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Abstract: The paper presents effective numerical modelling of multi-layered plates with orthotropic
properties. The method called the FEM23 is employed to construct the numerical model. The
approach enables a full 3D analysis to be performed while using a 2D finite element mesh. The
numerical model for a multi-layered plate is constructed by an assembling procedure, where each
layer with orthotropic properties is added to the global numerical model. The paper demonstrates
that the FEM23 method is very flexible in defining the multilayered plate, where the thickness of each
layer as well as its mechanical orthotropic properties can be defined independently. Several examples
of three-layered or nine-layered plates are analyzed in this paper. The results obtained by the FEM23
method coincide with the ones taken from the published papers or calculated with the standard 3D
FEM approach. The orthotropic version of the FEM23 can be quite easily applied for other kinds of
problems including thermo-mechanics, free vibrations, buckling analysis, or delamination.

Keywords: multi-layered plate; three-dimensional modelling; FEM23; postprocessing

1. Introduction

Multi-layer plates and shells with orthotropic properties in the layers are types of
structures widely used in modern aerospace, automotive, and construction industries, due
to their lightness, elasticity, durability, and excellent mechanical properties in regard to
their thickness and weight. The significant increase in the use of such composite materials
has been observed over the past few decades, especially in the aviation industry, where
constructive components must show high strength while maintaining a slim shape. The ap-
propriate design of structures made of orthotropic materials requires reliable computational
modelling techniques.

The paper proposes a modified method called the FEM23 [1,2], whose main advantage
is modelling full three-dimensional (3D) multi-layered structures while using a 2D finite
element mesh for calculations. The modification of the FEM23 involves its extension to
layers exhibiting orthotropic properties. The paper proves that the FEM23 method can be
used effectively to analyze any multi-layered structure combining thick and thin orthotropic
layers. The FEM23 is a fully 3D method, similar to the Proper Generalized Decomposition
applied in [3,4], which allows for solving a fully 3D model, but with 2D characteristic
computational complexity. This approach uses the spatial decomposition of a displacement
field combining the in-plane 2D solution with the transverse 1D solution. As a result,
another 1D mesh is generated alongside the planar 2D mesh. The method subsequently
developed in [5], applies the piecewise fourth-order Lagrange polynomial along the plate’s
thickness. In previous papers [6,7], the authors have already utilized the FEM23 to model
the behavior of multi-layered plates and shells with isotropic layers subjected to mechanical
or thermo-mechanical loads, devoting special attention to laminated glass structures—the
topic of many numerical or experimental studies [8–11].
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The body of research regarding the analysis of orthotropic multi-layered plates is
limited here only to papers published in recent years, to show up-to-date achievements in
the area. Rajaneesh et al. in [12] applied a variationally consistent new first-order shear
deformation theory to three-layered orthotropic plates using an equivalent-single-layer
theory in the finite element. A numerical analysis of elastic waves in the multilayered
orthotropic plates was presented in the paper by Liu et al. [13], where the extended
Legendre polynomials combined with the anisotropic couple-stress theory were applied to
investigate the reflection and transmission of the waves. A layerwise generalized theory
of layered orthotropic plates was proposed by Ugrimov and Shupicov [14]. The theory is
based on a power series expansion of the displacement vector component in each layer
for the transverse direction, where the number of terms retained in the power series is
arbitrary and chosen according to the problem being considered. Xu et al. [15] proposed
analytical solutions for orthotropic thin plates, where the finite integral transform method
was introduced for accurate bending analysis. This type of analysis is limited only to thin
plates due to the Kirchhoff–Love plate theory applied to derive the employed method. The
vibration response of orthotropic composite plates was analysed by Zhang et al. [16] with
a new approach regarding the analytical solution, while 3D semi-analytical vibrations of
thick orthotropic plates were investigated by Cui et al. [17]. In this research, the modified
Fourier series were applied to obtain admissible displacement functions while boundary
conditions were generated by arranging sets of linear springs at the edges. Belyaev et al. [18]
proposed a two-dimensional model to analyze deformations of multi-layered orthotropic
plates, where a multi-layered plate was replaced by an equivalent plate composed of a
monoclinic material with piecewise elastic modules, and an asymptotic expansion was
applied to obtain the solution. The buckling analysis of orthotropic laminated plates with
asymmetrical boundary conditions was carried out by Schreiber et al. [19]. The framework
of Reddy’s third-order shear deformation theory was applied for a closed-form solution,
and Lévy-type solution was derived for the plate buckling problem.

