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Abstract: In this paper, the volume integral equation method (VIEM) is introduced for the nu-
merical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic
spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-
dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single
isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix
under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical,
prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading.
The authors hope that the results using the VIEM cited in this paper will be established as reference
values for verifying the results of similar research using other analytical and numerical methods.

Keywords: volume integral equation method (VIEM); isotropic/anisotropic inclusion problems;
boundary element method (BEM); standard finite element method (FEM)

1. Introduction

The matrix and fibers in composites are usually made of isotropic material. However,
in order to have higher strength and stiffness for commercial use, especially in the aerospace
and automobile sectors, some constituents of metal matrix composites can be anisotropic.
Since anisotropic materials are able to enhance mechanical properties toward orientation,
certain mechanical properties (e.g., tensile strength) of anisotropic materials thus depend
on orientation. As an example, in titanium-silicon carbide (Ti-SiC) composites, the matrix
is nearly isotropic, but the SiC fiber has strong anisotropy and a multilayered structure
including an interphase and a core.

A number of analytical techniques for solving inclusion problems are available when
the inclusions are simple two-dimensional shapes (cylindrical and elliptical) or simple three-
dimensional shapes (spherical and ellipsoidal) and when they are well-separated [1–5].
In particular, Eshelby developed a simple and elegant method for solving the inclusion
problem in isotropic solids in 1957 [1]. Eshelby first pointed out that the resulting elastic
field can be found with the help of a sequence of imaginary cutting, straining and welding
operations [1]. Eshelby also found that the strain and stress field inside the ellipsoidal
inclusion is uniform and has a closed-form solution, regardless of the material proper-
ties and initial eigenstrain [1]. Eshelby’s findings significantly influenced the mechanics
of composites.

In the micromechanical analysis of composite materials, it is often assumed that the
inclusions are periodically distributed in the matrix. Then, the unit-cell model with periodic
boundary conditions is used to evaluate the overall, microstructure-insensitive, material
properties of the composite. However, in real composites, the distribution of the inclusions
is not periodic. Thus, the unit-cell model may not provide accurate estimates of the failure
and damage mechanisms in composites [6–8].

Therefore, stress analysis of heterogeneous solids often requires the use of numerical
approaches based on the standard finite element or boundary element formulations. How-
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ever, both methods present difficulties in dealing with problems involving infinite media or
multiple anisotropic inclusions. In response to this concern, it has been demonstrated that
the volume integral formulation can overcome both of these limitations in heterogeneous
problems involving infinite media [9–11].

In comparison to the boundary element method (BEM), the volume integral equation
method (VIEM) does not require the use of the Green’s function for anisotropic inclusions
and is not sensitive to the geometry of the inclusions. Moreover, as opposed to the standard
finite element method (FEM), where it is necessary to discretize the full domain, the
multiple inclusions only need to be discretized in the VIEM.

In this paper, three-dimensional elastostatic inclusion problems using the volume
integral equation method (VIEM) will be investigated.

In order to introduce the VIEM as a versatile numerical method for the three-dimensional
elastostatic inclusion problem, we first examine single isotropic/orthotropic spherical, pro-
late and oblate spheroidal inclusions in an infinite isotropic matrix subject to uniform
remote tensile loading. Two different prolate and oblate spheroidal inclusions with an
aspect ratio of 0.5 and 0.75 are considered, respectively. The matrix is assumed to be
isotropic. Eight isotropic and five orthotropic inclusions with different characteristics are
considered in the numerical calculation. The normalized tensile stress inside the inclusions
is investigated in two different directions. Next, we examine single isotropic/orthotropic
spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix subject
to remote shear loading. Two different prolate and oblate spheroidal inclusions with an
aspect ratio of 0.5 and 0.75 are considered, respectively. The matrix is assumed to be
isotropic. Three isotropic and two orthotropic inclusions with different characteristics are
considered in the numerical calculation. The normalized shear stress inside the inclusions
is investigated in two different directions.

The authors hope that the present solutions using the parallel volume integral equa-
tion method for the single isotropic/orthotropic spherical, prolate and oblate spheroidal
inclusions with different material properties under uniform remote tensile loading or
remote shear loading will be established as reference values for verifying the results of
other analytical and numerical methods.

Since the VIEM is a combination of two powerful general-purpose numerical methods,
the standard finite element method (FEM) and the boundary element method (BEM), it is
also a highly beneficial tool in the field of numerical analysis and can play a very important
role in solving inclusion problems. Subsequently, the purpose of this paper is to introduce
the parallel volume integral equation method (PVIEM) as an accessible, versatile and
powerful numerical method for solving inclusion problems in the areas of computational
mechanics and mechanics of composite materials.

2. Governing Equations of Volume Integral Equation Formulation

The geometry of the general elastodynamic problem is shown in Figure 1a, where an
infinite homogeneous, isotropic and linearly elastic solid containing a number of isotropic
or anisotropic inclusions of arbitrary number and shape are subjected to prescribed dynamic
loading at infinity.

In Figure 1a, V and S represent the volume and surface of the inclusion respectively,
and n is the outward unit normal to S while Vo and So represent the infinite volume and
surface, respectively.

The symbols ρ(1) and cijkl
(1) denote the density and the elastic stiffness tensor of the

inclusion, while ρ(2) and cijkl
(2) denote the density and the elastic stiffness tensor of the

infinite homogeneous, isotropic and linearly elastic matrix material, respectively. Therefore,
cijkl

(2) is a constant isotropic tensor, while cijkl
(1) can be arbitrary, i.e., the inclusions may,

in general, be inhomogeneous and anisotropic. The isotropic or anisotropic inclusions are
assumed to be perfectly bonded to the matrix.
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Figure 1. Geometry of the general (a) elastodynamic and (b) elastostatic problem. (c) A remote shear
loading, σo

xy. (d) A remote shear loading, σo
xz. (e) A remote shear loading, σo

yz.

Mal and Knopoff [12] showed that the elastodynamic displacement, um(x), in the
composite satisfies the volume integral equation:

um(x) = uo
m(x) +

∫
V
[δρω2gm

i (ξ, x)ui(ξ)− δcijkl gm
i,j(ξ, x)uk,l(ξ)]dξ (1)

where the integral is over the domain V occupied by the isotropic or anisotropic inclusions,
δρ = ρ(1) − ρ(2) and δcijkl = cijkl

(1) − cijkl
(2), and gi

m(ξ,x) is the elastodynamic Green’s
function for the infinite homogeneous, isotropic and linearly elastic matrix material.

In Equation (1), um
o(x,ω)e−iωt represents the mth component of the displacement

vector due to the incident field at x in the absence of the inclusions, while um(x,ω)e−iωt

denotes the same quantity in the presence of the isotropic or anisotropic inclusions, where
ω is the circular frequency of the waves. In what follows, the explicit dependence on
the circular frequency, and the common time factor, e−iωt, for all field quantities will
be suppressed.
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The geometry of the general elastostatic problem is shown in Figure 1b–e. It has been
shown by Lee and Mal [9] that the corresponding elastostatic displacement, um(x), within
the composite, fulfills the volume integral equation as:

um(x) = uo
m(x)−

∫
V

δcijkl gm
i,j(ξ, x)uk,l(ξ)dξ (2)

where the integral is over the space V occupied by the isotropic or anisotropic inclusions
and δcijkl = cijkl

(1) − cijkl
(2). The value gi

m(ξ,x) represents the elastostatic Kelvin’s solution (or
Green’s function) for the infinite homogeneous, isotropic and linearly elastic matrix material.

In Equations (1) and (2), the differentiations are with respect to the integration variable,
ξi, and the summation convention and comma notation have been utilized. The integrand
is non-zero within the isotropic or anisotropic inclusions only, since δcijkl = 0 outside
the inclusions.

If x lies inside the inclusions, then Equations (1) and (2) are integro-differential equa-
tions for the unknown displacement vector u(x) within the inclusions. It should be noted
that an algorithm was developed by Lee and Mal [9,10] to numerically calculate the un-
known displacement vector u(x) by discretizing the inclusions only using standard finite
elements. Once u(x) within the inclusions is determined, the displacement field outside
the inclusions can be obtained from Equations (1) and (2) by evaluating the corresponding
integrals respectively, and the stress field within and outside the inclusions can also be
readily determined.

The volume integral equation method (VIEM) was originated from Lee and Mal [10] in
1995. Since 1995, Lee and his co-workers (e.g., [9–11,13–17]) have been developing a more
engineering-oriented VIEM, while Buryachenko (e.g., [18–20]) has been examining a more
mathematically oriented VIEM since 2000. Additionally, Dong has conducted research on
the volume integral equation method since 2003 [21]. Therefore, the VIEM is broadening
its influence on computational fields of study.

Furthermore, Section 4.3 entitled ‘Volume Integral Equation Method’ of the book
“Micromechanics of Heterogeneous Materials” by Buryachenko [18] also explains further
mathematical formulation of the elastostatic volume integral equation method. In particular,
a general description of the volume integral equation method is presented in Chapter 4
entitled ‘Volume Integral Equation Method (VIEM)’ of the book “Advances in Computers
and Information in Engineering Research, Vol. 2” by Michopoulos et al. (eds.) [22]. In
addition, complete descriptions of the fundamental numerical technique of Equation (2)
can be found in [17] for three-dimensional elastostatic problems.

Although each numerical method has certain advantages, specific disadvantages
have led to further discussion and research. For example, in Section 3.1 of Reference [20],
Buryachenko points out that the VIEM is quite time-consuming. Moreover, no optimized
commercial software exists for its application.

