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Abstract: The synthesis of nanoparticles by green approaches is gaining unique importance due
to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly.
Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment
was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was
identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were
characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the
current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum
SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including
antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that
these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high
efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-
negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albi-
cans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm),
and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli,
B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging
between 11.7 ± 0.3–14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality
for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate
(44.3 ± 3.3%) at the same concentration and the same time.

Keywords: green synthesis; ZnO-NPs; Pseudomonas aeruginosa; antimicrobial activity; larvicidal activity

1. Introduction

The widespread disease caused by pathogenic microbes and arthropod pests and
vectors is considered the main challenge to discover new active compounds. The overuse
of antibiotics and chemical pesticides led to the fast-growing resistant strains, as well as
negative impacts on human health and the ecosystem. The linkage between nanotechnology
and disease control science opens the way to limit the spread of these resistant strains [1,2].
Nanotechnology is a multidisciplinary field concerned with the manufacture, design,
and application of nanoscale materials (1–100 nm). Due to the distinctive properties of
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nanomaterials, they have been applied in various fields such as materials science, chemistry,
agriculture, medicine, physics, textile industry, and pharmaceuticals [3–5]. Contrary to a
conventional concept, the nanoscale length affects the structure and total energy leading
to changes in optical, thermal, mechanical, electronic, magnetic, chemical, and structural
properties that characterize nanomaterial more than bulk materials [6,7].

Physical and chemical methods such as the sol-gel method, solvothermal synthesis,
laser ablation, microwave-supported synthesis, and metal reduction by various reducing
agents such as sodium citrate, hydrazine hydrate, and sodium borohydride are used for
NPs’ synthesis [8,9]. However, these methods use harsh conditions as well toxic chemicals
in the reduction and stabilization processes that limit their applicability. Therefore, biologi-
cal methods or green methods are highly chosen because they are safe, economical, clean,
and eco-friendly, and they are effective and easy sources for producing pure materials
with high productivity. Moreover, the biological synthesis does not require dangerous and
toxic compounds or high temperatures and pressures, in addition to avoiding the use of
external reducing, capping, and stabilizing agents [10,11]. Various bacterial species, uni-
cellular fungi, multicellular fungi, actinomycetes, and plant extracts as biological entities
are utilized to fabricate various metal and metal oxide NPs [12–15]. Recently, agricultural
wastes were used as a catalyst for the fabrication of different nanomaterials and utilized for
purification and treatment of aqueous solutions containing various pollutants as a green
approach [16]. Bacteria are the major prokaryotes’ group that exist in water, soil, plants,
and animals, and are widely utilized for nanoparticles synthesis through extracellular
or intracellular mechanisms. In the intracellular mechanism, the ions are mobilized into
the bacterial cell and synthesis of NPs inside the bacterial cells, whereas the extracellular
mechanism is used as biomass filtrate of the bacterial cell containing various secondary
metabolites for fabrication of NPs [17].

Zinc oxide nanoparticles (ZnO-NPs) are characterized by unique chemical and optical
properties, which distinguish them from the rest of the nanomaterials and make them
of interest. It is a type of metal oxide with new catalytic and oxidizing properties that
enable them to integrate into various biotechnological and biomedical applications [18].
ZnO-NPs have been used in a variety of cutting-edge applications including biology, cos-
metics, pharmaceutical industry, animal food supplements, medical fields, environmental
protection, coatings, rubber, communications, sensors, and electronics [3,19]. Due to their
low toxicity and size-dependent properties, ZnO-NPs have been used in many fields such
as microelectronics, textiles, cosmetics, and diagnostics. ZnO-NPs are recognized as safe
and have antimicrobial properties that qualify them to treat many infectious diseases in
humans and animals more broadly than other metals that are exploited for the synthesis of
nanoparticles for clinical application [20]. In addition to their antifungal properties, the
biogenic ZnO-NPs showed considerable larvicidal activity against various mosquitoes
such as malaria vector, Anopheles stephensi, and Aedes aegypti, making them effective and
safe candidates for insect control [21,22]. Bacteria are distinguished from the rest of the
microbes used for the bio-fabrication of ZnO-NPs for their ease of processing and their ma-
nipulative genetic characteristics, which make them the best choice in this regard compared
to eukaryotic microorganisms [23].