The multi-layered and orthotropic plates are the subject of both numerical and ex-
perimental research. The combined experimental and analytical study of multi-layered
laminated glass subjected to low-velocity impacts was presented by Wang et al. [20], while
the experimental determination of material properties in an elliptical orthotropic plate
was proposed by Marchetti et al. [21]. The method validated subsequently in a honey-
comb sandwich panel combined the equivalent thin plate theory with the wave fitting
approach. An innovative transparent polymeric laminate consisting of two poly(methyl
methacrylate) plies with a thermoplastic polyurethane interlayer was experimentally and
numerically investigated by Rühl et al. [22]. The laminate was subjected to low-velocity
impact loadings using clamped three-point bending and dart impact tests at different
temperatures and velocities. Multi-layered metallic plates were the subject of a number of
experiments conducted by Ziya-Shamami et al. [23]. The paper analyzed 15 various testing
groups, presenting the data obtained in over a hundred experiments. The plates were
subjected to repeated uniform impulsive loadings to study the effects of different charge
masses, layering configurations, layering arrangements, layer thicknesses, and stand-off
distances on the central deflection of single-, double-, and triple-layered mixed plates made
of aluminum alloy and mild steel materials.

In this paper, the FEM23 method is extended in such a way that a multi-layered plate
with orthotropic properties can be analyzed. The orthotropy in the numerical model is
obtained by the stress–strain constitutive relation defined in the coordinates associated
with the orthotropy directions, subsequently transformed to global coordinates and applied
to the mathematical model shown in detail in Section 2. A specific form of displacement
approximation used for the purpose of this study and the final numerical model are
presented in Section 3. The FEM23 approach for orthotropic multi-layered plates is verified
in three examples analyzed in Section 4. The paper ends with some conclusions.
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2. Variational Formulation of the Problem

The starting point of the presented FEM23 method for the multi-layered orthotropic
plates is a single-layered orthotropic plate model subsequently extended to a multi-layered
one. Two Cartesian coordinates, orthotropic (ξ, η, θ) and global (x, y, z), are distinguished
in the orthotropic plate. The θ and z directions are the same and oriented transversely,
while the (ξ, η) pair is associated with in-plane orthotropy in a layer, and the (x, y) pair is
correlated with the in-plane geometry of the plate. Although the (x, y) pair is common for
the whole plate, the (ξ, η) directions are oriented differently in each layer. The orthotropic
coordinates are used to derive constitutive relations in the layers, while the global ones are
used to describe the model for the whole multi-layered plate.

The constitutive (Hooke’s) relation for orthotropic materials is expressed with the
orthotropic coordinates as follows:

σ̃(ũ) = D̃ : ε̃(ũ), (1)

where ũ is the displacement vector, while σ̃ and ε̃ are the stress and Cauchy’s strain tensors,
all defined with the use of the orthotropic coordinates. D̃ is a symmetric constitutive tensor
of the fourth order in the orthotropic coordinates, demonstrating the following non-zero
values [24]:

D̃1111 = (1− ν23ν32)E1γ = D1;

D̃2222 = (1− ν13ν31)E2γ = D2;

D̃3333 = (1− ν12ν21)E3γ = D3;

D̃2233 = D̃3322 = (ν32 + ν12ν31)E2γ = (ν23 + ν21ν13)E3γ = D4;

D̃1133 = D̃3311 = (ν31 + ν21ν32)E1γ = (ν13 + ν12ν23)E3γ = D5;

D̃1122 = D̃2211 = (ν21 + ν31ν23)E1γ = (ν12 + ν13ν32)E2γ = D6;

D̃2323 = D̃3232 = D̃2332 = D̃3223 = G23 = D7;

D̃1313 = D̃3131 = D̃1331 = D̃3113 = G13 = D8;

D̃1212 = D̃2121 = D̃1221 = D̃2112 = G12 = D9,

where

γ =
1

1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

Ei represents the Young moduli of elasticity, Gij is shear moduli, while νij are Poisson
ratios, all in orthotropic directions. Using the symmetric properties of the D̃ tensor, the
following relation is derived:

νij = νjiEi/Ej (2)

The stress and strain tensors from Equation (1) satisfy the equilibrium equation, which
can be written in the variational form for the whole considered domain Ω:

