of guava can be used as a biocatalyst/cheating agent
for the synthesis of ZnO nanoparticles from a zinc chloride precursor [19].
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The guava leaves were thoroughly washed with deionized water multiple times to
remove any kind of dust particles, wax and other impurities. The washed leaves were
immersed in acetone to remove the green pigments. The leaves were dried in a shady area
in a room for 5 to 6 days. The dried leaves were ground in a grinding machine to get a fine
powder. Then 30 g of leaf powder was mixed with 300 mL methanol and kept in the dark
for 2 days. After that, the solution was placed on a magnetic stirrer at 70 ◦C for 2 h. The
solution was then filtered using Whatman No. 1 filter paper to get leaf extract, which was
directly used for the synthesis of ZnONPs.

Different amounts of ZnCl2 and NaOH, based on CCD statistical design, were mixed
with 100 mL of guava extract to prepare the solutions. To reach equilibrium, each solution
was kept in the dark for 12 h. During each experiment, the plasma-activated cotton was
dipped completely in the solution in a beaker. The solution and plasma-activated sample
together in a beaker were placed in an ultrasonic bath to perform sonication for 75 min at
40 kHz and 80 ◦C solution temperature [20]. During the sono-synthesis of ZnONPs, the
sonic cavitation events create transient high pressure and temperature localized hot zones
or bubbles. In the sonolysis of the solution, variations in temperature and pressure of the
sono-generated bubbles break the water molecules into H. and OH. radicals. Hydrolysis of
precursors and polycondensation of byproducts are made possible by such free radicals,
resulting in nanoparticles. These particles bind to the fabric surface through chemical
bonding with the functional groups induced on the cotton during plasma processing.

After the sonication, the cotton pieces were taken out and padded in a dry-pad
machine to improve the stability on the cotton surface. The whole ZnONPs synthesis
and coating procedure is illustrated in Figure 2. The padded sample was washed with
distilled water to remove extra particles, which could not make firm contact with the fabric.
The fabric pieces were dried to pass them through another cycle. The above-discussed
procedure is called one complete coating cycle. Similarly, all the other experiments in
Table 1 were conducted by following the CCD design. The optimum and control samples
were coated for up to five coating cycles in order to elaborate and compare the self-cleaning,
antimicrobial and UV protection traits.
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2.5. Characterization of Samples

The results concerning the morphology and topography of the control, plasma-treated
and optimum samples were observed by scanning electron microscopy (SEM) images. An
X-ray diffractometer was used to observe the XRD patterns of the optimum and control
samples. An X-ray diffractometer with Cu-Kα radiation of λ = 0.15406 nm was used to
collect the XRD patterns and study of the structure of ZnONPs. The obtained results were
compared with a standard powder diffraction file (PDF:89-7102). The size of the grains was
obtained using Scherrer’s crystallite equation:

size o f crystallite (D) =
Kλ

βcosθ
(2)

where D shows the size of crystallite, λ is X-ray wavelength, β represents the full width at
half maximum and K is the shape constant with a value of 0.89. To validate the formation
of ZnO nanoparticles, a UV spectrometer was used to measure the UV-vis spectrum of a
solution containing the optimum sample. The functional changes in the plasma-assisted
nanocoated optimum sample were studied using Fourier transform infrared spectroscopy.
Moreover, the presence of necessary reducing agents in guava extract was confirmed
by FTIR analysis. For the study of the adhesion of ZnO nanoparticles towards cotton
fabric, the electrostatic surface interaction was examined by the Zeta potential of cotton
fabric. Both plasma-activated and blank cotton pieces were analyzed for the zeta potential
measurements [21].

