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Abstract: Polyacrylics have been considered for a broad range of material applications, including
coatings, dental applications, and adhesives. In this experimental study, the casting potential of
a group of (co)monomers belonging to the acrylic family has been explored to enable a more sus-
tainable use of these polymer materials in the medical and veterinary science field. The individual
contributions of each comonomer have been analyzed, the reaction conversion has been studied via
gas chromatography (GC), the rheological behavior has been characterized via stress-controlled mea-
surements, and the final mechanical properties have been obtained from tensile, flexure, and impact
tests. The GC results allow assessing the pot life and thus the working window of the casting process.
For the rheological measurements, which start from low-viscous mixtures, a novel protocol has been
introduced to obtain accurate absolute data. The rheological data reflect the time dependencies of the
GC data but facilitate a more direct link with the macroscopic material data. Specifically, the steep
increase in the viscosity with increasing reaction time for the methyl methacrylate (MMA)/ethylene
glycol dimethyl methacrylate (EGDMA) case (2% crosslinker) allows maximizing several mechanical
properties: the tensile/flexure modulus, the tensile/flexure stress at break, and the impact strength.
This opens the pathway to more dedicated chemistry design for corrosion casting and polyacrylic
material design in general.

Keywords: polymeric material characterization; coformulations design; corrosion casting

1. Introduction

Polymers are well known for their wide range of applications, including both daily
products and specific polymers for niche markets. Amongst these polymers, poly (methyl
methacrylate), or shortly PMMA, has a significant role in the polymer industry [1–5]. This
has become further evident during the current COVID pandemic through the utilization
of PMMA for personal protective equipment [6–11]. PMMA is a good glass substitute
thanks to its mechanical properties and transparency [1,3,12,13]. It also possesses chemical
recycling potential, contributing to its circularity [14–20]. In the medical field, PMMA is
the main constituent of bone cement [21–25]. PMMA is also the main component of resins
used to make dental prosthetics and dentures [1–3,26–30].

Another PMMA-based application is so-called corrosion casting, which anatomists
use to create models of the space inside body systems or elements [31–37]. Examples are
the vascular, the respiratory, and the lymphatic system that can be filled with a resin
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that solidifies, therefore creating a replica [31,34,38–45]. Polymeric resins are commonly
used for this purpose, as they have been successful in offering a reasonable solidification
time [31,32,46,47] and an acceptable resistance to corroding agents [32,48]. Nonetheless,
several characteristics still need to be further improved: (1) the pot-time, or the lifetime that
the resin mixture can be applied [31,34,40,44,46,49], (2) the rheology/flow, as this defines
the performance in filling [31,39,48–53], and (3) the durability of the resistance, as the final
cast has to be resistant for subsequent manipulation and study [34,39,51,53–55]. In any
case, there is a strive for more sustainable PMMA manufacturing processes. This can be
either on the level of the blend/polymer material design or through the more efficient
exploitation of the (polymer) processing technique delivering the final material product.

For the (corrosion) casting process, the main process variable is the chemical formula-
tion, and in general, acrylic-based resins are utilized that are more complex than simply
Methyl Methacrylate (MMA). MMA often occupies the role of the key monomer, but in
practice, one adds comonomers from the same monomer family, hence, methacrylates, or
from a compatible monomer family being acrylates [56–60]. Figure 1 displays the chemical
representations of three monomers (alongside MMA) relevant in this coformulation design:
n-Butyl Acrylate (BA), Ethylene Glycol Dimethacrylate (EGDMA), and Ethylene Glycol
Diacrylate (EGDA). The chemical formula is displayed as a structural model on the left
side, while a 3D model based on spheres and sticks is shown on the right side. All four
molecules in Figure 1 possess a vinyl group directly attached to the carbon of an ester
group. BA is widely used as a comonomer to enhance flexibility and increase impact
strength [1,22,28]. EGDMA and EGDA have two vinyl groups, which allows them to
form crosslinked systems and ultimately networks and to also strengthen the polymer
mechanical properties [25,30,61–63].
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Figure 1. Chemical representations of Methyl Methacrylate (a,b), n-Butyl Acrylate (c,d), Ethylene 
Glycol Dimethacrylate (e,f), and Ethylene Glycol Diacrylate (g,h). The left side corresponds to a 
structural model of the chemical formula, while the right side corresponds to a 3D model based on 
spheres and sticks. 