∫
Γσ

ṽ· ˆ̃t dΓ−
∫
Ω

ε̃(ṽ) : D̃ : ε̃(ũ) +
∫
Ω

ṽ· b̃ dΩ = 0

ũ = ˆ̃u on Γu,

(3)

which has to be satisfied for all ṽ where ṽ = 0 on Γu.
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The second integral in Equation (3) refers to the tensor inner product. For the sake of
further analysis, it can be shown that, due to the symmetric properties of the D̃ tensor, the
inner product can be expressed with full displacement gradients:

ε(ṽ) : D̃ : ε(ũ) = ∇̃ṽT : D̃ : ∇̃ũ, (4)

where ∇̃ is the gradient operator defined with the orthotropic coordinates.
Assuming that Q is the transformation matrix from the orthotropic to global coordi-

nates, the relation between the displacement gradients expressed with the orthotropic and
global coordinates is as follows:

∇̃ũ = QT∇uQ, (5)

where u is the displacement vector in the global coordinates, and ∇ is the gradient operator
in the global coordinates. The displacement gradient is defined in this paper as

∇u =


∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z

 (6)

When the relation in Equation (5) is subsequently applied to the inner product in
Equation (4), the following relations are derived:

∇̃ṽT : D̃ : ∇̃ũ = QT∇vTQ : D̃ : QTuQ = ∇vT : D : ∇u, (7)

where D is the constitutive tensor written in the global coordinates with its components
expressed as

Dijkl = ∑
nmpr

QinQjmQkpQlrD̃nmpr (8)

In this paper, the orthotropic and global plate coordinates are always rotated around
the z axis. Consequently, the transformation matrix Q takes the following form:

Q =

 c s 0
−s c 0
0 0 1

, (9)

where c = cos(α), s = sin(α) and α constitute a rotation angle between the first axes of the
global and orthotropic coordinate systems around the z axis. The relation between those
two coordinates is illustrated in Figure 1.

Figure 1. Relation between orthotropic and global coordinates in the plate with orthotropic properties.
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Taking into account the form of the transformation matrix shown in Equation (9) the
Hook tensor defined with the global coordinates in Equation (8), takes the following form:

D1111 = D1c4 + D2s4 + (2D6 + 4D9)c2s2 = D1;

D2222 = D1s4 + D2c4 + (2D6 + 4D9)c2s2 = D2;

D3333 = D3 = D3;

D2233 = D3322 = D4c2 + D5s2 = D4;

D1133 = D3311 = D4s2 + D5c2 = D5;

D1122 = D2211 = (D1 + D2 − 4D9)c2s2 + D6(c4 + s4) = D6;

D2323 = D3232 = D2332 = D3223 = D7c2 + D8s2 = D7;

D1313 = D3131 = D1331 = D3113 = D7s2 + D8c2 = D8;

D1212 = D2121 = D1221 = D2112 = (D1 + D2 − 2D6)c2s2 + D9(c2 − s2)2 = D9;

D1332 = D3132 = D1323 = D3123 = D2313 = D3213 = D2331 = D3231 = (D7 − D8)cs = D10;

D1233 = D2133 = D3312 = D3321 = (D4 − D5)cs = D11;

D1222 = D2122 = D2212 = D2221 = D2c3s− D1cs3 + (D6 + 2D9)(cs3 − c3s) = D12;

D1112 = D1121 = D1211 = D2111 = D2cs3 − D1c3s + (D6 + 2D9)(c3s− cs3) = D13

The integral Equation (3) expressed with the orthotropic coordinates can now be
rewritten, so that all the components are described with the global coordinates∫

Γσ

v· t̂ dΓ−
∫
Ω

ε(v) : D : ε(u) +
∫
Ω

v· b dΩ = 0

u = û on Γu

(10)

Using the method described in the authors’ previous papers, for instance, [1,2,6], the
inner product in Equation (7) is then expressed with the derivatives in the transverse and
in-plane directions, consequently changing into

ε(v) : D : ε(u) =
∂v
∂z
·D1·

∂u
∂z

+
∂v
∂z
·D2 : ∇̄u + ∇̄vT : D3·

∂u
∂z

+ ∇̄vT : D4 : ∇̄u, (11)

where

∇̄u =

[
∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

]
(12)

The Di tensors constitute adequate parts of the Hooke’s D tensor, defined as follows:

(D1)ij = Di33j , i = 1, 2, 3 j = 1, 2, 3;

(D2)ijk = Di3jk , i = 1, 2, 3 j = 1, 2 k = 1, 2, 3;

(D3)ijk = Dij3k , i = 1, 2, 3 j = 1, 2 k = 1, 2, 3;

(D4)ijkl = Dijkl , i = 1, 2, 3 j = 1, 2 k = 1, 2 l = 1, 2, 3

(13)