2.6. Photocatalytic Activity of Nanocoated Samples

UV light irradiations were irradiated on ZnO-coated cotton samples to investigate
the photodegradation of methylene blue dye from the samples. For this purpose, all
ZnO-coated samples were immersed separately in 0.01% (w/v) solutions of MB dye. The
developed sample in MB solution was kept in the room for 6 h to reach equilibrium. Then
the developed sample was drawn out from the MB solution and allowed to dry at ambient
temperature. The dried sample was exposed to UV 500 W xenon lamp for 6 h. A distance
of 30 cm was kept between the sample and the UV lamp. The methylene blue-stained
samples were placed under a UV lamp because the energy of the emitted UV-A light
(λ = 320–400 nm) is comparable to the band gap (3.37 eV) of ZnO NPs coated on cotton.
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The color differences (∆RGB) of all developed samples were observed by image processing
in MATLAB software. Equation (3) was used to determine the color differences of UV
irradiated samples and without UV irradiated samples:

∆RGB = ((R2 − R1)
2 + (G2 −G1)

2 + (B2 − B1)
2 (3)

where R1G1B1 are the color coordinates without UV irradiation of the sample and R2G2B2
are the color coordinates of the UV irradiated sample.

2.7. Radical Scavenger Analysis

The photocatalytic mechanism was further studied by detecting the reactive species,
such as holes and radicals, in radical scavenging experiments. The superoxide radical
(O−2 ), holes (h+) and hydroxyl radical (OH) are trapped by mixing tertbutanol (t-BuOH)
(OH scavenger), ammonium oxalate (AO) (h+ scavenger) and p-benzoquinone (P-BQ) (O−2 )
scavenger into the solution of reaction, respectively. Typically, 10 mM of radical scavenger
and 10 mg ZnO were put in a 50 mL dye solution of (30 mg/L) concentration. Then the
suspension was placed under the UV lamp for an equal time. The role of active radical
species was determined by calculating the removal rate of the dye.

2.8. Antimicrobial and UV Protection Activity

For the antibacterial test, the agar disc diffusion method was used. The bacteria culture
weight for nutrient agar of 28 g was prepared and dissolved in 1000 mL of distilled water
in Petri plates. The borer was autoclaved for 15 min, and then the media was cooled. The E.
Coli bacteria and S. Aureus were then added to the plates and incubated for 24 h at 37 ◦C
to check the inhabitation zones of optimal and control samples [22].

UV protection characteristics of optimized and control samples were investigated
further. The AATCC TM 183 standard was used to conduct the transmittance tests and to
calculate the UV protection factor (UPF). The following equation was used to compute UPF:

UPF =
∑400

λ=280 Eλ.Sλ.∆λ

∑400
λ=280 Eλ.Sλ.Tλ.∆λ

(4)

where Sλ is the solar spectral irradiance, Eλ is the relative erythemal spectral effective-
ness, ∆λ is the measured wavelength interval and Tλ is the spectral transmittance of the
specimen [23].

3. Results and Discussion
3.1. Mechanism of ZnO Coating of Cotton

The photocatalytic reaction usually consists of surface oxidation, photoexcitation,
charge migration and separation. It is critical to determine which reactive species are most
important in dye degradation. Figure 3b shows the rate of degradation both in the absence
and presence of the scavengers. In photocatalytic degradation of methylene blue, there
was a slight change in t-BuOH and AO. There was a considerable reduction (18.67) in
the removal rate of methylene blue in the presence of p-BQ scavenger. The addition of
benzoquinone showed the highest reduction in the removal rate, followed by tert-butanol
and ammonium oxalate. These findings agree well with the study of Huang et al. [24].
They used similar scavengers and conditions to study their effect on the dye removal rate.
The superoxide radical was discovered to be the most important reactive species during
the photodegradation of methylene blue.
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The alkaline environment plays a central role in the formation and coating of ZnONPs
on the cotton samples. The cotton cellulose was modified to cellulosate anion in an alkali
medium, which creates extra sites for the adsorption of zinc ions, as illustrated in the
reaction in Equation (5). Positively charged zinc ions adsorb onto the surface of fibers of cel-
lulose due to electrostatic attraction, which further promotes the synthesis of ZnONPs [23].
The cellulosic fabric surface provided space for the nucleation and growth of ZnO during
sonication at 80 ◦C. The acoustic cavitation phenomenon during sonication causes the
growth of shortly lived high pressure and temperature zones or bubbles. These bubbles
burst with a rise in pressure and temperature and transfer their energy to the medium,
where they produce H. and OH. radicals by breaking water molecules. The free radicals
initiate the precursor hydrolysis and poly-condensation of the products into nanoclusters,
as produced nanoparticles bind to the fabric surface through chemical bonding with the
functional groups induced on the fabric surface during plasma treatment. In this synthesis
process, guava extract works as a reducing and stabilizing agent for ZnO nanoparticles [25].
In an alkaline medium, zinc hydroxide reduces to Zn2+ species in the hydroxylation pro-
cess, which further reduces to ZnO nanoparticles during the heating of fabrics at 80 ◦C
through the following reactions:

Cell−OH Alakli medium→ Cell−O− (5)

NaOH→ Na+ + OH− (6)

ZnCl2 → Zn2+ + 2Cl− (7)

Zn2+ + OH− → Zn(OH)2 (8)

Zn(OH)2 → ZnO (9)

3.2. Photocatalytic Activity of ZnO-Coated Cotton

The photocatalytic activity of ZnO coated cotton was checked by evaluating the
degradation of MB on its surface under the irradiation of ultraviolet light. The results
of self-cleaning (∆RGB) for plasma-assisted nanocoated and control samples are shown
in Table 1. The self-cleaning efficiency of sample 5 was found to have a maximum of
(∆RGB = 100.4) among the other plasma-assisted coated samples and control samples
(∆RGB = 94.2). This sample was taken as the optimum one for further experiments.
The optimum conditions of input parameters in this research were the amount of ZnCl2
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(17.5 g), NaOH (11.7 g) and plasma exposure time (70.2 s). The high self-cleaning value
of the control sample ‘M’ is due to the fact that it was subjected to the same experimental
conditions as the optimized sample, with the exception of plasma treatment. Moreover, the
acoustic cavitation phenomenon can produce a temporary high pressure and temperature
localized hot zones during the sono-synthesis of nanoparticles. A change in pressure and
temperature can generate H. and OH. radicals in the sonolysis of H2O. Such free radicals
enable the hydrolysis of precursors and poly-condensation of byproducts to nanoparticles.
The trapped air between the inter and intra-yarns serves as a nucleus for the formation
of bubbles in the fabric. Therefore, powerful convection produced by the motion of the
transient bubbles in close proximity to the fabric intensifies the fabric’s mass transfer. As
a result, the flow of reactional fluid can be accelerated through the fabric, resulting in
stronger adsorption of nanoparticles. Moreover, nanoparticles have a large affinity for
hydroxyl groups, and the dehydration reaction between the hydroxyl groups of both
nanoparticles and fabric cause the formation of interfacial bonding that result in better
adhesion of nanoparticles on the surface of fibers [26]. The difference in colors of optimum
and control samples is shown in Figure 3b. The results revealed that DBD plasma treatment
increases the self-cleaning efficiency of ZnONPs. In photocatalytic degradation mechanism,
the photocatalytic reaction consists of photoexcitation, separation of charges and their
migration, and then oxidation and reduction reactions at the surface [27]. The irradiation
of UV generates reactive species h+, OH− and O.−

2 . The mechanism of photodegradation
of MB is shown in Figure 3a. The corresponding UV energy is larger than the band gap
of ZnO (3.37 eV), so it can promote the generation of electrons and holes. The energy of
UV irradiations transfers the valence electrons to the conduction band. The UV-generated
holes (h+) directly react with H2O or hydroxyl (OH−) groups to create hydroxyl radicals
(OH.−). The surface oxygen reduces to superoxide radical (O.−

2 ) by photoelectrons. Finally,
MB decomposes by OH.− and O.−

2 radicals by following the reactions given below:

ZnO + hv→ h+ + e− (10)

h+ + OH− or H2O→ OH. (11)

e− + O2 → O−2 (12)

OH−and O.−
2 + MB→ CO2 + H2O (13)

Noman et al. [12] sonochemically synthesized ZnO nanoparticles for self-cleaning
application. ZnCl2 and NaOH were used as precursor and reaction accelerators in the
synthesis of nanoparticles. The maximum self-cleaning (∆RGB = 99) value was obtained
for the degradation of the methylene blue solution. In this research, the maximum self-
cleaning of ∆RGB = 100.4 was possible, which is higher than the value reported by Noman
and co-workers.