Firstly, in order to resolve this ‘time-consuming’ problem, we propose the parallel
volume integral equation method and implement MPI-based code. Such method allows us
not only to solve the large domain but also to speed up computation in the volume integral
equation method. The FORTRAN 90 (Version 1.1, IBM, Armonk, NY, USA) source code
containing about 9000 lines for the three-dimensional VIEM of the previous paper [17] was
parallelized and optimized for this paper, with support from the Korea Institute of Science
and Technology Information (KISTI, Daejeon, Korea). Figure 2 shows the procedures of a
representative MPI parallelization approach (“pvi3ds01_sm7560xx.f90”) for the sequential
three-dimensional VIEM code (“svi3ds01_sm4320xx.f”). As a result, the program exe-
cution time has been greatly reduced. Furthermore, we could use more finite elements
(31,857 nodes and 7560 elements) in the VIEM model of this paper than those (18,109 nodes
and 4320 elements) in the VIEM model of the previous paper [17]. The parallel FORTRAN
source code for the three-dimensional VIEM is presently being processed in the KISTI-5. It
is referred to as “Nurion”, which is a system consisting of compute nodes, CPU-only nodes,
Omni-Path interconnect networks, Burst Buffer high-speed storage, a Luster-based parallel
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file system and a water-cooling device based on a Rear Door Heat Exchanger (RDHx). The
CPU-only nodes consist of 132 Intel Xeon 6148 2.4 GHz processors (named “Skylake”).
The total theoretical performance is 25.7 petaflops, which ranked 11th in the world in June
2018 (http://www.top500.org, accessed on 3 May 2021). It should be noted that, in order
to investigate three-dimensional stress problems with multiple inclusions, in addition to
parallelization and optimization of the sequential three-dimensional VIEM code, a domain
decomposition method (DDM) was applied to the parallel three-dimensional VIEM code,
with support from the Korea Institute of Science and Technology Information (KISTI). The
domain decomposition method allows decomposition of large-sized problem solutions to
solutions of several smaller-sized problems [23]. Therefore, the parallel volume integral
equation method (PVIEM) using the domain decomposition method enables us to investi-
gate more complicated multiple inclusion problems elastostatically or elastodynamically.
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Secondly, in order to resolve the ‘no optimized commercial software’ problem, we
plan to develop a semi-commercial VIEM software called the “Volume Integral Equa-
tion Method Application Program” (VIEMAP). Table 1 shows the analysis capabilities of
VIEMAP including a pre-processor (ViemMesh), a solver (VIEM) and a post-processor
(ViemPlot) adapted to solve multiple isotropic/anisotropic inclusion problems in a com-
putationally tractable manner. Figure 3 shows the registered trademark for the VIEMAP.
The authors aim to help both university students and researchers create VIEM models
using the VIEMAP more easily than using the standard finite element method (FEM), as
well as solve multiple isotropic/anisotropic inclusion problems in an unbounded isotropic
medium more accurately and conveniently than the boundary element method (BEM).

http://www.top500.org
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Table 1. Capabilities of VIEMAP.

Two Dimensional Three Dimensional

ViemMesh
(Pre-Processor)

(1) 8-node quadrilateral finite element
(2) 6-node triangular finite element

(1) 20-node hexahedral finite element
(2) 10-node tetrahedral finite element

VIEM
(Solver)

Multiple Inclusion Problems Multiple Inclusion Problems
Isotropic Inclusions Anisotropic Inclusions Isotropic Inclusions Anisotropic Inclusions

(1) Elastostatic solver
(2) Elastodynamic solver

(1) Elastostatic solver
(2) Elastodynamic solver

ViemPlot
(Post-Processor)

(1) Displacement contour plot
(2) Stress contour plot

(1) Displacement contour plot
(2) Stress contour plot
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3. Three-Dimensional Elastostatic Problems Using the VIEM

In this section, we first examine single isotropic/orthotropic spherical, prolate and
oblate spheroidal inclusions in an infinite isotropic matrix subject to uniform remote tensile
loading, σo

xx, as shown in Figure 4 (also see Figures 1b and 5). The remote applied load can
be arbitrarily chosen and was assumed to be σo

xx = 143.10 GPa for convenience purposes
only. Two different prolate spheroidal inclusions were considered: (a) a/b = c/b = 0.5 and
(b) a/b = c/b = 0.75 (see Figure 5). Additionally, two different oblate spheroidal inclusions
were considered: (a) b/a = c/a = 0.5 and (b) b/a = c/a = 0.75 (see Figure 5).

The elastic constants for the isotropic matrix and the isotropic inclusions are listed in
Table 2. The elastic constants for the isotropic matrix and the orthotropic inclusions are
listed in Table 3.

We next examine single isotropic/orthotropic spherical, prolate and oblate spheroidal
inclusions in an infinite isotropic matrix subject to remote shear loading, σo

xy, σo
xz or σo

yz,
as shown in Figure 6 (also see Figures 1c–e and 5) [24]. The remote applied load can be
arbitrarily chosen and was assumed to be σo

xy = σo
xz = σo

yz = 75.76 GPa for convenience
purposes only. We considered the same geometry of the single spherical, prolate (with an
aspect ratio of 0.5 and 0.75) and oblate (with an aspect ratio of 0.5 and 0.75) spheroidal
inclusions in an infinite isotropic matrix under remote shear loading (σo

xy, σo
xz and σo

yz).
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Figure 4. (a) Spherical, (b) prolate spheroidal and (c) oblate spheroidal inclusions under uniform
remote tensile loading (σo

xx).

Table 2. Material Properties of the Isotropic Matrix and the Isotropic Inclusions.

Material λ (GPa) µ (GPa) E (GPa) ν

Matrix (Iso_01) 67.3401 37.8788 100.0 0.32

Inclusion (Iso_01) 176.060 176.060 440.15 0.25

Matrix (Iso_02) 121.154 80.7692 210.0 0.30

Inclusion (Iso_02) 83.1643 176.724 410.0 0.16

Matrix (Iso_03) 75.0 37.5 100.0 0.3333

Inclusion (Iso_03) 150.0 75.0 200.0 0.3333

Matrix (Iso_04) 75.0 37.5 100.0 0.3333

Inclusion (Iso_04) 375.0 187.5 500.0 0.3333

Matrix (Iso_05) 75.0 37.5 100.0 0.3333

Inclusion (Iso_05) 750.0 375.0 1000.0 0.3333

Matrix (Iso_06) 121.154 80.7692 210.0 0.30

Inclusion (Iso_06) 87.2202 41.0448 110.0 0.34

Matrix (Iso_07) 75.0 37.5 100.0 0.3333

Inclusion (Iso_07) 15.0 7.5 20.0 0.3333

Matrix (Iso_08) 75.0 37.5 100.0 0.3333

Inclusion (Iso_08) 52.5 26.25 70.0 0.3333
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Matrix (Iso_05) 75.0 37.5 100.0 0.3333 
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Figure 5. The orientation of spherical, prolate spheroidal and oblate spheroidal inclusions.
(a) Spheroidal coordinate system. (b) Cartesian coordinate system.
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Three different material properties (Iso_01, Iso_05 and Iso_06) in Table 2 were used in
the numerical calculation. The elastic constants for the isotropic matrix and the orthotropic
inclusions are listed in Table 4. Table 5 shows various characteristics of the material
properties used in the numerical calculation. In order to demonstrate the capability of the
volume integral equation method for the three-dimensional anisotropic inclusion problem,
three independent elastic constants, c44 (shear modulus in the yz plane), c55 (shear modulus
in the xz plane) and c66 (shear modulus in the xy plane), were assumed to be different from
each other [25].

Table 3. Material Properties of the Isotropic Matrix and the Orthotropic Inclusions.

Unit: GPa
Orthotropic Inclusions

Isotropic Matrix
Ort_01 Ort_02 Ort_03 Ort_04 Ort_05

c11 139.54 279.08 418.61 41.86 69.77 143.10
c12 = c21 3.90 7.80 11.7 1.17 1.95 67.34
c13 = c31 3.90 7.80 11.7 1.17 1.95 67.34

c22 15.28 30.56 45.83 4.58 7.64 143.10
c23 = c32 3.29 6.59 9.88 0.99 1.65 67.34

c33 15.28 30.56 45.83 4.58 7.64 143.10
c44 5.90 11.80 17.70 1.77 2.95 37.88
c55 5.90 11.80 17.70 1.77 2.95 37.88
c66 5.90 11.80 17.70 1.77 2.95 37.88

Table 4. Material properties of the isotropic matrix and the orthotropic inclusions.

Unit: GPa
Orthotropic Inclusions

Isotropic Matrix
Ort_06 Ort_07

c11 61.11 458.30 143.10
c12 = c21 17.95 134.63 67.34
c13 = c31 20.54 154.02 67.34

c22 32.77 245.78 143.10
c23 = c32 15.05 112.87 67.34

c33 47.89 359.15 143.10
c44 9.97 74.79 37.88
c55 15.16 113.69 37.88
c66 10.99 82.40 37.88
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Table 5. Material Property Characteristics.