The relations in Equation (13) provide definitions of Di tensors in the relation D one.
However, the explicit definitions of the non-zero components of the tensors are as follows

(D1)11 = D8 , (D1)22 = D7 , (D1)33 = D3

(D1)12 = (D1)21 = D10
(14)
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(D2)131 = D8 , (D2)132 = (D2)231 = D10 , (D2)232 = D7

(D2)311 = D5 , (D2)312 = (D2)321 = D11 , (D2)322 = D4
(15)

D3 = DT
2 ⇒ (D3)ijk = (D2)kji (16)

(D4)1111 = D1, (D4)2222 = D2, (D4)1331 = D8, (D4)2332 = D7

(D4)1122 = (D4)2211 = D6, (D4)2331 = (D4)1332 = D10

(D4)1212 = (D4)1221 = (D4)2121 = (D4)2112 = D9

(D4)1222 = (D4)2122 = (D4)2212 = (D4)2221 = D12

(D4)2111 = (D4)1211 = (D4)1121 = (D4)1112 = D13

(17)

Equation (11) is now applied to Equation (10). Moreover, the volume integrals are
separated into the in-plane and transverse ones:

∫
Γm

h
2∫

− h
2

∂v
∂z
·D1·

∂u
∂z

dz dΓ +
∫

Γm

h
2∫

− h
2

(
∂v
∂z
·D2 : ∇̄u + ∇̄vT : D3·

∂u
∂z

)
dz dΓ

+
∫

Γm

h
2∫

− h
2

∇̄vT : D4 : ∇̄u dz dΓ =
∫

Γm

h
2∫

− h
2

v· b dz dΓ +
∫
Γσ

v· t̂ dΓ

(18)

where Γm is the mid-surface of the plate. The 2D integration over the Γm surface can
be performed using a 2D finite element mesh, while the transverse one-dimensional
integration can be completed using standard 1D numerical integration schemes

ng

∑
i

∫
Γm

(
∂v
∂z
·D1·

∂u
∂z

)∣∣∣
z=zi

wi dΓ +
ng

∑
i

∫
Γm

(
∂v
∂z
·D2 : ∇̄u + ∇̄vT : D3·

∂u
∂z

)∣∣∣
z=zi

wi dΓ

+
ng

∑
i

∫
Γm

(
∇̄vT : D4 : ∇̄u

)∣∣∣
z=zi

wi dΓ =
ng

∑
i

∫
Γm

v· b d
∣∣∣
z=zi

wi dΓ +
∫
Γσ

v· t̂ dΓ

(19)

where zi are the integration points in the transverse direction.
Equation (19) is written for a single-layered orthotropic plate. Assuming that the plate

comprises M orthotropic layers, each with its own orthogonal orientation, the variational
equation for the whole plate is as follows:

M

∑
j

nj
g

∑
i

∫
Γm

(
∂v
∂z
·Dj

1·
∂u
∂z

)∣∣∣
z=zj

i

wj
i dΓ +

M

∑
j

nj
g

∑
i

∫
Γm

(
∂v
∂z
·Dj

2 : ∇̄u + ∇̄vT : Dj
3·

∂u
∂z

)∣∣∣
z=zj

i

wj
i dΓ

+
M

∑
j

nj
g

∑
i

∫
Γm

(
∇̄vT : Dj

4 : ∇̄u
)∣∣∣

z=zj
i

wj
i dΓ =

M

∑
j

nj
g

∑
i

∫
Γm

v· b
∣∣∣
z=zj

i

wj
i dΓ +

∫
Γσ

v· t̂ dΓ,

(20)

where Dj
k are material tensors defined for the jth layer of the plate and zj

i are the transverse
integration points for the jth layer.

3. Approximations

The details concerning spatial approximation have already been provided by Jaśkowiec
et al. [1]. This paper presents only an outline of the approximation scheme which is derived
first for a single layer and then extended to a multi-layered case.