Mangrove forests are found at the intersection of marine and terrestrial habitats and
are home to the biodiversity of microorganisms and plants. Microbes are one of the vital
components of the mangrove ecosystem, have a key role in the formation and maintenance
of this biosphere, and are a source of useful products in the field of biotechnology [24].
Therefore, the current study focused on the green synthesis of ZnO-NPs by using the
bacterial strain Pseudomonas aeruginosa isolated from mangrove sediment. The bacteri-
ally fabricated ZnO-NPs were characterized by color change, UV-visible spectroscopy,
Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy,
and X-ray diffraction (XRD). Moreover, the inhibitory effect of biosynthesized ZnO-NPs
was investigated against pathogenic Gram-positive bacteria, Gram-negative bacteria, and
unicellular fungi as well as against the housefly Culex pipiens.
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2. Materials and Methods
2.1. Bacterial Isolation and Identification

The bacterial strain (coded as NMJ15) that was used for biosynthesis of zinc oxide
nanoparticles (ZnO-NPs) was isolated from a mangrove sediment sample collected from
Hurghada, Egypt (26◦36′53′′ N; 34◦00′46′′ E). The isolation was achieved by plating the
sample onto nutrient agar media (containing g L−1: peptone, 5; beef extract, 3; NaCl, 5,
agar, 15, distilled H2O, 1000 mL).

The bacterial sample was primarily identified based on morphological, physiological,
and biochemical tests according to a standard key. The identification was confirmed by
amplification and sequencing of the 16S rRNA gene as follows: The genomic bacterial
DNA was extracted according to Miller et al. [25] with a slight modification, while the
PCR protocol was carried out according to Fouda et al. [26]. Briefly, a separate colony
of bacterial species was picked up by using a sterilized toothpick, suspended in 50 µL
of sterile H2O, and heated at 97 ◦C for 10 min in a water bath. The previously heated
suspension was centrifuged (15,000 rpm for 10 min) and the supernatant, which contained
the bacterial DNA, was collected. The intensity of DNA in the collected supernatant was
measured by detecting its absorbance at 260 nm by using a UV spectrophotometer (Jenway
6305 UV spectrophotometer, 230 V/50 Hz, Staffordshire, UK ). The universal primers
27f (5′AGAGTTTGATCCTGGCTCAG-3′) and 1492r (5′GGTTACCTTGTTACGACTT-3′)
were used to amplify the fragment of 16S rDNA. The PCR tube contained the following:
0.5 mM MgCl2, 1 × PCR buffer, 2.5 U Taq DNA polymerase (QIAGEN Inc., German-
town, MD, USA), 0.5 µM primers, 0.25 mM dNTP (Deoxynucleoside triphosphate), and
approximately 5 ng of bacterial genomic DNA.

The PCR protocol was as follows: heating at 94 ◦C for 3 min, 30 cycles of 94 ◦C for a
half min, 55 ◦C for a half min, and 72 ◦C for 1 min, followed by a final extension carried out
at 72 ◦C for 10 min. The sequencing was achieved using an ABI 3730 × 1 DNA sequencer at
GATC Company (Konstanz, Germany). The retrieved sequences were compared with those
deposits on the Genbank database by using the NCBI BLAST software. The phylogenetic
tree was constructed using bootstrap analysis. The sequences obtained in this study were
deposited in Gene Bank under accession numbers MZ557381.

2.2. Bacterially Mediated ZnO-NPs Synthesis

The various metabolites secreted by bacterial strain NMJ15 were used as a reducing
agent for zinc acetate dihydrate (Zn(CH3COO)2·2H2O) (Sigma Aldrich, Munich, Germany)
as a precursor for ZnO-NPs. The bacterial strain was inoculated into nutrient broth media
(pH 7) and incubated for 72 h at 35 ± 2 ◦C under shaking conditions (150 rpm). After an
incubation period, the bacterial cells were harvested by centrifugation at 10,000 rpm for
5 min, followed by washing the collected cells thrice by distilled H2O to remove the attached
medium components. Approximately 10 g of the collected bacterial cells were mixed with
100 mL distilled H2O and incubated at 35 ± 2 ◦C for 48 h. At the end of the incubation
period, the previous mixture was subjected to centrifugation at 10,000 rpm for 5 min and
we collected the supernatant or cell-free filtrate (CFF), which was used for biosynthesis of
ZnO-NPs as follows: 100 mL of CFF (pH 8.5) was mixed with Zn(CH3COO)2·2H2O to get
2 mM as a final concentration and incubated at 35 ± 2 ◦C for 24 h under shaking condition.
The formed creamy, white precipitate was harvested, washed twice with distilled H2O,
and subjected to oven-drying (GESTER, 850W, Quanzhou, China) at 150 ◦C for 24 h. [27].

2.3. Characterization of Bacterially Synthesized ZnO-NPs
2.3.1. UV-Vis Spectroscopy

The color change of CFF after being mixed with a precursor (Zn(CH3COO)2·2H2O)
was monitored by UV-Vis spectroscopy at a wavelength of 200–600 nm. The color change
was measured using a JENWAY 6305 Spectrophotometer (Jenway 6305 UV spectropho-
tometer, 230 V/50 Hz, Staffordshire, UK) to detect the maximum peak based on the surface
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plasmon excitation of formed ZnO-NPs. The bacterial CFF without zinc nitrate was used
as a blank for the spectrophotometer.