Material Characteristics

Matrix (Iso_01) Isotropic No restriction in Poisson’s ratio
E(Inclusion) > E(Matrix)Inclusion (Iso_01) Isotropic No restriction in Poisson’s ratio

Matrix (Iso_02) Isotropic No restriction in Poisson’s ratio
E(Inclusion) > E(Matrix)Inclusion (Iso_02) Isotropic No restriction in Poisson’s ratio

Matrix (Iso_03) Isotropic ν = 1/3
E(Inclusion) > E(Matrix)Inclusion (Iso_03) Isotropic ν = 1/3

Matrix (Iso_04) Isotropic ν = 1/3
E(Inclusion) > E(Matrix)Inclusion (Iso_04) Isotropic ν = 1/3; E(Iso_04) > E(Iso_03)

Matrix (Iso_05) Isotropic ν = 1/3
E(Inclusion) > E(Matrix)Inclusion (Iso_05) Isotropic ν = 1/3; E(Iso_05) > E(Iso_04)

Matrix (Iso_06) Isotropic No restriction in Poisson’s ratio
E(Inclusion) < E(Matrix)Inclusion (Iso_06) Isotropic No restriction in Poisson’s ratio

Matrix (Iso_07) Isotropic ν = 1/3
E(Inclusion) < E(Matrix)Inclusion (Iso_07) Isotropic ν = 1/3

Matrix (Iso_08) Isotropic ν = 1/3
E(Inclusion) < E(Matrix)Inclusion (Iso_08) Isotropic ν = 1/3; E(Iso_08) > E(Iso_07)

Matrix (Ort_01) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_01) Orthotropic c11 > c22 = c33

Matrix (Ort_02) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_02) Orthotropic c11 > c22 = c33; c11(Ort_02) > c11(Ort_01)

Matrix (Ort_03) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_03) Orthotropic c11 > c22 = c33; c11(Ort_03) > c11(Ort_02)

Matrix (Ort_04) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_04) Orthotropic c11 > c22 = c33; c11(Ort_04) < c11(Ort_01)

Matrix (Ort_05) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_05) Orthotropic c11 > c22 = c33; c11(Ort_04) < c11(Ort_05) < c11(Ort_01)

Matrix (Ort_06) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_06) Orthotropic µ (Matrix) > c55 (Inclusion) > c66 (Inclusion) > c44 (Inclusion)

Matrix (Ort_07) Isotropic No restriction in Poisson’s ratio
Inclusion (Ort_07) Orthotropic c55 (Inclusion) > c66 (Inclusion) > c44 (Inclusion) > µ (Matrix)

3.1. Single Spherical Inclusion Problems under Uniform Remote Tensile Loading
3.1.1. VIEM Formulation Applied to Isotropic Inclusion Problems

The displacements in the volume integral Equation (2) for isotropic spherical, prolate
and oblate spheroidal inclusions can be expressed in the form:
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u1(x) = uo
1(x)−

∫
V{δ(λ+ 2µ)g1

1,1u1,1 + δλ(g1
1,1u2,2 + g1

2,2u1,1) + δλ(g1
1,1u3,3 + g1

3,3u1,1)

+δ(λ+ 2µ)g1
2,2u2,2 + δλ(g1

2,2u3,3 + g1
3,3u2,2) + δ(λ+ 2µ)g1

3,3u3,3
+δµ[g1

2,3(u2,3 + u3,2) + g1
3,2(u2,3 + u3,2)]

+δµ[g1
1,3(u1,3 + u3,1) + g1

3,1(u1,3 + u3,1)]

+δµ[g1
1,2(u1,2 + u2,1) + g1

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(3)

u2(x) = uo
2(x)−

∫
V{δ(λ+ 2µ)g2

1,1u1,1 + δλ(g2
1,1u2,2 + g2

2,2u1,1) + δλ(g2
1,1u3,3 + g2

3,3u1,1)

+δ(λ+ 2µ)g2
2,2u2,2 + δλ(g2

2,2u3,3 + g2
3,3u2,2) + δ(λ+ 2µ)g2

3,3u3,3
+δµ[g2

2,3(u2,3 + u3,2) + g2
3,2(u2,3 + u3,2)]

+δµ[g2
1,3(u1,3 + u3,1) + g2

3,1(u1,3 + u3,1)]

+δµ[g2
1,2(u1,2 + u2,1) + g2

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(4)

u3(x) = uo
3(x)−

∫
V{δ(λ+ 2µ)g3

1,1u1,1 + δλ(g3
1,1u2,2 + g3

2,2u1,1) + δλ(g3
1,1u3,3 + g3

3,3u1,1)

+δ(λ+ 2µ)g3
2,2u2,2 + δλ(g3

2,2u3,3 + g3
3,3u2,2) + δ(λ+ 2µ)g3

3,3u3,3
+δµ[g3

2,3(u2,3 + u3,2) + g3
3,2(u2,3 + u3,2)]

+δµ[g3
1,3(u1,3 + u3,1) + g3

3,1(u1,3 + u3,1)]

+δµ[g3
1,2(u1,2 + u2,1) + g3

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(5)

where u1(x), u2(x) and u3(x) are the three-dimensional displacements, δcαβ = cαβ(1)− cαβ(2)
(α, β = 1, 6), where cαβ(1) represents the elastic stiffness constants of the isotropic inclusions,
while cαβ(2) denotes those for the isotropic matrix material: δc11 = δc22 = δc33 = (λ1 + 2µ1)
− (λ2 + 2µ2), δc12 = δc13 = δc23 = λ1 − λ2 and δc44 = δc55 = δc66 = µ1 − µ2.

In Equations (3)–(5), gi
m(ξ,x) is the Green’s function for the infinite isotropic matrix

material and is stated by Banerjee [26] and Pao and Varatharajulu [27] as:

g1
1 = 1

16π(1−ν)µr [
(x1−ξ1)

2

r2 + (3− 4ν)]

g1
2 = g2

1 = 1
16π(1−ν)µr [

(x1−ξ1)(x2−ξ2)
r2 ]

g1
3 = g3

1 = 1
16π(1−ν)µr [

(x1−ξ1)(x3−ξ3)
r2 ]

g2
2 = 1

16π(1−ν)µr [
(x2−ξ2)

2

r2 + (3− 4ν)]

g2
3 = g3

2 = 1
16π(1−ν)µr [

(x2−ξ2)(x3−ξ3)
r2 ]

g3
3 = 1

16π(1−ν)µr [
(x3−ξ3)

2

r2 + (3− 4ν)]

(6)

where r = |x − ξ| =
√
(x1 − ξ1)

2 + (x2 − ξ2)
2 + (x3 − ξ3)

2, ν is Poisson’s ratio and µ is
the shear modulus for the infinite isotropic matrix material.

3.1.2. VIEM Formulation Applied to Orthotropic Inclusion Problems

Let the coordinate axes x1(x), x2(y) and x3(z) be taken parallel to the symmetry axes
of the orthotropic material, and c11, c12, c13, c22, c23, c33, c44, c55 and c66 denote the elastic
constants. The displacements in Equation (2) for orthotropic spherical, prolate and oblate
spheroidal inclusions can be expressed in the form:

u1(x) = uo
1(x)−

∫
V{δc11g1

1,1u1,1 + δc12(g1
1,1u2,2 + g1

2,2u1,1) + δc13(g1
1,1u3,3 + g1

3,3u1,1)

+δc22g1
2,2u2,2 + δc23(g1

2,2u3,3 + g1
3,3u2,2) + δc33g1

3,3u3,3

+δc44[g1
2,3(u2,3 + u3,2) + g1

3,2(u2,3 + u3,2)]

+δc55[g1
1,3(u1,3 + u3,1) + g1

3,1(u1,3 + u3,1)]

+δc66[g1
1,2(u1,2 + u2,1) + g1

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(7)
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u2(x) = uo
2(x)−

∫
V{δc11g2

1,1u1,1 + δc12(g2
1,1u2,2 + g2

2,2u1,1) + δc13(g2
1,1u3,3 + g2

3,3u1,1)

+δc22g2
2,2u2,2 + δc23(g2

2,2u3,3 + g2
3,3u2,2) + δc33g2

3,3u3,3

+δc44[g2
2,3(u2,3 + u3,2) + g2

3,2(u2,3 + u3,2)]

+δc55[g2
1,3(u1,3 + u3,1) + g2

3,1(u1,3 + u3,1)]

+δc66[g2
1,2(u1,2 + u2,1) + g2

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(8)

u3(x) = uo
3(x)−

∫
V{δc11g3

1,1u1,1 + δc12(g3
1,1u2,2 + g3

2,2u1,1) + δc13(g3
1,1u3,3 + g3

3,3u1,1)

+δc22g3
2,2u2,2 + δc23(g3

2,2u3,3 + g3
3,3u2,2) + δc33g3

3,3u3,3

+δc44[g3
2,3(u2,3 + u3,2) + g3

3,2(u2,3 + u3,2)]

+δc55[g3
1,3(u1,3 + u3,1) + g3

3,1(u1,3 + u3,1)]

+δc66[g3
1,2(u1,2 + u2,1) + g3

2,1(u1,2 + u2,1)]}dξ1dξ2dξ3

(9)

where u1(x), u2(x) and u3(x) are the three-dimensional displacements, δcαβ = cαβ(1)− cαβ(2)
(α, β = 1, 6), where = cαβ(1) represents the elastic stiffness constants of the orthotropic inclu-
sions, while cαβ(2) denotes those for the isotropic matrix material: δc11 = c11 − (λ2 + 2µ2),
δc22 = c22 − (λ2 + 2µ2), δc33 = c33 − (λ2 + 2µ2), δc12 = c12 − λ2, δc13 = c13 − λ2, δc23 = c23 − λ2
and δc44 = c44 − µ2, δc55 = c55 − µ2, δc66 = c66 − µ2.

In Equations (7)–(9), gi
m(ξ,x) is the Green’s function for the infinite isotropic matrix

material and is stated in Equation (6). Thus, the VIEM does not require the use of the
Green’s function for the orthotropic material of the inclusion. In general, Green’s function
for an anisotropic material is much more complex than that of an isotropic material [28].
Furthermore, a closed form solution of the generalized Green’s function for an anisotropic
material is not available in the literature.

In contrast, in the BEM, Green’s functions for both the isotropic matrix and the
anisotropic inclusions must be specified in the formulation. In particular, special emphasis
is placed on the fact that Green’s function for the anisotropic material of the inclusions is
not required in the VIEM.

3.1.3. Numerical Formulations in the VIEM

The integrands in Equations (3)–(8) contain singularities with different orders due to
the singular characteristics of the Green’s function at x = ξ (i.e., r = 0). Thus, evaluation
of the singular integrals requires special attention. In general, gi

m(ξ,x) behaves as 1/r,
while its derivatives behave as 1/r2 as r→ 0. It should be noted that only gi

m(ξ,x) for the
isotropic matrix and its derivatives are required in the VIEM. Furthermore, in the BEM,
the Green’s function for anisotropic inclusions and their derivatives must also be specified.
As a result, this may be a critical drawback to the BEM when solving multiple anisotropic
inclusion problems.