Materials 2021, 14, 6959 7 of 16

The spatial approximation of the displacement in the jth layer is a combination of
the in-plane approximation and the transverse one. Using the 1D transverse approxima-
tion along the plate’s thickness, the displacement vector u(j)(x, y, z) is expressed in the
following way:

u(j)(x, y, z) =
Sj

∑
i=1

Ni(z)u(j)i(x, y), (21)

where Sj is the number of approximation surfaces specified along the thickness of the jth
layer dependent on the transverse approximation order, Ni is the i-th Lagrange polynomial
of the appropriate Sj − 1 order, while u(j)i(x, y) is the displacement vector on the i-th
approximation surface of the jth layer. The same kind of the displacement decomposition
has been previously proposed in [25,26] for hierarchical shell models. The approximation
order depends on the layer’s thickness. The first order of the transverse approximation may
be applied when the layer is thin. However, higher orders of the transverse approximation
have to be utilized when the thickness of the layer is significant in relation to the outer
dimensions of the plate. On the other hand, every vector ui(x, y) is, as in previous papers
such as [1,25–28], approximated using the same approximation field constructed on a single
2D mesh:

u(j)i(x, y) = Φ(x, y)ǔ(j)i, (22)

where Φ(x, y) is the approximation matrix defined on a 2D in-plane mesh, and ǔ(j)i is the
vector of nodal displacements in the i-th approximation surface of the j layer. Using the
Equations (21) and (22), the displacement vector in the entire jth layer is approximated as
follows:

u(j)(x, y, z) =
[
N1(z)Φ(x, y) N2(z)Φ(x, y) . . . NnS(z)Φ(x, y)

]
ǔ

= Ψ(x, y, z)ǔ(j),
(23)

where the global vector of degrees of freedom ǔ(j) comprises the vectors associated with
the subsequent surfaces of the j layer

ǔ(j) =


ǔ(j)1

ǔ(j)2

...
ǔ(j)Sj

 (24)

Two consecutive, adjacent layers share a common surface and, consequently, the
degrees of freedom associated with it. The common degrees of freedom of the two adjacent
layers satisfy the relation

ǔ(j)Sj = ǔ(j+1)1 (25)

The variational Equation (20) requires the in-plane gradient and the transverse deriva-
tive of the displacement field. Such derivatives for the displacement approximation in
Equation (23) are expressed as follows:

∇̄u(j)(x, y, z) =
[
N1(z)∇̄Φ(x, y) N2(z)∇̄Φ(x, y) . . . NnS(z)∇̄Φ(x, y)

]
ǔ(j)

= ∇̄Ψ(x, y, z)ǔ(j)

∂u(j)

∂z
(x, y, z) =

[
N′1(z)Φ(x, y) N′2(z)Φ(x, y) . . . N′nS(z)Φ(x, y)

]
ǔ(j)

= Ψ,z (x, y, z)ǔ(j)

(26)
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After substituting the approximation shown in Equation (23) and derivatives from
Equation (26) to Equation (20), the following discrete system of the equation is obtained:

(K1 + K2 + K3 + K4)ǔ = F, (27)

where particular matrices and the right-hand-side vector are generated with the assembling
procedure across the plate’s layers

ǔ =
M

∑
j

A(j)T
ǔ(j) , Kn =

M

∑
j

A(j)T
K(j)

n A(j) , F =
M

∑
j

A(j)T
F(j)

b + A(σ)T
F(σ)

t , (28)

where A(j) is the assembling operator for the jth layer. The definitions of other components
in Equation (28) are as follows:

K(j)
1 =

nj
g

∑
i

wj
i

∫
Γm

Ψ,z (x, y, zj
i)·D1·Ψ,z (x, y, zj

i)dΓ;

K(j)
2 =

nj
g

∑
i

wj
i

∫
Γm

Ψ,z (x, y, zj
i)·D2 : ∇̄Ψ(x, y, zj

i)dΓ, K(j)
3 = K(j)

2

T
;

K(j)
4 =

nj
g

∑
i

wj
i

∫
Γm

∇̄ΨT(x, y, zj
i) : D4 : ∇̄Ψ(x, y, zj

i)dΓ;

F(j)
b =

nj
g

∑
i

wj
i

∫
Γm

ΨT(x, y, zj
i)· b dΓ , F(σ)

t =
∫
Γσ

ΨT(x, y, zσ)· t̂ dΓ

(29)

where zσ is the surface on the top layer, where traction t̂ is applied.

4. Examples

This section presents three examples demonstrating the accuracy and efficiency of
the FEM23 method for orthotropic multi-layered plates. In the examples, the results
yielded by the FEM23 approach are compared with the ones from other published study.
The first example, Section 4.1, focuses on a simply supported three-layered square plate
whose layers demonstrate the same mechanical properties, but their orthotropic directions
are rotated. The results yielded with the layerwise theory and 3D FEM are compared.
Additionally, various types of simply supported boundary conditions and the case study of
plates with varying thickness are analyzed. The second example, Section 4.2, investigates a
plate with layers of varying values of thickness. In the first case, the plate consists of three
layers, and in the second one, of nine layers constructed with three different materials.
This example shows how the FEM23 method copes with multi-layered structures made
of different orthotropic materials with various thickness. The FEM23 results are verified
with the zigzag theory and 3D FEM. In the third example, the plate under consideration is
a three-layered one, in which the orthotropic directions are rotated in relation to each other.
In this example, the FEM23 results are again compared with the ones obtained using the
zigzag theory and the standard 3D FEM.