Figure 1. Chemical representations of Methyl Methacrylate (a,b), n-Butyl Acrylate (c,d), Ethylene
Glycol Dimethacrylate (e,f), and Ethylene Glycol Diacrylate (g,h). The left side corresponds to a
structural model of the chemical formula, while the right side corresponds to a 3D model based on
spheres and sticks.

A limited number of studies have systematically investigated the relationship between
the acrylic blend proportions and final material/macroscopic properties. For instance,
corrosion casting studies with MMA-based resins have been limited to the investigation
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of the effect of diluting the resin [35,46,64]. To the best knowledge of the authors, the first
casting MMA-based resins were inspired by the resins developed for dental applications
so that casting resins consisted of liquid MMA, PMMA powder, and some initiator [40],
alongside additives. Thus, variations including the building blocks from Figure 1 are
lacking and a key novelty, as explored in the present work, is the consideration of such
variations.

Previous research on dental materials and other closely related MMA-based materials
such as bone cement provides at most only complementary information in connection to
research on (corrosion) casting materials. There is specifically a strong desire for more ded-
icated rheological measurements [65–71]. Mechanical properties have been also measured
for MMA-based materials [72–76], but emphasis is typically on one mechanical property.

Therefore, the current experimental study seeks to screen more systematically the
chemistry, rheology, and mechanical properties of acrylic coformulations (Figure 1) in view
of their (corrosion) casting potential. Individual comonomer contributions are assessed to
correlate the relevance of the coformulation with both the behavior of the system during
polymerization and the quality of the final product, the latter through the production
of test specimens through well-designed silicone molds. To facilitate the bridging of
chemistry with final applications, a novel rheological protocol is introduced that is capable
of reliably treating data recording, starting from an improved blending strategy and a low
viscous mixture.

It is demonstrated that the pot life is a key manufacturing parameter, and a maximiza-
tion of tensile, flexure, and impact macroscopic properties can be associated with a strong
increase in viscosity data, highlighting the relevance of the novel rheological protocol.

2. Materials and Methods
2.1. (Co)monomers

Methyl Methacrylate (MMA), n-Butyl Acrylate (BA), and Ethylene Glycol Dimethacry-
late (EGDMA) were purchased from Sigma-Aldrich brand and provided by CHEMLAB
ANALYTICAL bvba, Zedelgem, Belgium. Ethylene Glycol Diacrylate (EGDA) was pur-
chased from Acros-Organics brand and provided by VWR International, LLC., Leuven,
Belgium. Every monomer bottle contained methyl ethyl hydroquinone (MEHQ) as a poly-
merization inhibitor. Each monomer was passed through a bed of aluminum oxide to
remove this inhibitor [77]. The obtained solutions were bottled and stored at 4 ◦C.

2.2. Initiator

Benzoyl Peroxide (BPO), in the commercial form of Luperox® A75, was purchased
from Sigma Aldrich brand, provided by Merck Life Science BV, Overijse, Belgium and
recrystallized from a solution in acetone [78].

2.3. Accelerator

N,N-bis-(2-Hydroxyethyl)-p-Toluidine (DHEPT) was purchased from Aldrich Chem-
istry brand, provided by Merck Life Science BV, Overijse, Belgium, and recrystallized from
a solution in cyclohexane-toluene (1:1) [79].