In contrast to the BEM, the singularities in the VIEM are integrable (weak). Thus, we
have decided to utilize the direct integration scheme stated by Li et al. [29]. Finally, after
suitable adjustments, we have succeeded in addressing these weak singular integrands in
the volume integral equation formulations.

A comprehensive elaboration for the accurate evaluation of singular integrals using
the tetrahedron polar co-ordinates shown in [29] was presented in [17].

3.1.4. A Single Isotropic Spherical Inclusion

In order to examine the accuracy of the numerical results using the VIEM, the numeri-
cal results using the VIEM for a single isotropic spherical inclusion were first compared
to the analytical solutions [21,30]. We considered a single isotropic spherical inclusion
with a radius of 6 mm in an infinite isotropic matrix subject to uniform remote tensile
loading, σxx

o, as shown in Figure 4a. It should be noted that the length of the radius can
be arbitrarily chosen. In Figure 7, standard 20-node quadratic hexahedral elements were
used in the discretization [31]. The number of hexahedral elements, 7560, was determined
based on a convergence test. For the seven different material properties (Iso_2, Iso_03,
Iso_04, Iso_05, Iso_06, Iso_07 and Iso_08) in Table 2, a comparison was made between the
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numerical results using the volume integral equation method (VIEM) and the analytical
solutions. As shown in Table 5, there was no restriction to Poisson’s ratio in the inclusions
and matrices of Iso_02 and Iso_06. However, Poison’s ratio was 1/3 in both the inclusion
and matrix of Iso_03, Iso_04, Iso_05, Iso_07 and Iso_08. Furthermore, for Iso_02, Iso_03,
Iso_04 and Iso_05, Young’s modulus (E) in the isotropic inclusion was greater than that in
the isotropic matrix. For Iso_06, Iso_07 and Iso_08, Young’s modulus (E) in the isotropic
matrix was greater than that in the isotropic inclusion. Thus, seven material properties
representing a diversity of materials were chosen. Excellent agreement was found between
the analytical and numerical solutions using the VIEM for the seven different materials
considered. It should be noted that the VIEM results represent average values of the
normalized stresses in all the nodes of the VIEM model in Figure 7. It should also be noted
that the normalized tensile stress (σxx/σo

xx) inside the isotropic spherical inclusions was
found to be constant [1,30]. Tables 6–8 show that the percentage differences for the two
sets of results are less than 0.1% in seven cases. Figure 8 shows numerical solution by
the volume integral equation method for the normalized tensile stress (σxx/σo

xx) along
(i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential direction (0◦ ≤ θ (see
Figure 7) ≤ 360◦) of the isotropic spherical inclusions with a radius of 6 mm under uniform
remote tensile loading.
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Table 6. Normalized tensile stress component (σxx/σo
xx) within the isotropic spherical inclusion due

to uniform remote tensile loading (σo
xx).

Material VIEM (Average) Analytical Solution Error (%)

Iso_01 1.5800 - -
Iso_02 1.2823 1.2822 0.0078

Table 7. Normalized tensile stress component (σxx/σo
xx) within the isotropic spherical inclusion due

to uniform remote tensile loading (σo
xx).

Material VIEM (Average) Analytical Solution Error (%)

Iso_03 1.3090 1.3091 0.0076
Iso_04 1.6171 1.6173 0.0124
Iso_05 1.7582 1.7582 0.0



Materials 2021, 14, 6996 13 of 43

Table 8. Normalized tensile stress component (σxx/σo
xx) within the isotropic spherical inclusion due

to uniform remote tensile loading (σo
xx).

Material VIEM (Average) Analytical Solution Error (%)

Iso_06 0.7200 0.7200 0.0
Iso_07 0.3557 0.3556 0.0281
Iso_08 0.8343 0.8343 0.0
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under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06,
Iso_07 and Iso_08.

In most references, the numerical results for this problem were obtained in one direc-
tion. Thus, in order to show the VIEM results more thoroughly, the normalized tensile stress
(σxx/σo

xx) using the VIEM was presented along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 7) ≤ 360◦) of the isotropic spherical
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inclusions. It was determined in Figure 8 that the normalized tensile stress (σxx/σo
xx)

inside the isotropic spherical inclusions is constant in all directions considered.

3.1.5. A Single Orthotropic Spherical Inclusion

In order to show the advantages of the volume integral equation method (VIEM),
we consider a single orthotropic spherical inclusion with a radius of 6 mm in an infinite
isotropic matrix subject to uniform remote tensile loading, σo

xx, as shown in Figure 4a. It
should be noted that the length of the radius can be arbitrarily chosen. In Figure 7, standard
20-node quadratic hexahedral elements were used in the discretization [31]. The number of
hexahedral elements was 7560, determined based on a convergence test. For this problem,
in comparison to the boundary element method (BEM), since the VIEM is not sensitive
to the anisotropy of the inclusions, it does not require use of the Green’s function for the
anisotropic inclusions. Moreover, as opposed to the standard FEM, where it is necessary
to discretize the full domain, the orthotropic inclusion only needs to be discretized in
the VIEM.

Five different material properties (Ort_1, Ort_02, Ort_03, Ort_04 and Ort_05) in
Table 5 were used in the numerical calculation. As shown in Table 5, it was assumed
that c11 > c22 = c33 for five orthotropic inclusions. Additionally, c11 of the inclusion in
Ort_03 > c11 of the inclusion in Ort_02 > c11 of the inclusion in Ort_01. Furthermore, c11
of the inclusion in Ort_04 < c11 of the inclusion in Ort_05 < c11 of the inclusion in Ort_01.
Thus, five material properties representing a diversity of materials were chosen. It should
be noted that the VIEM results represent average values of the normalized stresses in all the
nodes of the VIEM model in Figure 7. Moreover, the normalized tensile stress (σxx/σo

xx)
inside the orthotropic spherical inclusions was found to be constant [1,30]. Table 9 shows
the numerical solution by the volume integral equation method for the normalized tensile
stress (σxx/σo

xx) inside the orthotropic spherical inclusions. For the inclusions in Ort_01,
Ort_02 and Ort_03, the normalized tensile stress (σxx/σo

xx) inside the inclusion was greater
than 1.0. However, for the inclusions in Ort_04 and Ort_05, the normalized tensile stress
(σxx/σo

xx) inside the inclusion was less than 1.0. Figure 9 shows the numerical solution
by the volume integral equation method for the normalized tensile stress (σxx/σo

xx) along
(left) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (right) the circumferential direction
(0◦ ≤ θ (see Figure 7) ≤ 360◦) of the orthotropic spherical inclusions with a radius of 6 mm
under uniform remote tensile loading. It was determined in Figure 9 that the normal-
ized tensile stress (σxx/σo

xx) inside the orthotropic spherical inclusions is constant in all
directions considered.

Table 9. Normalized tensile stress component (σxx/σo
xx) within the orthotropic spherical inclusion

due to uniform remote tensile loading (σo
xx).

Material VIEM (Average)

Ort_01 1.1520
Ort_02 1.4536
Ort_03 1.5910
Ort_04 0.5836
Ort_05 0.8129
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Figure 9. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the x–axis

inside and (right) the circumferential direction of the orthotropic spherical inclusions (Ort_01, Ort_02,
Ort_03, Ort_04 and Ort_05) with a radius of 6 mm under uniform remote tensile loading.

3.2. A Single Spheroidal Inclusion Problem under Uniform Remote Tensile Loading

In order to introduce the VIEM as a versatile numerical method, we considered a single
isotropic/orthotropic spheroidal inclusion in an infinite isotropic matrix subject to uniform
remote tensile loading, σo

xx, as shown in Figure 4b,c. Figure 5 shows an orientation of the
spheroidal inclusion.

3.2.1. A Single Isotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 10. A typical discretized prolate spheroidal model (a/b = c/b = 0.5) in the volume inte-
gral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate
spheroidal model.
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Figure 11. A typical discretized prolate spheroidal model (a/b = c/b = 0.75) in the volume inte-
gral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate
spheroidal model.

Eight different isotropic inclusions (from Iso_01 to Iso_08) in Table 2 were used in
the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11.
It should also be noted that the normalized tensile stress (σxx/σo

xx) inside the isotropic
prolate spheroidal inclusions was found to be constant [1,30].

Tables 10–12 show numerical solutions by the volume integral equation method for
the normalized tensile stress (σxx/σo

xx) inside the isotropic prolate spheroidal inclusions.
For the inclusions in Iso_01, Iso_02, Iso_03, Iso_04 and Iso_05, the normalized tensile stress
(σxx/σo

xx) inside the inclusion was greater than 1.0. However, for the inclusions in Iso_06,
Iso_07 and Iso_08, the normalized tensile stress (σxx/σo

xx) inside the inclusion was less
than 1.0. Figure 12 shows numerical solutions by the volume integral equation method for
the normalized tensile stress (σxx/σo

xx) along (i) the x–axis inside (−3 mm ≤ x ≤ 3 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 10) ≤ 360◦) of the isotropic prolate
spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm) under uniform remote tensile
loading. Figure 13 shows numerical solutions by the volume integral equation method for
the normalized tensile stress (σxx/σo

xx) along (i) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 11) ≤ 360◦) of the isotropic prolate
spheroidal inclusions (a/b = c/b = 0.75 where b = 6 mm) under uniform remote tensile
loading. It was determined in Figures 12 and 13 that the normalized tensile stress (σxx/σo

xx)
inside the isotropic prolate spheroidal inclusions is constant in all directions considered.