4.1. Example 1

In this example, a simply supported three-layered square plate loaded by the pressure
on the upper outer surface is analyzed. The side length of the plate is a, while the thickness
of the plate is h with h

3 thickness for each layer. The geometric and material properties of
the plate are shown in Figure 2. In this example, the results obtained by the FEM23 are
compared with the ones presented in [29,30], where layerwise plate theories were applied.
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In the FEM23 a full 3D analysis is performed, using standard 3D finite elements in the
ABAQUS application.

y

x

z

a
a

h

pz = q0

α = [0◦, 90◦, 0◦]
E1/E2 = 25
E3 = E2
G12/E2 = G13/E2 = 0.5
G23/E2 = 0.2
ν12 = ν13 = ν23 = 0.25

Figure 2. Example 1: Three-layered, simply supported sandwich plate loaded by constant distribution
of transverse pressure.

The fact that the plate is simply supported can be easily applied in the case of plate
theory. However, in a 3D analysis, such boundary conditions are ambiguous. In a simply
supported 3D plate, the outer points at the bottom of the plate may be blocked and in
another approach—the outer points at the mid-surface of the plate. Moreover, the plate
can be hard or simply supported. Figure 3 presents graphically different versions of the
simply supported boundary conditions in a 3D analysis.

y

x

z

(a)

y

x

z

(b)
y

uxyzx

z

(c)

y

uzuxy

ux

uy
x

z

(d)
Figure 3. Example 1: Types of boundary conditions for simply supported plate and their symbols. Four versions of
boundary conditions: [mh], [ms], [bh], and [bs]. (a) boundary condition in the middle of the plate thickness [m{h,s}];
(b) boundary condition at the bottom of the plate thickness [b{h,s}]; (c) hard simply supported [{m,b}h]; (d) soft simply
supported [{m,b}s].

In this example, the results obtained by the FEM23 method are compared with the
ones taken from the papers by Vuksanović et al. [30] and Carrera and Ciuffreda [29], where
multilayer plate theories were applied, as well as with the results yielded with the standard
3D FEM method using the Abaqus package. In the FEM approach, each layer of the plate
is discretized by a single layer of hexahedral elements. Table 1 shows all the results in
the form of a dimensionless deflection ūz and stress component σ̄x, both evaluated at two
central points of the plate:

ūz =
E2100h3

q0a4 uz

( a
2

,
a
2

, 0
)

(30a)

σ̄x =

(
h
a

)2 1
q0

σx

(
a
2

,
a
2

,−h
2

)
(30b)
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Table 1. Example 1: The results for the simply supported plate.

Theory 3D Analysis

a/h [30] [29] FEM23 FEM (Abaqus)

mh ms bh bs mh ms bh bs

|ūz|
4 3.079 3.044 3.818 3.818 4.333 5.878 3.98 3.98 4.04 5.55

10 1.156 1.154 1.214 1.213 0.937 1.351 1.22 1.22 0.906 1.34
100 0.671 0.671 0.678 0.672 0.316 0.672 0.672 0.672 0.314 0.672

σ̄x

4 1.116 1.117 1.026 1.028 0.450 1.175 1.015 1.016 0.441 1.192
10 0.872 0.871 0.881 0.882 0.442 0.874 0.880 0.880 0.417 0.875
100 0.808 0.808 0.810 0.810 0.215 0.810 0.810 0.810 0.288 0.810

The results yielded with the FEM23 and FEM presented in Table 1 coincide for all
sorts of applied supports and for every plate thickness, which proves that the FEM23
provides an accurate 3D analysis. The results are also in good correlation with the ones
obtained with plate theories, but only when boundary conditions are applied to the mid-
surface nodes in the FEM23 and a thin plate is considered. When the relation a/h increases,
both types of results become inconsistent, which is natural for plate models based on the
Kirchhoff—Love theory efficient only for thin plates.