2.4. Other Substances

Aluminum Oxide (Al2O3; activated; neutral, Brockmann I) and Hydroquinone with a
purity ≥99.5% were purchased from Sigma-Aldrich brand, provided by Merck Life Science
BV, Overijse, Belgium. Dichloromethane HPLC grade and Acetone with a purity ≥99.5%
were purchased from Chem-Lab NV brand and provided by CHEMLAB ANALYTICAL
bvba, Zedelgem, Belgium. n-Decane with a purity ≥99% was purchased from Honey-
well brand and provided by Thermo Fisher Scientific Inc., Merelbeke, Belgium. All these
substances were used as purchased.
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2.5. Coformulations/Blends and Flask Polymerization Experiments

For every formulation case shown in Table 1, the same overall protocol was followed.
An initial comonomer solution was prepared by mixing the comonomers, with the limiting
case of only one monomer also included (entry 1). Then, two solutions were prepared by
splitting the comonomer solution (or monomer solution for entry 1) as 80 volume % with
accelerator being added afterwards (“accelerator solution”) and 20 volume % with initiator
being added afterwards (“initiator solution”).

Table 1. (Co)formulation cases of reaction mixtures explored in the present work. Each case is
described by the molar percentage composition of the (co)monomer solution, the molar concentration
ratio of initiator to monomer (cI0/cM0), and the mass ratio accelerator to initiator (wA0/wI0). In
all cases, except Case 1, the polymerization was started at room temperature; Case 1 has a starting
temperature of 90 ◦C.

Case Monomer Molar Percentage Initiator Accel. 1

MMA BA EGDMA EGDA cM0/cI0 wA0/wI0

1 100% 100 0
2 100% 100 1
3 100% 100 0.5
4 100% 100 2
5 90% 10% 100 1
6 50% 50% 100 1
7 98% 2% 100 1
8 95% 5% 100 1
9 98% 2% 100 1

10 95% 5% 100 1
1 Accel.: accelerator.

The accelerator solution was split in aliquots of 0.4 mL in glass vials with an open-top
cap and septum. The initiator solution was kept in a flask with a neck and closed with a
septum. Every solution was sparged and flushed with high-purity argon gas for at least
30 min. Upon checking that the argon atmosphere was preserved, 0.1 mL of the initiator
solution was injected into each vial at room temperature (except for entry 1). Upon injection,
a stopwatch was started to measure the reaction time. The polymerization was completed
in the different vials at different predefined time intervals to enhance the accuracy of
each single data point. This polymerization stopping was achieved by immersing the
vials in liquid nitrogen for 60 s and then adding a solution of hydroquinone (inhibitor) in
acetone/dichloromethane (1:49 in volume).

Note that also a conventional free radical polymerization (FRP) case has been in-
cluded in Table 1 (Case 1) in which the polymerization temperature is set well above room
temperature. Under such conditions, the role of the accelerator is negligible.

2.6. Gas Chromatography (GC) Analysis and Conversion Calculations

Chromatographical tests were carried on a TRACE™ GC ULTRA Gas Chromatograph
(GC) from Thermo Scientific equipped with an HP-5MS column (30 m × 0.250 mm) from
Agilent Technologies Belgium S.A./N.V., Diegem, Belgium. The GC was connected with a
flame ionization detector with hydrogen as carrier gas at a flow rate of 1.5 mL·min−1. The
signal was acquired and recorded with the equipment software, and then analyzed. The
(molar) ratios of MMA to n-decane were determined by comparing the corresponding area
under the signal peak of each compound [80,81]. The MMA conversion profile was calcu-
lated from the ratios at different reaction times compared to the ratio at time zero. Before
injection in the GC unit, each sample was consistently diluted with dichloromethane and a
standard aliquot of n-decane as a reference marker [82]. For Cases 5 and 6 in Table 1, BA
peaks were also acquired and a similar procedure was used to calculate the BA conversion.
Similarly, for the crosslinkers, conversion values have been recorded.