2.3.2. Transmission Electron Microscopy (TEM)

The morphological characteristics of bacterially synthesized ZnO-NPs were investi-
gated by TEM analysis (TEM-JEOL 1010, Tokyo, Japan). A few drops of the bacterially
synthesized ZnO-NPs suspension were loaded onto the carbon–copper TEM grid. The
excess ZnO-NPs’ solution on the TEM grid was removed by contacting the grid with
blotting paper. The loaded TEM grid was left to dry at room temperature before being
subjected to analysis [28].

2.3.3. Fourier Transform Infrared (FT-IR) Spectroscopy

The role of bacterial metabolites in CFF in the reduction, capping, and stabilizing of
ZnO-NPs was investigated using FT-IR analysis (Agilent system Cary 630 FT-IR model,
Shimadzu, Tokyo, Japan). Approximately 0.2 g of biosynthesized ZnO-NPs was mixed
well with potassium bromide (K Br) and subjected to high pressure to form a disk that was
scanned at a wavenumber of 400 to 4000 cm−1.

2.3.4. X-ray Diffraction (XRD) Patterns

The crystalline nature of bacterially synthesized ZnO-NPs was investigated using
XRD analysis (X-ray diffractometer X’Pert Pro, Philips, Eindhoven, Netherlands). The
operating conditions were θ range of 0◦–80◦, the X-ray radiation was Ni-filtered Cu Ka, and
the current and voltage used were 30 mA and 40 kV, respectively. The crystal size of the
biosynthesized ZnO-NPs was calculated based on XRD analysis using the Debye–Scherrer
Equation as follows [29]:

Average ZnO-NPs size (D) =
0.9λ

β cos θ
(1)

where 0.9 is the Scherrer’s constant, λ is the X-ray wavelength (1.540 Å), β is the half-width
at half maximum (FWHM) peak, and θ is the Bragg’s angle.

2.4. Biological Activity of Bacterially Synthesized ZnO-NPs
2.4.1. Antimicrobial Activity

Antimicrobial activity of bacterially synthesized ZnO-NPs was investigated against
pathogenic Gram-positive bacteria represented by Staphylococcus aureus ATCC6538 and
Bacillus subtilis ATCC6633 and Gram-negative bacteria represented by Pseudomonas aerugi-
nosa ATCC9022, Escherichia coli ATCC8739, and Candida albicans ATCC10231 as a unicellular
fungus. To achieve this goal, the Mueller Hinton agar plates (already prepared, Oxoid) were
inoculated with overnight bacterial and unicellular fungal strain (we adjusted the inoculum
at O.D. = 1.0 for all tested organisms). One hundred microliters (100 µL) of NPs’ solution
(200 ppm) were added to a well (0.8 mm) previously prepared in the inoculated plate.

The activity of different ZnO-NPs’ concentrations (150, 100, 50, 25 ppm) was inves-
tigated to detect the MIC (minimum inhibitory concentration) value. The loaded plates
were kept in the refrigerator for 2 hours before being incubated at 35 ± 2 ◦C for 24 h to
confirm the successful spread of NPs’ solution in plates before bacterial growth. After
the incubation period, the positive results were recorded as the diameter of the zone of
inhibition (mm) formed around each well. The zinc acetate at the same concentrations was
running with the experiment as a positive control, whereas Dimethyl sulfoxide (DMSO)
(solvent system) was used as a negative control [29,30]. The experiment was carried out
in triplicate.
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2.4.2. Larvicidal Bioassay
Insect Rearing and Experimental Conditions

The third instar larvae of Culex pipiens (housefly) was obtained from Medical Entomol-
ogy Institute, Doki, Giza, Egypt. The experiment and mosquito rear were achieved in the
Medical Entomology Lab., Department of Zoology and Entomology, Faculty of Science,
Al-Azhar University, Cairo, Egypt. The experimental conditions were adjusted at 30–35 ◦C,
relative humidity (RH) 65–80%, and light: dark condition of 12:12-h photoperiod. The
larvae were grown on a plastic cup containing 500 mL tap water and fed on fish for 15 days.
The weight of fish feeding per day was different according to larvae stage as follows: 0.1 g
for first and second instar larvae, 0.3 g for third instar larvae, and 0.5 g for fourth instar
larvae [31]. The experiment was achieved on the third instar larvae.