3.3. Statistical Optimization and Analysis of Variance

The influence of input parameters on response parameters (self-cleaning) was eval-
uated by studying the experimental CCD design, response surface plots and contour
plots. The relationship between the input parameters and output response was studied by
mathematical modeling Equation (14). This equation can be used to find the percentage
degradation of MB with coded variables as: A = amount of ZnCl2, B = amount of NaOH,
C = DBD plasma exposure time and Y = self-cleaning (∆RGB).

Y = 37.7 + 3.054 (A) − 0.11 (B) + 0.586 (C) − 0.0313 (A × A) − 0.0360 (B × B) − 0.00619 (C × C)
− 0.0913 (A × B) − 0.00230 (A × C) + 0.0434 (B × C)

(14)

Table 2 shows the derived ANOVA findings for the quadratic model. The linear and
interaction factors (p < 0.05) significantly influence the degradation of MB. In other words,
the model shows the effect of input parameters on the response. The large F-value indicates
that the model variance is greater than the random error. The prediction of the model for
experimental value is very good, as the F-value of this model is 26.72. This result proves
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that the prediction strength fitted well with the model. The R-Squared coefficients can be
used to describe the model’s fit as well. The high values of R-Square and R-Square (adj)
revealed that MB deterioration is significant when the solution is exposed to UV radiation.
The values of input parameters, which influenced the dye removal most, are 96% ZnCl2
and 0.125% NaOH. The Pareto analysis revealed that plasma treatment time is also an
effective parameter in this study [25].

Table 2. Summary of ANOVA analysis used to study self-cleaning of the coated cotton.

Source DF Adj. SS Adj. MS F-Value p-Value Significance

Model 9 2362.48 262.50 26.72 0.001 Significant

Linear 3 2084.62 694.87 70.72 0.000 Significant

ZnCl2 1 1286.57 1286.57 130.94 0.000 Significant

NaOH 1 19.04 19.04 1.94 0.194 Not Significant

Plasma exposure time 1 779.01 779.01 79.29 0.000 Significant

Square 3 158.88 52.96 5.39 0.018 Significant

(ZnCl2) 2 1 25.23 25.23 2.57 0.040 Significant

(NaOH) 2 1 2.35 2.35 0.24 0.635 Not Significant

(Plasma exposure time) 1 144.05 144.05 14.66 0.003 Significant

2-Way Interaction 3 118.97 39.66 4.04 0.040 Significant

ZnCl2 × NaOH 1 31.60 31.60 3.22 0.103 Not Significant

ZnCl2 × Plasma time 1 0.91 0.91 0.9 0.767 Not Significant

NaOH × Plasma time 1 86.46 86.46 8.80 0.014 Significant

Error 10 98.25 9.83

Lack of Fit 5 72.23 14.45 2.77 0.144

Pure Error 5 26.03 5.21

Model Summary R-sq = 96.01%, R-sq (adj) = 92.41%

The surface contour plots were produced to analyze the influence of input parameters
on the output parameter for optimization of the coating process. Figure 4 shows the contour
and response surface graphs. One parameter was kept constant in contour plots while the
other two parameters were varied. Figure 4a,b shows that an increase in the concentration
of ZnCl2 had a different influence on MB degradation, which depends on the concentration
of NaOH. For a large concentration of ZnCl2, MB degradation was low and vice versa. The
MB degradation increased with an increase in NaOH and was found to be the maximum
when NaOH was in the range of 3–11 g. From Figure 4c,d, MB degradation increased with
an increase in the concentration of both ZnCl2 and plasma exposure time, but it was at
its maximum for higher values of both input parameters. Similarly, Figure 4e,f shows the
effect of NaOH and plasma activation time on MB degradation. Dye degradation increased
as both input parameters were increased [16].