Materials 2021, 14, 6939 5 of 19

2.7. Polymerization in a Rheometer and Rheological Analysis

Rheological tests were performed with an MCR 702 MultiDrive Rheometer from
Anton-Paar Benelux BV, Gentbrugge, Belgium. The accelerator solution and the initiator
solution were mixed, and a stopwatch was started to measure the preparation time related
to transfer. The mix was transferred to the cup of a concentric cylinder (CC) geometry.
Then, the cylinder spindle was lowered to the measuring position, and a constant shear
rate test was performed. The stopwatch measurement was ended once the rheometer
started its test, and this was logged as the finalization of the preparation time. Rheological
tests were performed in triplicate format at shear rates of 1 s−1, 3 s−1, 10 s−1, and 80 s−1.
Each test was performed with an initial temperature of 20 ◦C with no temperature control
(non-isothermal case) and at a controlled temperature of 20 ◦C (isothermal case).

Each experiment yielded a table of viscosity data vs. time, as registered with the
rheometer software. These data were exported to MS Excel, and the initial (reaction) time
was corrected by adding the preparation time measured with the stopwatch. For every raw
data set of viscosity values, a moving average was applied over a certain periodic number
of points. This process yielded another data set in which the trend is revealed from the
oscillatory pattern. In the next step, each group of curves, corresponding to the same value
of shear rate, was arithmetically averaged to obtain one (absolute) data set per shear rate
value. This dedicated treatment, which to the best of the author’s knowledge has not been
reported or developed before, is illustrated in Figure 2. Figures S1–S4 of the Supporting
Information highlight the specific individual data treatments in more detail. Hence, the
present work puts forward an elegant protocol toward the analysis of rheological data for
polymerization reactions with low viscous reagents.
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reacting and becoming more viscous. The figure shows an example of the raw oscillatory data (left), then the moving
average step that yields optimized data (center), and finally the arithmetic average step that yields the absolute data (right)
per shear rate value.

2.8. Mechanical Property Tests

Molds were fabricated for the casting of mechanical testing specimens from a polymer-
izing mixture with initial low viscosity and volume shrinkage in a later stage. These molds
were made in semitransparent silicone and cut open in two parts, which allows opening
the molds for the removal of the fully cured specimens. As illustrated in Figure 3, each
mold is a solid prism with an inner cavity that is shaped for the targeted specimen. This
cavity lies inside the mold with an inclination, minimizing the entrapment of possible air
bubbles. Beyond the specimen-shaped cavity ends, the mold system extends longitudinally
in both directions: first in narrow necks and then further into short chambers. Over these
chambers, two vertical channels connect with the top surface of the mold, as is also clear
from Figure 3.
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Figure 3. Molds developed for the casting of a polymerizing mixture with low initial viscosity and
subsequent shrinkage: (a) conceptual representation of the structure of the inside cavity, (b) picture
of a closed silicone mold, and (c) picture of an open silicone mold with a final specimen.

The molds were cleaned, dried, and fixed in preparation for the casting. The accelera-
tor solution and the initiator solution were mixed, and the resulting mixture was poured
through the channel connecting to the lowest chamber until the liquid level reached the
top of the opposite channel. Both channels were covered to minimize contact with air.
The specimens were removed from the molds after a minimum of 24 h, after which they
were allowed to rest for at least 3 days on a flat surface to ensure maximum curing before
proceeding further.

Dog bone type 1A specimens (see Figure 3) were produced according to ISO 527-2
standard for tensile testing. In addition, rectangular un-notched type 1 specimens were
prepared according to the ISO 197-1 standard for the flexure test and the Charpy impact test.
Specimens were stabilized in a controlled temperature and humidity environment for at
least 48 h before testing. Tensile tests were conducted according to the ISO 527 standard on
an Instron 5565 testing machine, from Instron, using a strain rate of 1 mm min−1. Flexure
tests were conducted according to the ISO 178 standard on an Instron 4464 testing machine,
also from Instron, using a flexion rate of 1 mm min−1. Impact tests were conducted
according to ISO 179 standard on an IT 503 machine from Tinius Olsen, with an initial
pendulum energy of 2.75 J.