Larvicidal Bioassay

The efficacy of bacterially synthesized ZnO-NPs as a nano-insecticide was evaluated
against third instar larvae of housefly C. pipiens, as recommended by the World Health
Organization [32]. Approximately 25 of the third instar larvae of C. pipiens were picked up
from their colony using a pasture pipette and added to a plastic cup (500 mL) containing
a 100-mL colloidal solution of bacterially synthesized ZnO-NPs (200 ppm). The same
previous step was repeated with various ZnO-NPs and zinc acetate concentrations (150, 100,
50, and 25 ppm) (25 third instar larvae for each concentration). The cup containing tap
water was run with the experiment as a control. Larvae were considered dead if there was
no sign of any movement even after mild touch with a glass rod. The results were recorded
after 24, 48, 72, and 96 h. The mortality percentages (%) were measured using the following
Equation (2).

Mortality percentages (%) =
Number of larvae dead

Number of all treated larvae
× 100 (2)

2.5. Statistical Analysis

Data in the current study were analyzed by Minitab® 18.1program. A one-way
analysis of variance (ANOVA) was performed on the data. Differences were considered
significant when p < 0.05. The means of three replications and standard error (±SE) were
also calculated for all the results obtained.

3. Results and Discussion
3.1. Bacterial Isolation and Identification

The bacterial species isolated from mangrove sediment were characterized by their
diverse medical and biotechnological applications. For example, culturable bacterial
communities isolated from mangrove sediment were characterized by their efficacy in
producing various enzymes such as amylase, chitinase, cellulase, phosphatase, urease, and
protease [33]. Different bacterial species were isolated from mangrove sediments such
as Desulfovibrio, Azotobacter, Azospirillum, Klebsiella sp., Rhizobium, Bacillus, Xanthobacter,
Enterobacter, and Pseudomonas sp. [24]. In the current study, bacterial strain NMJ15 was
isolated from mangrove sediment. The primary identification showed that the bacterial
strain NMJ15 was Gram-negative, rod-shaped, motile, and positive for catalase, while its
oxidase was negative. This strain can be grown in a wide temperature range (30–45 ◦C)
and wide, broad pH (5–9). The bacterial identification was confirmed by amplification and
sequencing of the 16S rRNA gene. Data represented in Figure 1 revealed that the bacterial
strain was similar to Pseudomonas aeruginosa with a percentage of 99.68%.
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3.2. Synthesis of ZnO-NPs Using the Bacterial Strain NMJ15

The fabrication of various metal and metal oxide NPs by the biological method has
gained more interest over traditional chemical and physical methods. The biosynthesis
or green synthesis has involved the utilization of various active compounds secreted by
different biological beings (plants, actinomycetes, bacteria, yeast, and fungi) to reduce
and stabilize new compounds at the nanoscale [9]. Green synthesis is characterized by
biocompatibility and high productivity; being eco-friendly, inexpensive, and simple; not
requiring harsh conditions; and avoiding the usage of toxic substances [34]. In the current
study, the metabolites that existed in the cell-free filtrate of P. aeruginosa strain NMJ15
were used as a biocatalyst for forming ZnO-NPs. At first, a creamy-white precipitate
as ZnO·H2O (hydrate zinc oxide) was formed due to the mixing of bacterial CFF with
a precursor under stirring conditions. After that, the as-formed white precipitate was
harvested by centrifugation and subjected to calcination at a high temperature (150 ◦C) for
24 h (Equations (3) and (4)).

Zn(CH3COO)2 · 2H2O + CFF
Stirring→ ZnO ·H2O(white preciptate) (3)

ZnO ·H2O 150 ◦C→
24 h

ZnO-NPs (4)

The physicochemical characteristics of the synthesized NPs such as crystalline na-
ture, size, and shape were controlled according to the microbes that were utilized in the
fabrication process [35]. In our previous study, a creamy white precipitate of hydrated
zinc oxide (ZnO·H2O) was formed after mixing the zinc acetate with a biomass filtrate
of Fusarium keratoplasticum A1-3 and Aspergillus niger strain G3-1, which was subjected
to calcination at 120 ◦C for 12 h to form ZnO at the nanoscale [19]. The ZnO-NPs were
synthesized by various biological entities to integrate into biomedical applications. For
instance, ZnO-NPs fabricated by water extract of Sargassum wightii exhibited antimicrobial
activity and antibiofilm and insecticidal properties [36]. Additionally, ZnO-NPs synthe-
sized through harnessing metabolites of bacterial species, Serratia nematodiphila, showed
high antimicrobial and photocatalytic activities [29]. To date, the current study is the first
report for the biosynthesis of ZnO-NPs through harnessing the metabolites secreted by
P. aeruginosa isolated from mangrove sediment.