The model’s suitability was determined by plotting residual graphs, as shown in
Figure 5. The response for MB degradation percentage followed the normal distribution in
Figure 5a. It indicates that there is no obvious problem with normalcy and that no response
transformation is required. The non-systematic behavior of the plot in Figure 5b implies
that the variance of the original data remains constant for each value of the response.
Similarly, the histogram of all observations in Figure 5c shows that the residuals are
regularly distributed. In conclusion, all plots in Figure 5 show that the model is adequate
for the photocatalytic removal of MB from the fabric surface.
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Figure 4. The surface response and contour plots of MB degradation for different experimental input parameters:
(a,b) ZnCl2 vs. NaOH, (c,d) ZnCl2 vs. plasma exposure time and (e,f) NaOH vs. plasma exposure time.

3.4. XRD Analysis

The XRD patterns of optimum and control ZnO-coated cotton are presented in Figure 6.
The structural properties of the developed sample were examined through XRD analysis.
From the XRD profile, the diffraction peaks showed the formation of (100), (002), (101),
(102), (110), (103), (112), (201) and (004) planes at 2θ of 31.54◦, 34.40◦, 36.71◦, 47.45◦, 56.36◦,
62.82◦, 67.67◦, 70.13◦ and 71.3◦, respectively. This analysis confirmed the polycrystalline
nature of the coated ZnO nanoparticles. Table 3 presents the positions (2θ) along with
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other XRD parameters. A distance of 2.477 Å was found between the planes of the lattice.
The relative intensity of peak (2θ = 34.40◦) was sharp and had a higher intensity for the
optimum sample, which indicates a higher quantity of ZnO nanoparticles compared to
the control sample (Figure 6). The average size measured from the Scherrer equation was
found to be 41.34 nm. The standard XRD characteristic peaks revealed the hexagonal
wurtzite structure of ZnO. The other peaks at 2θ = 15− 25◦ showed the crystalline nature
of cellulose in cotton fabric. The XRD characteristic peaks matched well with JCPD file
card No. 36-1451. The ZnO coating on the optimum sample was found denser since the
intensity of peak (002) is larger compared to the control sample.
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Figure 5. Graphs of normal residuals, (a) percent vs. residual, (b) fitted value vs. residual, (c) frequency vs. residual and
(d) residual vs. observation order.

Table 3. XRD parameters of ZnO after five coating cycles.

2θ h k l d-Spacing (Å) FWHM

31.54◦ (100) 2.814 0.39

34.40◦ (002) 2.601 0.17

36.71◦ (101) 2.471 0.46

47.45◦ (102) 1.911 0.40

56.36◦ (110) 1.624 0.60

62.82◦ (103) 1.477 0.36

67.67◦ (112) 1.377 0.50

70.13◦ (201) 1.342 0.30

71.3◦ (004) 1.312 0.29
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3.5. SEM Analysis

SEM analysis was used to observe the effect of plasma treatment on ZnO coating.
The surface of the untreated DBD plasma cotton sample was smooth, and there were
no pits and cracks on the surface (Figure 7a). The surface of the DBD plasma-treated
sample became rough because plasma treatment induced pits and wades due to the plasma
etching effect (Figure 7b). The ZnO coating on the optimum sample was homogeneous
and dense. The coating became more and more homogeneous and dense with an increase
in the number of coating cycles. The five-times coated optimum sample showed a higher
quantity of ZnO on its surface. The ZnO coatings on the control sample remained partially
homogeneous and less dense compared to the optimum sample. The plasma-induced
functional groups (COOH, OH) had a strong interaction with ZnO nanoparticles, so the
nanocoating became denser and more homogeneous. The highly magnified SEM image
of ZnONPs on the plasma functionalized surface revealed that the nanoparticles have a
well-defined shape. Most of the nanoparticles on the plasma functionalized fabric were
hexagonal in shape. It was difficult to define the shape of the nanoparticles on the control
sample. The nanoparticles were agglomerated into larger clusters of varying morphologies.
The size of the nanoparticles on the plasma-functionalized fabric was measured by using
SEM images in ImageJ software. The average particle size was measured to be about 50 nm.