The results are illustrated with the plots of the dimensionless deflections and the
stress σ̄x for the plates with a/h = 4 and a/h = 100 along the plate’s thickness shown in
the middle of the plate (see Figures 4 and 5). It can be noted that the application of the
boundary conditions plays a significant part in the case of the 3D model. Different results
are yielded when the support is applied at the bottom edge or in the middle of the plate’s
thickness. The bottom edge support case is very sensitive to both hard and soft application
of the boundary condition. Such sensitivity is not observed when the middle edge support
is used. The following Figures show the comparison of the obtained results with the ones
based on the plate theory taken from [29]. In the case of thin plate, the results of the [mh]
type boundary conditions almost overlap (see Figure 5). However, when a thick plate is
considered (see Figure 4), these two types of results differ, which is typical for the plate
theory approaches.

−6 −5.5 −5 −4.5 −4 −3.5 −3

−0.4

−0.2

0

0.2

0.4

ūz

z/
h

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

σ̄x

z/
h

bh bs mh ms [29]

Figure 4. Example 1: Plots of dimensionless deflection ūz and stress component σ̄x in the middle
of the plate with a/h = 4, along the plate thickness calculated by FEM23 with different types of
boundary conditions.
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−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

σ̄x

z/
h

bh bs mh ms [29]

Figure 5. Example 1: Plots of dimensionless deflection ūz and stress component σ̄x in the middle
of the plate with a/h = 100, along the plate thickness calculated by FEM23 with different types of
boundary conditions.

The FEM23 method uses full 3D modelling with the calculations performed on a
2D domain. In this example, the FEM23 results are compared with the ones obtained by
the standard 3D FEM method with Abaqus application. As can be seen in Table 1, both
approaches yield very similar results for all types of boundary conditions. Both methods
are also compared in Figure 6, where the presented 3D deflection and stress maps are
very similar to each other. It can be observed that the relative differences of the maximum
deflections and stresses are around 7 · 10−3 and 2 · 10−1, respectively.

ABAQUS FEM23

uz

(a) (b)

σxx

(c) (d)
Figure 6. Example 1: The maps of deflection uz (a,b) and the stress component σxx (c,d) presented on
the half of the deformed plate obtained by 3D FEM and FEM23 for the bs boundary type.

4.2. Example 2

The following example, excerpted from [31], applying the Hellinger–Reissner refined
zigzag theory (HR-RZT), analyzes a square multi-layered plate of a = 2 m total thickness
h =0.1 m], with a constant load q0 = 0.1 N/mm2. The plate is constructed of three types
of materials called A, B, and C, whose properties are provided in Table 2. The material A
is an orthotropic carbon-fiber reinforced plastic, the material B represents an orthotropic
titanium honeycomb structure, and the material C corresponds to an isotropic foam made
of polyvinyl chloride.
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Table 2. Example 2: Properties of the materials in the plate.

A B C

Ek
1 [N/mm2] 157,900 191.5 104

Ek
2 [N/mm2] 9584 191.5

Ek
3 [N/mm2] 9584 1915

µk
12 [-] 0.32 6.58·10−3 0.3

µk
13 [-] 0.32 6.43·10−7

µk
23 [-] 0.49 6.43·10−7

Gk
12 [N/mm2] 5930 4.23·10−5 40

Gk
13 [N/mm2] 5930 365.1

Gk
23 [N/mm2] 3227 1248

The analysis involves, as in considered paper [31], two types of multi-layered plates:
the ones consisting of three and nine layers. The structures of the two plates are presented
in Table 3, and the nine-layered plate is shown in Figure 7. It is assumed that the angle of
the orthotropic direction α is equal to zero for each layer. The calculations performed in the
FEM23 method utilize a quadrilateral mesh structure with 42 × 42 nine-node elements. In
this example, the coordinates’ origin is located in the middle of the plate. The boundary
conditions are as follows:

uz = 0 for the points (±a/2, y, 0) and (x,±a/2, 0);

ux = uy = 0 for the point (−a/2,−a/2, 0);

uy = 0 for the point (a/2,−a/2, 0)

(31)

Table 3. Example 2: Stacking sequence.

Laminate Layer Sequence hk/h

L1 A/C/A 0.1/0.8/0.1
L2 A/C/A/C/B/C/A/C/A 0.1/0.1/0.1/0.1/0.2/0.1/0.1/0.1/0.1

Figure 7. Example 2: Construction of the nine-layered plate.