3.3. Characterization of Bacterially Synthesized ZnO-NPs
3.3.1. UV-Vis Spectroscopy

The successful bacterial synthesis of ZnO-NPs was confirmed by the CFF color change
from colorless to white precipitate. This change was checked by UV-Vis spectroscopy at a
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wavelength of 200–800 nm to detect the maximum surface plasmon resonance (SPR). The
highest SPR was observed at 380 nm, which indicated the successful transformation of
metal precursor (Zn(CH3COO)2·2H2O) to the final product (ZnO-NPs) (Figure 2). Compat-
ible with the obtained data, Jain and co-authors reported that the maximum absorbance
observed in the UV chart of ZnO-NPs synthesized by Serratia nematodiphila ZTB15 was at
379 nm as an indicator for a successful process [29]. Additionally, the maximum absorption
band for ZnO-NPs fabricated by Sphingobacterium thalpophilum was at 379 nm [37]. The
SPR was formed due to electrons’ oscillation from the valence band to conduction band
after exposure to light at a particular wavelength [38,39]. Pachaiappan et al. [39] reported
that the variation in maximum SPR for ZnO-NPs can be attributed to the type of precursor
and calcination temperature. Who reported that the highest absorption peaks for ZnO-NPs
were 334 nm, 338 nm, and 361 nm for a precursor of zinc acetate, zinc sulfate, and zinc
nitrate, respectively.
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3.3.2. Transmission Electron Microscopy (TEM)

The size and shape of biosynthesized ZnO-NPs were investigated by using TEM
analysis. Based on Figure 3A, it can be concluded that the particles in a synthesized sample
were well arranged, homogenous, and with spherical shapes and sizes ranging between
6 nm to 21 nm. Moreover, the size distribution of synthesized NPs based on the TEM image
was shown in Figure 3B with an average diameter of 14.95 ± 3.5 nm (Figure 3B). Based
on published studies, there was a strong correlation between the size of NPs and their
activity; the activity increased as NPs’ sizes decreased [3,9,40]. Moreover, Farzana et al. [41]
showed that the smaller ZnO-NPs had a greater inhibitory effect on the multi-drug-resistant
pathogenic bacteria. Therefore, we predicted the high activity of ZnO-NPs synthesized
in the current study due to their smaller size. Similarly, the TEM image of ZnO-NPs
synthesized by alkalophilic bacterial strain Alkalibacillus sp. W7 exhibited the successful
formation of spherical shape with a size range of 1 to 30 nm and an average particle size of
17 ± 1 nm [12].
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3.3.3. Fourier Transform Infrared (FT-IR) Spectroscopy

The role of functional groups that exist in the bacterial CFF in the reducing, capping,
and stabilizing of NPs was investigated by FT-IR. The bacterial CFF showed nine intense
peaks at 3244, 1646, 1501, 1446, 1401, 1225, 1089, 886, and 769 cm−1 (Figure 4A). The
strong broad peak at 3244 cm−1 corresponded to stretching O–H, whereas the peak at
1646 cm−1 was related to stretching the C=O vibration protein-peptide bond [42]. The
peaks at 1501 cm−1, 1446 cm−1, and 1401 cm−1 corresponded to stretching C–N vibra-
tion mode of aliphatic and aromatic amines that referred to the presence of proteins in
CFF [43]. Moreover, the peaks at 886 cm−1 and 769 cm−1 referred to stretching amide IV
for proteins [44]. These peaks were shifting during the biosynthesis of NPs. The FT-IR
for ZnO-NPs (Figure 4B) showed 520, 630, 895, 1032, 1420, 1620, 2503, 2590, 3110, 3330,
3620, and 3700 cm−1. The peaks at wavenumber between 3000 to 3700 cm−1 referred to
stretching O–H of carboxylic acid, and the vibration mode of the –OH group overlapped
with stretching NH of the amines [45,46]. The weak peak at 2590 cm−1 referred to the
stretching SH thiol group. The medium peak observed at 1620 cm−1 was related to bending
primary amine (NH) overlapped with carboxylate salts or amide [47]. Moreover, a medium
peak at 1430 cm−1 signified stretching C=O of carboxylic salts and was referred to as the
adsorption of CO2 and carbonates (CO3

2−) at the NPs’ surface [45]. The strong peaks at
1032 cm−1 and 895 cm−1 may be corresponding to stretching S=O of sulfoxide and bending
C=C of alkene [48–50]. The successful formation of ZnO-NPs was confirmed at peaks of 400
to 700 cm–1, as reported previously [21,51,52]. The FT-IR analysis of ZnO-NPs confirmed
the involvement of different groups such as C=O, O–H, NH, and SH thiol groups present
in bacterial CFF in the reducing, capping, and stabilizing processes.
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3.3.4. X-ray Diffraction (XRD) Pattern