3. Results and Discussion

In this section, emphasis is first on the analysis of the GC data to then distill interesting
coformulations for subsequent rheological analysis and to in a similar manner fine-tune
the pool of coformulations for mechanical analysis.

3.1. Analysis of GC Data

The results of the conversion vs. time experiments for the cases in Table 1 are shown
in Figure 4. Case 1 has been conducted to compare conventional polymerization results,
as initiated by thermal decomposition of the initiator at elevated temperature (90 ◦C),
with targeted casting results (other cases in Table 1), as initiated by chemical interactions
involving the accelerator at room temperature. The conventional FRP conditions of Case 1
allow a high MMA conversion in a short time, with e.g., already more than 30% monomer
conversion after 5 min (gray “x” symbols in Figure 4). Even though the temperature was
not registered in Case 1, after a certain amount of reaction time the samples started to form
bubbles, which is practically not recommended. A lower but still acceptable polymerization
rate is obtained in Case 2 at room temperature with an accelerator, with e.g., 25% MMA
conversion after 10 min (gray “+” symbols in Figure 4). Thus, it makes sense to consider
the accelerator-triggered initiation of the polymerization at a lower temperature.
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Case 3 (full blue line in Figure 4) and Case 4 (dashed blue line in Figure 4) show
the behavior if the proportion of the chemical initiator to accelerator is reduced by half
and increased by a factor of 2, compared to Case 2. Such a design is essential to illustrate
the impact of the accelerator amount on the MMA consumption rate. The blue lines are
more or less embedding the gray “+” symbols of Case 2, highlighting the relevance of
this process parameter and the overall reliability of the data set recording. Furthermore,
Case 5 and Case 6 (full and dashed orange lines in Figure 4) show the effect of using BA
as a comonomer in different proportions to MMA, again with as reference Case 2 having
no such BA content. Here, the relative position of the gray “+” symbols is less evident,
which is indicative of less trivial chemical interactions. Indeed, the homopolymerization
of BA is faster than the homopolymerization of MMA [83], although cross-propagation is
favored for the BA-radical/MMA pair compared to the MMA-radical/BA pair, as clear
upon comparing the monomer reactivity ratios [84–87]. In Case 6 (orange dashed line
in Figure 4), with a high BA amount, a very high MMA consumption rate is obtained,
but for Case 5 with a lower BA amount (orange full line in Figure 4), still, a reasonable
consumption rate is observed, although it is not that different compared to Case 2. Thus, it
follows that the BA amount is an interesting handle to push the rate forward in a given
processing window.

Upon replacing this BA monomer by a crosslinker of either the methacrylate (EGDMA)
or acrylate (EDGA) type and using small amounts of this crosslinker (2 or 5%), globally
again lower rates are obtained. This is clear upon inspecting the results Cases 7–10 that are
associated with the green and ocher lines in Figure 4. These lines globally reflect results
closer to the reference Case 2 with no crosslinker and only MMA. An exception is the
5% EDGA crosslinker case (Case 10; dashed ocher lines in Figure 4) with more MMA
consumption even close to fast consumption in Case 6 (high BA amount; orange dashed
line in Figure 4). This last observation highlights the relevance of the optimization of the
type of crosslinker (acrylate over methacrylate) and its amount (5 instead of 2%). Upon
using the EDGMA crosslinker with a 5% amount (green dashed lines), the MMA rates
are for instance lower, and the crosslinker also slows down the polymerization, again
demonstrating the acrylate/methacrylate monomer balance.