Table 10. Normalized tensile stress component (σxx/σo
xx) within the isotropic prolate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

a/b = c/b = 0.5 (see Figure 5) a/b = c/b = 0.75 (see Figure 5)

Iso_01 1.4268 1.5028
Iso_02 1.2177 1.2500
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Table 11. Normalized tensile stress component (σxx/σo
xx) within the isotropic prolate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

Iso_03 1.2374 1.2736
Iso_04 1.4502 1.5330
Iso_05 1.5409 1.6477

Table 12. Normalized tensile stress component (σxx/σo
xx) within the isotropic prolate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

Iso_06 0.7613 0.7397
Iso_07 0.4042 0.3780
Iso_08 0.8610 0.8471

3.2.2. A Single Orthotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.

Five different orthotropic inclusions (from Ort_01 to Ort_05) in Table 3 were used in the
numerical calculation. It should be noted that the VIEM results represent average values of
the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11. It should
also be noted that the normalized tensile stress (σxx/σo

xx) inside the orthotropic prolate
spheroidal inclusions was found to be constant [1,30]. Table 13 shows numerical solutions
by the volume integral equation method for the normalized tensile stress (σxx/σo

xx) inside
the orthotropic prolate spheroidal inclusions. For the inclusions in Ort_01, Ort_02 and
Ort_03, the normalized tensile stress (σxx/σo

xx) inside the inclusion was greater than 1.0.
However, for the inclusions in Ort_04 and Iso_05, the normalized tensile stress (σxx/σo

xx)
inside the inclusion was less than 1.0. Figure 14 shows numerical solution by the volume
integral equation method for the normalized tensile stress (σxx/σo

xx) along (left) the x–axis
inside (−3 mm≤ x≤ 3 mm) and (right) the circumferential direction (0◦ ≤ θ (see Figure 10)
≤ 360◦) of the orthotropic prolate spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm)
under uniform remote tensile loading.

Table 13. Normalized Tensile Stress Component (σxx/σo
xx) within the Orthotropic Prolate Spheroidal

Inclusion due to Uniform Remote Tensile Loading (σo
xx).

Material
VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

Ort_01 1.1244 1.1385
Ort_02 1.3546 1.4038
Ort_03 1.4519 1.5202
Ort_04 0.6246 0.6027
Ort_05 0.8375 0.8246
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Figure 12. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with
a/b = c/b = 0.5 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

Figure 15 shows numerical solutions by the volume integral equation method for the
normalized tensile stress (σxx/σo

xx) along (left) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm)
and (right) the circumferential direction (0◦ ≤ θ (see Figure 11) ≤ 360◦) of the orthotropic
prolate spheroidal inclusions (a/b = c/b = 0.75 where b = 6 mm) under uniform remote
tensile loading. It was determined in Figures 14 and 15 that the normalized tensile stress
(σxx/σo

xx) inside the orthotropic prolate spheroidal inclusions is constant in all direc-
tions considered.
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Figure 13. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with
a/b = c/b = 0.75 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

3.2.3. A Single Isotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen.

Figures 16 and 17 show a typical discretized model for the single (a) oblate spheroidal in-
clusion (b/a = c/a = 0.5 where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75
where a = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single oblate spheroidal inclusion in
Figures 16 and 17. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 16. A typical discretized oblate spheroidal model (b/a = c/a = 0.5) in the volume inte-
gral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate
spheroidal model.

Eight different isotropic inclusions (from Iso_01 to Iso_08) in Table 2 were used in
the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17.
It should also be noted that the normalized tensile stress (σxx/σo

xx) inside the isotropic
oblate spheroidal inclusions was found to be constant [1,30]. Tables 14–16 show numer-
ical solutions by the volume integral equation method for the normalized tensile stress
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(σxx/σo
xx) inside the isotropic oblate spheroidal inclusions. For the inclusions in Iso_01,

Iso_02, Iso_03, Iso_04 and Iso_05, the normalized tensile stress (σxx/σo
xx) inside the inclu-

sion was greater than 1.0. However, for the inclusions in Iso_06, Iso_07 and Iso_08, the
normalized tensile stress (σxx/σo

xx) inside the inclusion was less than 1.0. Figure 18 shows
numerical solutions by the volume integral equation method for the normalized tensile
stress (σxx/σo

xx) along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferen-
tial direction (0◦ ≤ θ (see Figure 16) ≤ 360◦) of the isotropic oblate spheroidal inclusions
(b/a = c/a = 0.5 where a = 6 mm) under uniform remote tensile loading. Figure 19 shows
numerical solutions by the volume integral equation method for the normalized tensile
stress (σxx/σo

xx) along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferen-
tial direction (0◦ ≤ θ (see Figure 17) ≤ 360◦) of the isotropic oblate spheroidal inclusions
(b/a = c/a = 0.75 where a = 6 mm) under uniform remote tensile loading. It was determined
in Figures 18 and 19 that the normalized tensile stress (σxx/σo

xx) inside the isotropic oblate
spheroidal inclusions is constant in all directions considered.
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Figure 17. A typical discretized oblate spheroidal model (b/a = c/a = 0.75) in the volume inte-
gral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate
spheroidal model.

Table 14. Normalized tensile stress component (σxx/σo
xx) within the isotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Iso_01 2.1363 1.7790
Iso_02 1.4811 1.3599

Table 15. Normalized tensile stress component (σxx/σo
xx) within the isotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Iso_03 1.5251 1.3938
Iso_04 2.2350 1.8413
Iso_05 2.6483 2.0556

3.2.4. A Single Orthotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen.
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Table 16. Normalized tensile stress component (σxx/σo
xx) within the isotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Iso_06 0.6310 0.6793
Iso_07 0.2695 0.3134
Iso_08 0.7733 0.8072
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Figure 18. VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis 
inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = 
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Figure 18. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with
b/a = c/a = 0.5 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

Figures 16 and 17 show a typical discretized model for the single (a) oblate spheroidal in-
clusion (b/a = c/a = 0.5 where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75
where a = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
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quadratic hexahedral elements were used for the single oblate spheroidal inclusion in
Figures 16 and 17. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 18. VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis 
inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = 
c/a = 0.5 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 
and Iso_05. (c) Iso_06, Iso_07 and Iso_08. 
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Figure 19. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (i) the x–

axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with
b/a = c/a = 0.75 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03,
Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.

Five different orthotropic inclusions (from Ort_01 to Ort_05) in Table 3 were used in the
numerical calculation. It should be noted that the VIEM results represent average values of
the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17. It should
also be noted that the normalized tensile stress (σxx/σo

xx) inside the orthotropic oblate
spheroidal inclusions was found to be constant [1,30]. Table 17 shows numerical solutions
by the volume integral equation method for the normalized tensile stress (σxx/σo

xx) inside
the orthotropic oblate pheroidal inclusions. For the inclusions in Ort_01, Ort_02 and Ort_03,
the normalized tensile stress (σxx/σo

xx) inside the inclusion was greater than 1.0. However,
for the inclusions in Ort_04 and Iso_05, the normalized tensile stress (σxx/σo

xx) inside the
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inclusion was less than 1.0. Figure 20 shows numerical solutions by the volume integral
equation method for the normalized tensile stress (σxx/σo

xx) along (left) the x–axis inside
(−6 mm ≤ x ≤ 6 mm) and (right) the circumferential direction (0◦ ≤ θ (see Figure 16)
≤ 360◦) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.5 where a = 6 mm)
under uniform remote tensile loading. Figure 21 shows numerical solutions by the volume
integral equation method for the normalized tensile stress (σxx/σo

xx) along (left) the x–axis
inside (−6 mm≤ x≤ 6 mm) and (right) the circumferential direction (0◦ ≤ θ (see Figure 17)
≤ 360◦) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.75 where a = 6 mm)
under uniform remote tensile loading. It was determined in Figures 20 and 21 that the
normalized tensile stress (σxx/σo

xx) inside the orthotropic oblate spheroidal inclusions is
constant in all directions considered.

Table 17. Normalized tensile stress component (σxx/σo
xx) within the orthotropic oblate spheroidal

inclusion due to uniform remote tensile loading (σo
xx).

Material
VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

Ort_01 1.2292 1.1833
Ort_02 1.7864 1.5780
Ort_03 2.1040 1.7745
Ort_04 0.5006 0.5453
Ort_05 0.7570 0.7882

Materials 2021, 14, x FOR PEER REVIEW 25 of 44 
 

 

integral equation method for the normalized tensile stress (σxx/σoxx) along (left) the x–axis 
inside (−6 mm ≤ x ≤ 6 mm) and (right) the circumferential direction (0° ≤ θ (see Figure 17) 
≤ 360°) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.75 where a = 6 mm) 
under uniform remote tensile loading. It was determined in Figures 20 and 21 that the 
normalized tensile stress (σxx/σoxx) inside the orthotropic oblate spheroidal inclusions is 
constant in all directions considered. 

Table 17. Normalized tensile stress component (σxx/σoxx) within the orthotropic oblate spheroidal 
inclusion due to uniform remote tensile loading (σoxx). 

Material 
VIEM (Average) 

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5) 
Ort_01 1.2292 1.1833 
Ort_02 1.7864 1.5780 
Ort_03 2.1040 1.7745 
Ort_04 0.5006 0.5453 
Ort_05 0.7570 0.7882 

 

Figure 20. VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis 
inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions 
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.5 (a = 6 mm) under uniform remote 
tensile loading. 

  
Figure 21. VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis 
inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions 
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.75 (a = 6 mm) under uniform remote 
tensile loading. 

From Figures 8, 9, 12–15 and 18–21 and Tables 6–17, it was determined that if the 
inclusion is harder than the matrix, the normalized tensile stress (σxx/σoxx) inside the inclu-

Figure 20. VIEM results for the normalized tensile stress component (σxx/σo
xx) along (left) the

x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.5 (a = 6 mm) under uniform remote
tensile loading.