The crystalline nature phase of the synthesized ZnO-NPs was investigated by XRD.
The XRD pattern (Figure 5) showed eight intense diffraction peaks (100), (002), (101), (102),
(110), (103), (112), and (201) at 2θ values of 31.5◦, 34.2◦, 36.3◦, 47.3◦, 56.4◦, 62.7◦, 67.3◦,
and 96.1◦, respectively. The observed peaks in the XRD pattern were matched with data
reported in the Joint Committee on Powder Diffraction Standards (JCPDS, card No. 89-7102)
for the crystalline nature of ZnO-NPs. Our data were compatible with the XRD pattern
for the crystalline nature of biologically synthesized ZnO-NPs [12,53]. The average ZnO-
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NPs’ size corresponding to the maximum diffraction peak (101) was calculated using the
Debye–Scherrer Equation and it was 21 nm (compatible with TEM analysis). The reason
for the small observed peaks at various 2 theta values can be related to the crystallization
of bacterial metabolites such as proteins and organic substances that coated the ZnO-NPs’
surface, as reported previously [54].
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3.4. Biological Activity of Bacterially Synthesized ZnO-NPs
3.4.1. Antimicrobial Activity

Zinc oxide nanoparticles have attracted more interest due to it their low toxicity, bio-
compatibility, and low-cost nanomaterial. Therefore, they can be integrated into various
medical applications, for instance, antifungal, antibacterial, anticancer, antidiabetic, an-
tioxidant, anti-insect, anti-inflammatory, drug delivery, and bioimaging applications [3,55].
Herein, the inhibitory effect of the bacterially mediated green synthesis of ZnO-NPs against
pathogenic microbes was assessed by the agar well diffusion method compared with bulk
material (Zn(CH3COO)2·2H2O) as a positive control and DMSO (solvent system) as a
negative control. To attain this goal, pathogenic microbial strains represented by Bacillus
subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans
were used. The bulk material showed moderate activity against pathogens of B. subtilis,
P. aeruginosa, E. coli, and C. albicans with zones of inhibition of 15.3 ± 0.3, 11.7 ± 0.2,
13.3 ± 0.3, and 15.6 ± 0.3 mm and 12.7 ± 0.3, 0.0 ± 0.0, 10.7 ± 0.6, and 13.7 ± 0.3 mm
for 200 ppm and 150 ppm, respectively. Interestingly, the DMSO as negative control did
not show any inhibitory action against the tested pathogenic microbes. Interestingly, the
activity of ZnO was increased at the nanoscale, which was dose-dependent. Our results are
well-suited with published studies, which reported that the activity of Ag-NPs, CuO-NPs,
and MgO-NPs was higher than those reported by bulk material (AgNO3, CuSO4·5H2O,
and Mg(NO3)2·6H2O) [54,56,57]. At a concentration of 200 ppm, ZnO-NPs showed the
highest antimicrobial activity with ZOIs of 12.3 ± 0.9, 29.3 ± 0.3, 19.2 ± 0.3, 11.7 ± 0.2,
and 22.3 ± 0.3 mm for S. aureus, B. subtilis, E. coli, P. aeruginosa, and C. albicans, respec-
tively (Figure 6). The ZOIs were decreased by reducing the ZnO-NPs’ concentration. For
example, the ZOIs formed due to treatment with 150 ppm of bacterial ZnO-NPs were
21.7 ± 0.2, 17.7 ± 0.3, and 18.3 ± 0.3 mm against B. subtilis, E. coli, and C. albicans, respec-
tively; these ZOIs decreased to 14.6 ± 0.5, 11.5 ± 0.6, and 13.7 ± 0.4 mm at 50 ppm for the
same pathogenic microbes (Figure 6). Our results were in good agreement with published
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studies that clarified that the green-synthesized ZnO-NPs have broad-spectrum activity
against various pathogenic microbes including S. aureus, E. coli, P. aeruginosa, B. subtilis, My-
cobacterium tuberculosis, Klebsiella aerogenes, Proteus mirabilis, Xanthomonas oryzae, Alternaria
sp. Aspergillus sp., Penicillium expansum, and C. albicans [29,42,58]. The inhibitory effect
of bacterially synthesized ZnO-NPs in the current study can be attributed to the small
ZnO-NPs’ sizes (6–21 nm). Sharma and co-author showed that the maximum inhibitory
effect (94.05%) was achieved due to treatment with a small ZnO-NPs’ size (12–30 nm)
compared with a large size at the same concentration [18].
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unicellular fungi (C. albicans).