The results presented in the form of diagrams of deflection and selected quantities
along the plate’s thickness are shown in Figures 8 and 9 for the L1 and L2 plates, respectively.
The diagrams provide a comparison of the FEM23 results with the ones yielded by the
HR-RZT and full 3D FEM approaches provided in the paper [31]. In the case of the three-
layered plate L1, all three types of results coincide. When the case of the nine-layered
L2 plate is considered, the results of the 3D FEM and FEM23 are almost the same and
differ only slightly when compared with the HR-RZT results. All the above observations
confirm the effectiveness of the FEM23 approach for a numerical analysis of multi-layered
phototropic plates.
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Figure 8. Example 2. Results for plate L1: deflection ūz(x, 0, 0) (a), displacement ūx(3/7l, 0, z) (b),
normal stress σx(3/7l, 0, z) (c), shear stress σxz(3/7l, 0, z) (d).

4.3. Example 3

The following example investigates a three-layered 50 × 50 mm composite square
plate of 1 mm thickness subjected to a uniform pressure of qz = 1 N/mm2. Each layer
is made of the same orthotropic material with the 0◦/90◦/0◦ orientations (for 0◦, axis 1
corresponds to the global x axis). The material properties are presented in Table 4.

Table 4. Example 3: Material properties.

Ek
1 [N/mm2] 125,000

Ek
2 [N/mm2] 7400

Ek
3 [N/mm2] 7400

µk
12 [-] 0.34

µk
13 [-] 0.34

µk
23 [-] 0.37

Gk
12 [N/mm2] 4800

Gk
13 [N/mm2] 4800

Gk
23 [N/mm2] 2700

In the given example, the FEM23 calculations are performed with the use of a 2D
70 × 70 structural mesh consisting of nine-node quadrilateral elements. The coordinates’
origin is located in the middle of the plate, and the boundary conditions remain the same
as presented in Equation (31). The FEM23 results are compared with the ones yielded by
the HR-RZT [31] and 3D FEM [32] methods.

Figure 10 shows the diagrams of two shear stress components σxz and σyz along the
plate’s thickness at two selected points of the plate generated with the FEM23, 3D FEM,
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and HR-RZT, respectively. In this case, the FEM23 results almost coincide with the results
of the two other approaches, with only a slight difference observed between them.
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Figure 9. Example 2. Results for plate L2: deflection ūz(x, 0, 0) (a), displacement ūx(3/7l, 0, z) (b),
normal stress σx(3/7l, 0, z) (c), shear stress σxz(3/7l, 0, z) (d).
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Figure 10. Example 3: shear stress along the plate thickness σxz(3/7l, 0, z) (a) and σyz(0, 3/7l, z) (b).

5. Conclusions

This paper has presented the FEM23 method adapted for a numerical analysis of
orthotropic multi-layered plates. The novelty of the paper lies in using the FEM23 approach
to derive a numerical model for a single orthotropic layer and extend its application to
multi-layered plates. The FEM23 approach utilizes a 2D finite element mesh to perform a
full 3D analysis of multi-layered structures. The method, in contrast to the standard 3D
FEM, can efficiently deal with structures comprising a combination of thick and thin layers
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made from different materials. The numerical model generated with the FEM23 is based
on the 2D–1D decomposition in the physical model, spatial integration, and approximation.
The physical properties of the layers are defined for each one independently. The layers’
orthotropic properties are introduced with the fourth order Hooke’s tensor for orthotropic
materials expressed with the local, orthotropic coordinates. Due to the symmetry of
Hooke’s tensor, the strain tensor is substituted by the displacement gradient, and the
transformation to the global coordinates of the tensor is derived. Then, the numerical
models of the individual layers are combined to assemble the global model based on a 2D
finite element mesh. After postprocessing, full 3D results are obtained.

The paper is illustrated with examples analyzing multi-layered plates subjected to
external loads. In each case, the FEM23 results are compared with the ones taken from
several published papers, based on plate theories, or obtained with the standard 3D FEM
method. The FEM23 and the 3D FEM results generally coincide. In the case of thin plates,
the FEM23 results are comparable with the ones yielded by plate theories. However, when
thicker plates are considered, the results begin to diverge, which is common for plate
theories. Modelling multi-layered plates is relatively easy in the FEM23 method, where the
layers, thick or thin, demonstrating homogenous or orthotropic properties, are combined
to assemble the final numerical model.

The full potential of the FEM23 method is yet to be discovered, especially with its
Matlab-based software still evolving to be more efficient and able to model a spectrum
of mechanical issues. In the near future, the applications of the presented method in the
context of multi-layered anisotropic structures may include: buckling and post-buckling
analysis, dynamics, thermo-mechanical analysis, or delamination processes using large
deformation descriptions.
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