From Figures 8, 9, 12–15 and 18–21 and Tables 6–17, it was determined that if the
inclusion is harder than the matrix, the normalized tensile stress (σxx/σo

xx) inside the
inclusion is greater than 1.0. Additionally, the normalized tensile stress (σxx/σo

xx) inside
the prolate spheroidal inclusion (a/b = c/b = 0.75) is greater than that inside the prolate
spheroidal inclusion (a/b = c/b = 0.5). However, the normalized tensile stress (σxx/σo

xx)
inside the oblate spheroidal inclusion (b/a = c/a = 0.5) is greater than that inside the oblate
spheroidal inclusion (b/a = c/a = 0.75). Thus, the normalized tensile stress (σxx/σo

xx)
inside the inclusion can be arranged in ascending order of magnitude: (1) prolate spheroidal
inclusion (a/b = c/b = 0.5), (2) prolate spheroidal inclusion (a/b = c/b = 0.75), (3) sphere,
(4) oblate spheroidal inclusion (b/a = c/a = 0.75) and (5) oblate spheroidal inclusion
(b/a = c/a = 0.5). From Figures 8, 9, 12–15 and 18–21 and Tables 6–17, it was also determined
that if the inclusion is softer than the matrix, the normalized tensile stress (σxx/σo

xx) inside
the inclusion is less than 1.0. Additionally, the normalized tensile stress (σxx/σo

xx) inside
the prolate spheroidal inclusion (a/b = c/b = 0.5) is greater than that inside the prolate
spheroidal inclusion (a/b = c/b = 0.75). However, the normalized tensile stress (σxx/σo

xx)
inside the oblate spheroidal inclusion (b/a = c/a = 0.75) is greater than that inside the
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oblate spheroidal inclusion (b/a = c/a = 0.5). Thus, the normalized tensile stress (σxx/σo
xx)

inside the inclusion can be arranged in ascending order of magnitude: (1) oblate spheroidal
inclusion (b/a = c/a = 0.5), (2) oblate spheroidal inclusion (b/a = c/a = 0.75), (3) sphere,
(4) prolate spheroidal inclusion (a/b = c/b = 0.75) and (5) prolate spheroidal inclusion
(a/b = c/b = 0.5).
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x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions
(Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.75 (a = 6 mm) under uniform remote
tensile loading.

Both the standard finite element method (FEM) and the boundary element method
(BEM) are powerful general-purpose tools in the field of numerical analysis. Since the VIEM
is a combination of these two methods, it is also highly beneficial to the field of numerical
analysis and can play a very important role in solving “inclusion problems”. The authors
hope that the results using the VIEM cited in this paper will be used as benchmarked data
for verifying the results of similar research using other analytical and numerical methods.

3.3. Single Spherical Inclusion Problems under Remote Shear Loading
3.3.1. VIEM Formulation Applied to Isotropic/Orthotropic Inclusion Problems

The displacements for isotropic spherical, prolate and oblate spheroidal inclusions
can be determined from volume integral Equations (3)–(5), while the displacements for
orthotropic spherical, prolate and oblate spheroidal inclusions can be determined from
volume integral Equations (6)–(8).

3.3.2. A Single Isotropic Spherical Inclusion

We considered a single isotropic spherical inclusion with a radius of 6 mm in an
infinite isotropic matrix subject to remote shear loading, σo

xy, σo
xz and σo

yz, as shown in
Figure 6a [24]. It should be noted that the length of the radius can be arbitrarily chosen.
In Figure 7, standard 20-node quadratic hexahedral elements were used in the discretiza-
tion [31]. The number of hexahedral elements, 7560, was determined based on a conver-
gence test. Three different material properties (Iso_01, Iso_05 and Iso_06) in Table 2 were
used in the numerical calculation. It should be noted that the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic spherical inclusions were found to
be constant, respectively [1]. It should also be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figure 7. Table 18
shows numerical solutions by the volume integral equation method for the normalized
shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic spherical inclusions.
For the inclusions in Iso_01 and Iso_05, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were greater than 1.0, respectively. However, for the

inclusion in Iso_06, the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) inside

the inclusion were less than 1.0, respectively. Figure 22 shows numerical solutions by the
volume integral equation method for the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential
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direction (0◦ ≤ θ (see Figure 7) ≤ 360◦) of the isotropic spherical inclusions with a radius
of 6 mm under remote shear loading.

Table 18. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

isotropic spherical inclusion due to remote shear loading (σo
xy, σo

xz and σo
yz).

Material
VIEM (Average)

σxy/σo
xy σxz/σo

xz σyz/σo
yz

Iso_01 1.7109 1.7109 1.7109
Iso_05 1.9231 1.9231 1.9231
Iso_06 0.6636 0.6636 0.6636

In most references, spherical inclusion problems under uniform remote tensile loading
were considered. Thus, in order to show the VIEM results more thoroughly, the normalized
shear stresses, (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz, using the VIEM were presented
along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential direction
(0◦ ≤ θ (see Figure 7) ≤ 360◦) of the isotropic spherical inclusions.

It was determined in Figure 22 that the normalized shear stresses (σxy/σo
xy, σxz/σo

xz
and σyz/σo

yz) inside the single isotropic spherical inclusions are constant in all directions
considered and are identical to each other. Since isotropic materials have an infinite number
of planes of symmetry, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the single isotropic spherical inclusions turned out to be identical to each other.

3.3.3. A Single Orthotropic Spherical Inclusion

In order to show the advantages of the volume integral equation method (VIEM), we
considered a single orthotropic spherical inclusion with a radius of 6 mm in an infinite
isotropic matrix subject to remote shear loading, σo

xy, σo
xz and σo

yz, as shown in Figure 6a.
It should be noted that the length of the radius can be arbitrarily chosen. In Figure 7,
standard 20-node quadratic hexahedral elements were used in the discretization [31]. The
number of hexahedral elements was 7560, determined based on a convergence test. For
this problem, in comparison to the boundary element method (BEM), since the VIEM is
not sensitive to the anisotropy of the inclusions, it does not require the use of the Green’s
function for the anisotropic inclusions. Moreover, as opposed to the standard FEM, where
it is necessary to discretize the full domain, the orthotropic inclusion only needs to be
discretized in the VIEM.

Two different material properties (Ort_06 and Ort_07) in Table 4 were used in the
numerical calculation [25]. As shown in Table 5, it was assumed that c55 > c66 > c44 for
two orthotropic inclusions. Additionally, c44, c55 and c66 of the inclusion were assumed be
greater than µ of the matrix in the Ort_06 material, while µ of the matrix was assumed to
be greater than c44, c55 and c66 of the inclusion in the Ort_07 material. Thus, two material
properties representing different characteristics were chosen. It should be noted that the
VIEM results represent average values of the normalized stresses in all the nodes of the
VIEM model in Figure 7. Moreover, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and

σyz/σo
yz) inside the orthotropic spherical inclusions were found to be constant, respec-

tively [1]. Table 19 shows numerical solutions by the volume integral equation method for
the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic
spherical inclusions. For the inclusion in Ort_06, the normalized shear stresses (σxy/σo

xy,
σxz/σo

xz and σyz/σo
yz) inside the inclusion were greater than 1.0, respectively. How-

ever, for the inclusion in Ort_07, the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and
σyz/σo

yz) inside the inclusion were less than 1.0, respectively. Figure 23 shows numeri-
cal solutions by the volume integral equation method for the normalized shear stresses
(a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–axis inside (−6 mm≤ x≤ 6 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 7) ≤ 360◦) of the orthotropic spher-
ical inclusions with a radius of 6 mm under remote shear loading. It was determined in
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Figure 23 that the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) inside the

orthotropic spherical inclusions are constant in all directions considered and are different
from each other. Since orthotropic materials have three planes/axes of symmetry and
the independent shear moduli in three planes of symmetry are different from each other
(c55 > c66 > c44), the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside
the orthotropic spherical inclusions turned out to be different from each other. Furthermore,
since c55 (shear modulus in the xz plane) is greater than c66 (shear modulus in the xy plane)
and c66 is greater than c44 (shear modulus in the yz plane) in the orthotropic inclusions
of the Ort_06 and Ort_07 materials, it was determined that the normalized shear stress,
σxz/σo

xz, was greater than the normalized shear stress, σxy/σo
xy. Furthermore, σxy/σo

xy
was found to be greater than the normalized shear stress, σyz/σo

yz, inside the orthotropic
spherical inclusions.
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Figure 22. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic spherical
inclusions (Iso_01, Iso_05 and Iso_06) with a radius of 6 mm under remote shear loading (σo

xy, σo
xz

and σo
yz).
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Table 19. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

orthotropic spherical inclusion due to remote shear loading (σo
xy, σo

xz and σo
yz).

Material
VIEM (Average)

σxy/σo
xy σxz/σo

xz σyz/σo
yz

Ort_06 1.4006 1.5456 1.3537
Ort_07 0.4356 0.5576 0.4030
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Figure 23. VIEM results for the normalized shear stress components (a) σxy/σo
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and (c) σyz/σo
yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic

spherical inclusions (Ort_06 and Ort_07) with a radius of 6 mm under remote shear loading (σo
xy,

σo
xz and σo

yz).

3.4. A Single Spheroidal Inclusion Problem under Remote Shear Loading

In order to introduce the VIEM as a versatile numerical method, we considered a
single isotropic/orthotropic spheroidal inclusion in an infinite isotropic matrix subject to
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remote shear loading, σo
xy, σo

xz and σo
yz, as shown in Figure 6b,c. Figure 5 shows the

orientation of the spheroidal inclusion.

3.4.1. A Single Isotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.

Three different isotropic inclusions (Iso_01, Iso_05 and Iso_06) in Table 2 were used
in the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the isotropic prolate spheroidal inclusions were found to be constant, respectively [1].
Table 20 shows numerical solutions by the volume integral equation method for the nor-
malized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic prolate
spheroidal inclusions. For the inclusions in Iso_01 and Iso_05, the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the inclusion were greater than 1.0, respectively.
However, for the inclusion in Iso_06, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were less than 1.0, respectively. Figure 24 shows numer-

ical solutions by the volume integral equation method for the normalized shear stresses
(a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–axis inside (−3 mm≤ x≤ 3 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 10) ≤ 360◦) of the isotropic prolate
spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm) under remote shear loading,
σo

xy, σo
xz and σo

yz. Figure 25 shows numerical solutions by the volume integral equation
method for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along
(i) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm) and (ii) the circumferential direction (0◦ ≤ θ

(see Figure 11) ≤ 360◦) of the isotropic prolate spheroidal inclusions (a/b = c/b = 0.75
where b = 6 mm) under remote shear loading, σo

xy, σo
xz and σo

yz. It was determined in
Figures 24 and 25 that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the isotropic prolate spheroidal inclusions are constant in all directions considered.
Furthermore, since, as shown in Figure 26, the cross-section in the xy plane is identical to
the cross-section in the yz plane in the prolate spheroidal inclusion, the normalized shear
stress, σxy/σo

xy, was identical to the normalized shear stress, σyz/σo
yz, inside the isotropic

prolate spheroidal inclusion under remote shear loading.