ZnO-NPs have an excellent antimicrobial action due to their unique physical and
chemical characteristics at the nanoscale. This superior activity can be related to three
different mechanisms: (1) release of toxic ions (Zn2+) inside the cell; (2) electrostatic
attraction between ZnO-NPs and the bacterial cell wall, and (3) production of reactive
oxygen species (ROS) [59]. The release of toxic ions represented by Zn2+ as a result of the
dissolution of ZnO-NPs inside the cell can inhibit different bacterial cell functions such as
enzyme activity, cell metabolism, proton motive force, active transport, and, ultimately,
bacterial cell death [60]. The liberation of this toxic ion is dependent on the size and shape
of NPs. Chang and co-authors reported that the spherical and small size of ZnO-NPs and
CuO-NPs release higher concentrations of toxic ions (Zn2+) than those released by rod
shape [61]. This phenomenon can be attributed to the smaller surface area of the spherical
shape and, hence, increased equilibrium solubility. The production of ROS is followed
by high oxidative stress and, hence, cell death or cell damage. The toxic effects due to
ROS formation are attributed to the generation of various reactive species such as O2–

(superoxide anion), OH– (hydroxyl ion), and H2O2 (hydrogen peroxide). The previous
reactive species were generated due to the reaction of NPs with the OH group and absorbed
H2O to form OH– and H+ that consequently formed O2–. After that, the HO2 (generated
from reacting of O2– with H+) was formed, which subsequently reacted with electron and
H+ to form H2O2 [62]. The final product (H2O2) penetrated the microbial cell wall and
cell membrane to interact with lipids, proteins, and nucleic acid, leading to cell death.
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Interestingly, the O2– and OH– remained on the surface of the bacterial cell and could not
penetrate the cell membrane due to their negative charge [10]. The electrostatic attraction
between positively charged NPs and negatively charged bacterial cells was considered
another mechanism for the inhibitory effect of ZnO-NPs. Due to this interaction, ZnO-NPs
penetrated the microbial cell, distorting the plasma membrane structure and bacterial cell
wall integrity that led to the discharge of cellular components [63,64].

The lowest concentration of active compounds that inhibit microbial growth is defined
as MIC and it should be detected for each compound that can be integrated into biomedical
applications [65]. Therefore, analysis of variance revealed that the MIC value for bacterially
synthesized ZnO-NPs was 200 ppm for S. aureus and P. aeruginosa, while it was 50 ppm
for B. subtilis, E. coli, and C. albicans (Figure 6). In the current study, the synthesized ZnO-
NPs were more active against B. subtilis, E. coli, and C. albicans, more than S. aureus and
P. aeruginosa at a low concentration. Our results are in complete agreement with published
studies [27,52].

3.4.2. Larvicidal Activity

The efficacy of bacterially synthesized ZnO-NPs to act as an insecticide was investi-
gated against housefly Culex pipiens as compared with bulk material (Zn(CH3COO)2·2H2O)
at intervals times (24, 48, 72, and 96 h). At low concentrations (25 and 50 ppm), the bulk
material did not exhibit any activity with time, whereas ZnO-NPs exhibited mortality
percentages for third instar larvae of 30 ± 0.0% and 40 ± 5.8% after 24 h and the mortality
increased with time to reach 46.7 ± 3.3% and 56 ± 0.0% after 96 h. The mortality percent-
ages caused by zinc acetate and ZnO-NPs were increased with concentration. Our results
are in agreement with the data of Roopan et al. [51], who showed that the mortality percent-
ages caused by ZnO-NPs against Aedes aegypti were 21.4 ± 2.3%, 35.2± 3.6%, 59.6± 5.2%,
and 88.6± 1.2% for concentrations of 15, 30, 60, and 120 ppm, respectively. In the current
study, the maximum mortality rate caused by zinc acetate was achieved for a concentration
of 200 ppm; it was 44.3 ± 3.3% after 24 h and increased to 63.3 ± 3.3% after 96 h. In
contrast, ZnO-NPs at a concentration of 150 ppm caused mortality of 85 ± 5.8% after 24 h
and increased to 96 ± 3.3% after 96 h. Interestingly, 100% mortality was attained after 24 h
of treatment with 200 ppm of bacterially synthesized ZnO-NPs (Table 1). The obtained
results are compatible with those reporting that the larvicidal efficacy of zinc acetate is little
on mosquito larvae as compared with ZnO-NPs [36]. Moreover, Velsankar and co-authors
highlighted that the ZnO-NPs fabricated by seed aqueous extract of Cucurbita had the
efficacy to inhibit 50% of fourth instar larvae of Culex tritaeniorhynchus at a concentration of
44.68 ppm and inhibited 90% at 119.9 ppm [22]. To date, the current study is considered
the first report to assess the efficacy of bacterially synthesized ZnO-NPs as an insecticidal
agent against housefly Culex pipiens.