The control and optimum samples were subjected to five washing cycles in distilled
water to check the stability of the nanoparticles on the fabric. SEM images of both samples
were generated to observe the removal of nanoparticles on washing, as shown in Figure 8.
The nanoparticles showed good stability on the optimum sample compared to the control.
The plasma treatment introduced functional groups for high adhesion of nanoparticles on
the control.
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3.6. UV-Vis Analysis

The UV-vis absorption spectrum of ZnO suspension for the optimum sample is shown
in Figure 9. The absorption peak around 360 nm revealed that the biosynthesized ZnO
nanoparticles had a nano-dimension. The absorption peak confirms the reduction of zinc
chloride into ZnO nanoparticles due to the presence of guava extract and an alkali medium.
The direct band gap was calculated through the measurement of the slope of the Tauc plot,
as shown in the inset. The measured value of the direct band gap was 3.38 eV.
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3.7. FTIR Analysis

The FTIR spectrum of the ZnO-coated optimum sample is shown in Figure 10. The
formation of ZnO nanoparticles was confirmed by the presence of a peak at 545 cm−1. The
other observed peak at 457 cm−1 was due to some impurities of the extract (Figure 10a).
The FTIR spectrum of the guava extract identified the functional groups and biomolecules,
which were responsible for the efficient synthesis, stabilization and capping of the ZnO
nanomaterial. The peaks at 980, 1030, 1400, 1570 and 3050 cm−1 were observed, as shown
in Figure 10b. The observed peaks were the characteristic of terpenoids and flavanones
that were abundant in the guava leaf extract. The peaks at 980 and 1030 (polysaccharide
groups), 1400 (nitrosamine), 1570 (diketones) and 3050 cm−1 (C–H and carboxyl acid)
suggested the presence of terpenoids and flavanones in the extract, which are essential for
the formation of nanoparticles.

3.8. Antimicrobial Activity of ZnO-Coated Cotton

The antimicrobial activity of nanoparticles is related to their photocatalytic efficiency
to produce reaction oxygen species (ROS), such as O∗−2 , H2O2, and *OH, through oxidation
and reduction reactions on the surface of crystals under the irradiation of light. Although
the exact mechanism of antimicrobial activity is not entirely understood, it is proposed that
when microorganisms come into contact with nanoparticles, the ROS species can penetrate
into the cell membrane by diffusion processes and damage the cellular molecules, including
lipids, carbohydrates and nucleic acids, leading to the death of the cell. Further, the cell
wall can be disrupted by ROS through the process of lipid peroxidation. Moreover, ROS can
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disrupt the electron transport chain in transmembrane. The small size nanoparticles can
penetrate into the cell and cause the generation of photo ROS inside the cell. ROS killing
effect has been observed in many types of cells, such as yeasts, viruses, and fungi [28].
The antimicrobial activity of the optimum and control samples was tested against gram-
positive and gram-negative bacteria. E. Coli and S. Aureus were used as gram-negative
and gram-positive strains, respectively. Table 4 shows the zone of inhibition against both
strains for the optimum and control samples, which shows that with an increase in the
number of coatings, the zone of inhibition increased. In a comparative study between
the optimum and control samples, the results revealed that the zone of inhibition for the
optimum sample was larger compared to the control sample. The reason was that the
plasma treatment of the optimum sample imparted the important functional groups on the
surface, which results in an increased coating quantity of ZnO nanoparticles during the
sonication process [22].
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Table 4. Zone of inhibition of control and optimum cotton samples against gram-positive and gram-negative bacteria.