Table 20. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

isotropic prolate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Iso_01 1.7619 1.5329 1.7619 1.7490 1.6214 1.7490
Iso_05 1.9935 1.6765 1.9935 1.9772 1.7972 1.9772
Iso_06 0.6538 0.7036 0.6538 0.6565 0.6820 0.6565
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loading (σoxy, σoxz and σoyz). 

  

Figure 24. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.5 (b = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

3.4.2. A Single Orthotropic Prolate Spheroidal Inclusion

Two different prolate spheroidal inclusions are considered: (a) a/b = c/b = 0.5, where
b = 6 mm, and (b) a/b = c/b = 0.75, where b = 6 mm (see Figure 5). It should be noted that
the length of b (=6 mm) can be arbitrarily chosen.

Figures 10 and 11 show a typical discretized model for the single (a) prolate spheroidal in-
clusion (a/b = c/b = 0.5 where b = 6 mm) and (b) prolate spheroidal inclusion (a/b = c/b = 0.75
where b = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single prolate spheroidal inclusion in
Figures 10 and 11. The number of elements, 7560, was determined based on a conver-
gence test.
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Figure 25. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.75 (b = 6 mm) under remote
shear loading (σo

xy, σo
xz and σo

yz).

Two different orthotropic inclusions (Ort_06 and Ort_07) in Table 4 were used in the
numerical calculation. It should be noted that the VIEM results represent average values
of the normalized stresses in all the nodes of the VIEM model in Figures 10 and 11. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic prolate spheroidal inclusions were found to be constant, respec-
tively [1]. Table 21 shows numerical solutions by the volume integral equation method for
the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic
prolate spheroidal inclusions. For the inclusion in Ort_06, the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the inclusion were greater than 1.0, respectively.
However, for the inclusion in Ort_07, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were less than 1.0, respectively. Figure 27 shows numer-

ical solutions by the volume integral equation method for the normalized shear stresses
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(a) σxy/σo
xy, (b) σxz/σo

xz and (c) σyz/σo
yz along (i) the x–axis inside (−3 mm≤ x≤ 3 mm)

and (ii) the circumferential direction (0◦ ≤ θ (see Figure 10) ≤ 360◦) of the orthotropic
prolate spheroidal inclusions (a/b = c/b = 0.5 where b = 6 mm) under remote shear loading,
σo

xy, σo
xz and σo

yz. Figure 28 shows numerical solutions by the volume integral equation
method for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along
(i) the x–axis inside (−4.5 mm ≤ x ≤ 4.5 mm) and (ii) the circumferential direction (0◦ ≤ θ

(see Figure 11) ≤ 360◦) of the orthotropic prolate spheroidal inclusions (a/b = c/b = 0.75
where b = 6 mm) under remote shear loading, σo

xy, σo
xz and σo

yz. It was determined in
Figures 27 and 28 that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic prolate spheroidal inclusions are constant in all directions considered.
Furthermore, even though, as shown in Figure 26, the cross-section in the xy plane is
identical to the cross-section in the yz plane in the prolate spheroidal inclusion, since c55
(shear modulus in the xz plane) is greater than c66 (shear modulus in the xy plane) and
c66 is greater than c44 (shear modulus in the yz plane) in the orthotropic inclusions of the
Ort_06 and Ort_07 materials, the normalized shear stress, σxy/σo

xy, was different from the
normalized shear stress, σyz/σo

yz, inside the isotropic prolate spheroidal inclusion under
remote shear loading.

Table 21. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

orthotropic prolate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

a/b = c/b = 0.5 (See Figure 5) a/b = c/b = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Ort_06 1.4239 1.4192 1.3735 1.4180 1.4828 1.3685
Ort_07 0.4258 0.6010 0.3934 0.4282 0.5774 0.3957

3.4.3. A Single Isotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen.

Figures 16 and 17 show a typical discretized model for the single (a) oblate spheroidal in-
clusion (b/a = c/a = 0.5 where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75
where a = 6 mm) used in the VIEM [31], respectively. A total of 7560 standard 20-node
quadratic hexahedral elements were used for the single oblate spheroidal inclusion in
Figures 16 and 17. The number of elements, 7560, was determined based on a conver-
gence test.

Three different isotropic inclusions (Iso_01, Iso_05 and Iso_06) in Table 2 were used
in the numerical calculation. It should be noted that the VIEM results represent average
values of the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the isotropic oblate spheroidal inclusions were found to be constant, respectively [1].
Table 22 shows numerical solutions by the volume integral equation method for the normal-
ized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic oblate spheroidal
inclusions. For the inclusions in Iso_01 and Iso_05, the normalized shear stresses (σxy/σo

xy,
σxz/σo

xz and σyz/σo
yz) inside the inclusion were greater than 1.0, respectively. How-

ever, for the inclusion in Iso_06, the normalized shear stresses (σxy/σo
xy, σxz/σo

xz and
σyz/σo

yz) inside the inclusion were less than 1.0, respectively.
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Figure 26. Cross-section in the (a) xy plane, (b) xz plane and (c) yz plane of (i) prolate spheroidal
(with an aspect ratio of 0.5) and (ii) oblate spheroidal (with an aspect ratio of 0.5) inclusions under
remote shear loading.

Figure 29 shows numerical results using the volume integral equation method (VIEM)
for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–
axis inside (−6 mm≤ x≤ 6 mm) and (ii) the circumferential direction (0◦ ≤ θ (see Figure 16)
≤ 360◦) of the isotropic oblate spheroidal inclusions (b/a = c/a = 0.5 where a = 6 mm)
under remote shear loading, σo

xy, σo
xz and σo

yz. Figure 30 shows numerical solutions
by the volume integral equation method for the normalized shear stresses (a) σxy/σo

xy,
(b) σxz/σo

xz and (c) σyz/σo
yz along (i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the

circumferential direction (0◦ ≤ θ (see Figure 17) ≤ 360◦) of the isotropic oblate spheroidal
inclusions (b/a = c/a = 0.75 where a = 6 mm) under remote shear loading, σo

xy, σo
xz and

σo
yz. It was determined in Figures 29 and 30 that the normalized shear stresses (σxy/σo

xy,
σxz/σo

xz and σyz/σo
yz) inside the isotropic oblate spheroidal inclusions are constant in all

directions considered. Furthermore, since, as shown in Figure 26, the cross-section in the xy
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plane is identical to the cross-section in the xz plane in the oblate spheroidal inclusion, the
normalized shear stress, σxy/σo

xy, was identical to the normalized shear stress, σxz/σo
xz,

inside the isotropic oblate spheroidal inclusion under remote shear loading.
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Figure 27. VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) 
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Figure 27. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate
spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.5 (b = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).
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Figure 28. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate
spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.75 (b = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

Table 22. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

isotropic oblate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Iso_01 1.7619 1.7619 1.5329 1.7490 1.7490 1.6214
Iso_05 1.9935 1.9935 1.6765 1.9772 1.9772 1.7972
Iso_06 0.6538 0.6538 0.7036 0.6565 0.6565 0.6820
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Figure 29. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.5 (a = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

3.4.4. A Single Orthotropic Oblate Spheroidal Inclusion

In this section, two different oblate spheroidal inclusions are considered: (a) b/a = c/a = 0.5,
where a = 6 mm, and (b) b/a = c/a = 0.75, where a = 6 mm (see Figure 5). It should be
noted that the length of a (=6 mm) can be arbitrarily chosen. Figures 16 and 17 show a
typical discretized model for the single (a) oblate spheroidal inclusion (b/a = c/a = 0.5
where a = 6 mm) and (b) oblate spheroidal inclusion (b/a = c/a = 0.75 where a = 6 mm)
used in the VIEM [31], respectively. A total of 7560 standard 20-node quadratic hexahedral
elements were used for the single oblate spheroidal inclusion in Figures 16 and 17. The
number of elements, 7560, was determined based on a convergence test.
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Figure 30. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate
spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.75 (a = 6 mm) under remote
shear loading (σo

xy, σo
xz and σo

yz).

Two different orthotropic inclusions (Ort_06 and Ort_07) in Table 4 were used in the
numerical calculation. It should be noted that the VIEM results represent average values
of the normalized stresses in all the nodes of the VIEM model in Figures 16 and 17. It
should also be noted that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic oblate spheroidal inclusions were found to be constant, respec-
tively [1]. Table 23 shows numerical solutions by the volume integral equation method for
the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic
oblate spheroidal inclusions. For the inclusion in Ort_06, the normalized shear stresses
(σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the inclusion were greater than 1.0, respectively.
However, for the inclusion in Ort_07, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz

and σyz/σo
yz) inside the inclusion were less than 1.0, respectively. Figure 31 shows numer-
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ical solutions by the volume integral equation method for the normalized shear stresses
(a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along (i) the x–axis inside (−6 mm≤ x≤ 6 mm)
and (ii) the circumferential direction (0◦ ≤ θ (see Figure 16) ≤ 360◦) of the orthotropic
oblate spheroidal inclusions (b/a = c/a = 0.5 where a = 6 mm) under remote shear loading,
σo

xy, σo
xz and σo

yz. Figure 32 shows numerical solutions by the volume integral equation
method for the normalized shear stresses (a) σxy/σo

xy, (b) σxz/σo
xz and (c) σyz/σo

yz along
(i) the x–axis inside (−6 mm ≤ x ≤ 6 mm) and (ii) the circumferential direction (0◦ ≤ θ

(see Figure 17) ≤ 360◦) of the orthotropic oblate spheroidal inclusions (b/a = c/a = 0.75
where a = 6 mm) under remote shear loading, σo

xy, σo
xz and σo

yz. It was determined in
Figures 31 and 32 that the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the orthotropic oblate spheroidal inclusions are constant in all directions considered.
Furthermore, even though, as shown in Figure 26, the cross-section in the xy plane is
identical to the cross-section in the xz plane in the oblate spheroidal inclusion, since c55
(shear modulus in the xz plane) is greater than c66 (shear modulus in the xy plane) and
c66 is greater than c44 (shear modulus in the yz plane) in the orthotropic inclusions of the
Ort_06 and Ort_07 materials, the normalized shear stress, σxy/σo

xy, was different from the
normalized shear stress, σxz/σo

xz, inside the orthotropic oblate spheroidal inclusion under
remote shear loading.