Table 1. The efficacy of different concentrations (200, 150, 100, 75, 50, and 25 ppm) of bacterially synthesized ZnO-NPs as a
larvicidal agent against third instar larvae of Culex pipiens.

Time

Mortality Percentages (%) at Different Concentrations (ppm)

Control (Zn(CH3COO)2 ·2H2O) ZnO-NPs

25 ppm 50 ppm 75 ppm 100 ppm 150 ppm 200 ppm 25 ppm 50 ppm 75 ppm 100 ppm 150 ppm 200 ppm

24 h 0.0 ± 0.0 0.0 ± 0.0 10 ± 5.8 30 ± 0.0 43.3 ± 3.3 44.3 ± 3.3 30 ± 0.0 40 ± 5.8 50 ± 5.8 80 ± 5.8 85 ± 5.8 100 ± 0
48 h 0.0 ± 0.0 0.0 ± 0.0 23.3 ± 3.3 33.3 ± 3.3 46.7 ± 3.3 49.7 ± 3.3 36.7 ± 3.3 46.7 ± 3.3 56.7 ± 3.3 86.7 ± 3.3 90 ± 3.3 100 ± 0
72 h 0.0 ± 0.0 0.0 ± 0.0 30 ± 0.0 40 ± 0.0 53.3 ± 3.3 54.6 ± 3.3 40 ± 0.0 49 ± 0.0 60.7 ± 3.3 90 ± 0.0 94 ± 0.0 100 ± 0
96 h 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 3.3 46.7 ± 3.3 63.3 ± 3.3 63.3 ± 3.3 46.7 ± 3.3 56 ± 0.0 67.3 ± 3.3 93.3 ± 3.3 96 ± 3.3 100 ± 0

The toxicity of NPs on mosquito larvae can be attributed to their efficacy to penetrate
through the insect’s cuticle and, hence, destroy the respiratory openings on the skin
followed by suffocation and ultimately to death [66]. Moreover, due to NPs’ penetration,
ZnO-NPs can induce various morphological changes on the hemocytes upon exposure,
which lead to deformations and decrease their viability [21]. Additionally, the toxicity of
ZnO-NPs to insects can be related to their efficacy in inducing ROS and the liberation of
toxic ions inside the insect’s cells [2]. Another larvicidal mechanism of ZnO-NPs can be
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related to their surface defects for a different texture [21]. These surface defects, especially
at the corners and edges, can be abrasive and, hence, damage the larvae cell membrane.
For instance, the needle and star shape of ZnO-NPs have more larvicidal efficacy through
cutting the larval body, damaging the insect’s midgut, and destroying the respiratory
system [1].

4. Conclusions

In the current study, ZnO-NPs were successfully green synthesized using bacterial
strain Pseudomonas aeruginosa NMJ15. The cell-free filtrate (CFF) was used as a biocatalyst
for capping and stabilizing ZnO-NPs. The bio-fabrication was confirmed by a color change
of CFF from colorless to white precipitate. The color change was monitored by UV-Vis
spectroscopy and showed maximum surface plasmon resonance at 380 nm, which was
the characteristic peak of ZnO-NPs. The physicochemical characterization of as-formed
ZnO-NPs was analyzed by TEM, FT-IR, and XRD analysis. Data showed the successful
formation of the spherical and crystalline ZnO-NPs. The FT-IR chart exhibited the role
of various functional groups, for instance, C=O, O–H, NH, and SH thiol groups that
exist in CFF in the reduction of Zn ion to form ZnO-NPs. The biological activity of
bacterially synthesized ZnO-NPs, including antimicrobial activity and larvicidal activity,
was investigated. The data analysis showed that the efficacy of ZnO-NPs to inhibit the
growth of pathogenic microbes with zones of inhibition of 12.3 ± 0.9, 29.3 ± 0.3, 19.2 ± 0.3,
11.7 ± 0.2, and 22.3 ± 0.3 mm for S. aureus, B. subtilis, E. coli, P. aeruginosa, and C. albicans,
respectively, at 200 ppm. The activity of biosynthesized ZnO-NPs as bactericidal was
dose-dependent. Moreover, the highest mortality (100%) of Culex pipiens was attained
after 24 h due to 200 ppm ZnO-NPs. The investigated biological activities exhibited
the high efficacy of bacterially synthesized ZnO-NPs as compared with bulk material
(Zn(CH3COO)2·2H2O). The obtained results provide a promising tool for controlling the
growth of pathogenic microbes as well as housefly mosquitos with the eco-friendly and
cost-effective active substance.
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