Zone of Inhabitation against Gram-Positive Bacteria Zone of Inhabitation against Gram-Negative Bacteria

Control Sample Optimum Sample Control Sample Optimum Sample

Coating Cycles Inhabitation Zone Inhabitation Zone Inhabitation Zone Inhabitation Zone

1 1.90 mm 3 mm 1.95 mm 3.1 mm

3 2 mm 6 mm 2.1 mm 6.3 mm

5 3 mm 10 mm 2.98 mm 11 mm

Kalpana et al. [28] studied the antibacterial activity of biosynthesized ZnO nanoparti-
cles. The particles were stabilized on cotton fabric by using acrylic binder. ZnO-coated cot-
ton showed the zone of inhibition of about 12± 0.23 mm against S. aurues and 10 ± 0.78 mm
against E. coli strains. The results of the presented work are comparable to the aforemen-
tioned results. These findings imply that ZnONPs have the potential to produce sterile
fabrics for medical treatments and hospital environments where infection is a concern.

3.9. Ultraviolet Protection and Zeta Potential

The results of the UV protection factor are presented in Table 5. The protection factor
increased with coating cycles of the optimum sample. The transmittance of UVA and UVB
rays decreased as the number of cycles were increased from 1 to 5. On plasma treatment,
the ZnO nanoparticles were uniformly distributed onto the cotton fabric. When the number
of cycles was increased, the quantity of ZnONPs increased, which resulted in a higher
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protection factor of up to 50 and less transmittance of UVA and UVB rays. It was concluded
that ZnO nanoparticles possess strong UV protective properties and can be used as a
coating for the production of UV protective cellulose fabrics.

Table 5. Ultraviolet protection factor (UPF), transmission in UVA and UVB region and the UPF rating
of the cotton samples.

Samples UPF
UV Transmittance (%) UPF Rating
UV-A

(315–400 nm)
UV-B

(280–315 nm)

Five time coated (control) 5.7 29.27 26.84 Unrelatable

One time coated (optimum) 33.56 7.43 2.36 30

Three time coated (optimum) 58.22 6.71 1.93 50+

Five time coated (optimum) 69.87 6.41 1.76 50+

The zeta potential for the optimum and control samples was also measured and
compared. The Zeta potential of the control sample was measured to be about 0.97 mV,
which decreased to −0.5 mV for the optimum sample. A decrease in zeta potential after
plasma treatment showed that the high functional group density exists at the surface of
the fabric [19]. Due to plasma-generated functional groups, the zeta potential decreased,
which in turn increased the adhesive property of ZnONPs towards cotton fabrics. The
adhesion strength of ZnO nanoparticles on the surface of cotton was also studied through
SEM images. Both the optimum and control samples were washed up to five times by
distilled water. After five washing cycles, SEM images were taken, as shown in Figure 8.
SEM analysis revealed that ZnO nanoparticles remained stuck even after five washing
cycles. Further, the quantity of ZnONPs on the optimum sample was found to be more
compared to the control sample.

4. Conclusions

The self-cleaning property, along with antimicrobial and UV protective properties,
of open-air plasma-assisted ZnO-coated cotton fabrics was studied. The extract of guava
leaves was used for the synthesis of hexagonal wurtzite ZnO nanoparticles with an average
grain size of 41.34 nm because it contains important reducing and capping agents, as
confirmed by FTIR analysis. The degradation of methylene blue dye was optimized by RSM-
based CCD. The relationship between the removal of MB by ZnONPs and input parameters
was developed by using a quadratic polynomial equation with a large determination
coefficient (96.01). The optimum degradation (∆ = 100.4) of MB was obtained for optimum
conditions of ZnCl2 (17.5 g), NaOH (11.7 g) and plasma exposure time (70.2 s). The
percentage influence of the plasma treatment was 3.54 for self-cleaning activity. The plasma
pre-treatment also enhanced the antimicrobial and UV protective properties of the ZnO-
coated sample. The plasma treatment increased the UPF up to 50+ compared to the control
sample. Therefore, plasma treatment was considered as an important approach to enhance
the adsorption of nanoparticles on textiles for their commercial applications in removing
organic dyes and killing bacteria.
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