Table 23. Normalized shear stress components (σxy/σo
xy, σxz/σo

xz and σyz/σo
yz) within the

orthotropic oblate spheroidal inclusion due remote shear loading (σo
xy, σo

xz and σo
yz).

Material

VIEM (Average)

b/a = c/a = 0.5 (See Figure 5) b/a = c/a = 0.75 (See Figure 5)

σxy/σo
xy σxz/σo

xz σyz/σo
yz σxy/σo

xy σxz/σo
xz σyz/σo

yz

Ort_06 1.4239 1.5808 1.2798 1.4180 1.5719 1.3175
Ort_07 0.4258 0.5477 0.4465 0.4282 0.5501 0.4226

From Figures 22–25 and 27–32 and Tables 17–22, it was determined that if the inclusion
is harder than the matrix, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz)
inside the inclusion are greater than 1.0, respectively. It was also determined that if the
inclusion is softer than the matrix, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and

σyz/σo
yz) inside the inclusion are less than 1.0, respectively.

From Figure 26, notable similarities are observed for isotropic inclusions. First, the
cross-section in the xy plane of the isotropic prolate spheroidal inclusion is identical to the
cross-section in the yz plane and is symmetrical to the cross-sections in the xy and xz planes
of the isotropic oblate spheroidal inclusion. Second, the normalized shear stress, σxy/σo

xy,
inside the isotropic prolate spheroidal inclusion is identical to both the normalized shear
stress, σyz/σo

yz, inside the isotropic prolate spheroidal inclusion and the normalized shear
stresses, σxy/σo

xy and σxz/σo
xz, inside the isotropic oblate spheroidal inclusion under

remote shear loading. Third, the cross-section in the xz plane of the isotropic prolate
spheroidal inclusion is symmetrical to the cross-section in the yz plane of the isotropic
oblate spheroidal inclusion. Fourth, the normalized shear stress, σxz/σo

xz, inside the
isotropic prolate spheroidal inclusion is identical to the normalized shear stress, σyz/σo

yz,
inside the isotropic oblate spheroidal inclusion under remote shear loading.

In contrast, certain differences can be seen for orthotropic inclusions. First, although
the cross-section in the xy plane of the orthotropic prolate spheroidal inclusion is still
symmetrical to the cross-section in the xy plane of the orthotropic oblate spheroidal inclu-
sion, it is no longer identical to the cross-section in the yz plane of the orthotropic prolate
spheroidal inclusion. Second, since the cross-section in the xy plane of the orthotropic
prolate spheroidal inclusion is no longer symmetrical to the cross-section in the xz plane of
the orthotropic oblate spheroidal inclusion, the normalized shear stress, σxy/σo

xy, inside
the orthotropic prolate spheroidal inclusion is only identical to the normalized shear stress,
σxy/σo

xy, inside the orthotropic oblate spheroidal inclusion under remote shear loading.
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Third, since the cross-section in the xz plane of the orthotropic prolate spheroidal inclusion
is no longer symmetrical to the cross-section in the yz plane of the orthotropic oblate
spheroidal inclusion, the normalized shear stress, σxz/σo

xz, inside the orthotropic prolate
spheroidal inclusion is not identical to the normalized shear stress, σyz/σo

yz, inside the
orthotropic oblate spheroidal inclusion under remote shear loading.
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Figure 32. VIEM results for the normalized shear stress components (a) σxy/σo
xy, (b) σxz/σo

xz and
(c) σyz/σo

yz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic oblate
spheroidal inclusions (Ort_06 and Ort_07) with b/a = c/a = 0.75 (a = 6 mm) under remote shear
loading (σo

xy, σo
xz and σo

yz).

It should be noted that, through numerical analysis using the volume integral equation
method, we could quantitatively verify two qualitative predictions: (1) the normalized
shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the orthotropic spherical inclusions
are different from each other, and (2) for orthotropic spheroidal inclusions, there exists only
one symmetrical cross-section when the remote loadings are shear (σo

xy, σo
xz and σo

yz).
It was determined that values of the normalized tensile stress (σxx/σo

xx) or the nor-
malized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic spheroidal
inclusions differed significantly from those inside the orthotropic spheroidal inclusions. There-
fore, thorough investigation of spheroidal inclusion problems requires stress analysis for both
anisotropic spheroidal inclusion problems and isotropic spheroidal inclusion problems.

We also considered multiple isotropic/anisotropic spheroidal inclusions in an infinite
isotropic matrix subject to uniform remote tensile loading, σo

xx. In a future paper, the
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authors will introduce the VIEM solutions of multiple isotropic/orthotropic spheroidal
inclusions in an infinite isotropic matrix under arbitrary loading conditions. It is ob-
vious that general characteristics of multiple isotropic/anisotropic inclusion problems
cannot be fully analyzed from the basic characteristics of the corresponding single or two
isotropic/anisotropic inclusion problems. Therefore, applying multiple inclusion problems
to a wide class of real composite materials and structures requires extending the analysis
to multiple isotropic/anisotropic inclusions of different shapes.

Both the standard finite element method (FEM) and the boundary element method
(BEM) are powerful general-purpose tools in the field of numerical analysis. Since the
VIEM is a combination of these two methods, it is also highly beneficial to the field of
numerical analysis and can play a very important role in solving “multiple inclusion
problems”. The authors hope that the results using the VIEM cited in this paper will be
used as benchmarked data for verifying the results of similar research using other analytical
and numerical methods.

4. Conclusions

In order to introduce the VIEM as a versatile numerical method for the three-dimensional
elastostatic inclusion problem, it was applied to a class of three-dimensional elastostatic
inclusion problems. We first considered single isotropic/orthotropic spherical, prolate
(with an aspect ratio of 0.5 and 0.75) and oblate (with an aspect ratio of 0.5 and 0.75)
spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading.
Thirteen inclusions with different characteristics were considered in the numerical calcula-
tion. Excellent agreement was found between the analytical and numerical solutions using
the VIEM for single isotropic spherical inclusion problems. It was determined that the
normalized tensile stress (σxx/σo

xx) inside the isotropic/orthotropic spherical, prolate and
oblate spheroidal inclusions was constant in two different directions (x–axis and circumfer-
ential direction). When the inclusion is harder than the matrix, the normalized tensile stress
(σxx/σo

xx) inside the inclusion can be arranged in ascending order of magnitude: (1) prolate
spheroidal inclusion (a/b = c/b = 0.5), (2) prolate spheroidal inclusion (a/b = c/b = 0.75),
(3) sphere, (4) oblate spheroidal inclusion (b/a = c/a = 0.75) and (5) oblate spheroidal
inclusion (b/a = c/a = 0.5).

We next considered single isotropic/orthotropic spherical, prolate (with an aspect
ratio of 0.5 and 0.75) and oblate (with an aspect ratio of 0.5 and 0.75) spheroidal inclusions
in an infinite isotropic matrix under remote shear loading. Five inclusions with different
characteristics were considered in the numerical calculation. It was determined that the nor-
malized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the isotropic/orthotropic
spherical, prolate and oblate spheroidal inclusions were constant in two different directions
(x–axis and circumferential direction), respectively. When the inclusion was harder than
the matrix, the normalized shear stresses (σxy/σo

xy, σxz/σo
xz and σyz/σo

yz) inside the in-
clusion were greater than 1.0, respectively. Furthermore, for isotropic spheroidal inclusions,
there existed two identical or symmetrical cross-sections, while for orthotropic spheroidal
inclusions, there existed only one symmetric cross-section when the remote loadings were
shear (σo

xy, σo
xz and σo

yz).
It is the authors’ hope that the present solutions for various types of inclusions with

different material properties under different loading conditions using the parallel volume
integral equation method will be established as reference values for verifying the results of
other analytical and numerical methods.

It was also determined that applying multiple inclusion problems to a wide class
of real composite materials and structures requires extending the analysis to multiple
isotropic/anisotropic inclusions of different numbers and shapes. The parallel volume
integral equation method (PVIEM) is now generally more applicable and executable than
the standard finite element or boundary element methods. Subsequently, the PVIEM
can be used to calculate other quantities of practical interest in realistic models of com-
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posites containing isotropic or anisotropic inclusions of arbitrary shapes under arbitrary
loading conditions.

It should also be pointed out that, since the VIEM is a combination of the FEM and
the BEM, it may have an unknown advantage that neither the FEM model nor the BEM
model alone possess. For example, although certain VIEM models are incorrect from the
point of view of the standard FEM only, they can be correctly implemented in the VIEM.
In a future paper, the authors will attempt to provide more distinct examples to support
this new finding. Finally, as a new machine learning-based predictive framework has been
proposed for the accurate and efficient evaluation of singular integrals in the boundary
element method (BEM) [32], of particular interest to researchers going forward will be the
development of a general-purpose machine learning framework for predicting singular
integrals [29] in the volume integral equation method.
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