This strong impact of the use of acrylate monomers is further clear upon inspecting
the additional data in Figure 5. In that figure, displaying both the conversion of MMA
and BA, a subtle yet important difference between the way MMA and BA are consumed
is illustrated. In the visualized timeframe up to 20 min, the MMA conversion increases
more rapidly than the BA conversion for both cases (Case 5 and 6 in Table 1), as the closed
symbols are located more at the top of Figure 5. Furthermore, for both monomers, the rate of
growth decreases as time advances. This is especially true for BA, as evidenced by the more
flattening of the lower data points in Figure 5. Multiple (competitive) factors contribute to
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this effect. One first needs to be reminded that the (intrinsic/chemical) homopropagation
reactivity is higher, at least one order of magnitude, for BA. Then, it is necessary to add
in the reasoning the impact of diffusional effects. Diffusivity codetermines the reaction
rates [88,89], as it can hinder selectively the capacity of the molecules to move and come at
a distance to effectively react. Diffusional limitations are significantly more relevant in the
(homo)polymerization of MMA, as being the cause of a strong gel effect [26,90–93], limiting
the impact of the termination reaction and yielding an increase in the polymerization rate.
Furthermore, reactivity ratios also determine which type of propagation reaction will be
favored once the molecules are close enough to react. As already explained above, the
reactivity ratios show that whenever there is an active growing chain, being the radical
located either in a terminal unit of MMA or BA, the reaction will be favored toward the
addition of another MMA unit. These three aspects, coupled with a fourth aspect being the
initial limited (or maximum equivalent) availability of BA, explains why on a net basis the
rate of growth for the conversion of BA decreases upon comparison with the rate for MMA.
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Another interesting research angle is the investigation of the material strength already
during the synthesis, which is expected to be higher with more intense crosslinking. For
example, Case 3 through Case 6 (all no crosslinker) in Table 1 did not give any issues
regarding sampling and could be easily sampled after 2, 10, and 20 min. In contrast, the last
sample as recorded at 20 min for Case 7 (with EGDMA crosslinker) cracked once the sample
was quenched in liquid nitrogen (first entry in Table 2). After observing this cracking, the
following experiments (Cases 8–10; all crosslinker) had an additional sampling point at
15 min. Cases 8 and 10, which correspond to the highest proportions of EGDMA and EGDA
crosslinker, also developed temperatures that were high enough to cause cracking of the
vials containing the reaction mixture upon quenching in liquid nitrogen. The occurrence of
this cracking is shown by the crosses in the second and fourth row of Table 2. To further
understand this undesired phenomenon, the solid frozen content could be recovered in
one piece and put in dichloromethane in preparation for GC analysis. Nonetheless, the
samples with high crosslinking amounts could not be dissolved after 72 h, highlighting the
sufficiently crosslinked nature of the polymer formed [94]. Hence, toward the development
of casting applications, care should be taken not to increase the crosslinking amount too
much. For example, in Case 9 with only 2% of EDGA, no cracking was observed, as also
indicated by the third entry in Table 2.
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Table 2. Record of sample vials with crosslinker that cracked (use of “×”) upon quenching in liquid
nitrogen, per experiment for gas chromatography and per time of sampling.

Case 2 min 10 min 15 min 1 20 min 2

7 ×
8 × × ×
9
10 × ×

1 Case 7, as explored first in the present work with respect to Cases 8–10, did not have a sample at 15 min; 2 Cases
8–10 were supplemented with an additional sampling at time 15 min due to cracking of the vial of Case 7 at time
20 min.

Overall, upon considering the results in Figures 4 and 5, and Table 2, it can be con-
cluded that the formulation variables in Table 1 allow varying the time scales to obtain a
certain MMA conversion, opening the pathway of casting design at the chemical level. On
top of that, these variations allow obtaining likely different material properties.

3.2. Rheological Analysis

Upon inspecting the literature, it is obvious that limited effort has been devoted
to the dedicated handling of rheological analysis of corrosion casting. Either no vis-
cosity measurements have been performed or only basic data recording has been con-
ducted [36,39,40,48,51,52]. Hitherto, numerous studies highlight the importance of a viscos-
ity low enough to effectively perfuse the injected resin [31,32,34,36,39,43,48,49,54,55,95–97],
but no well-defined guidelines are available. In the present contribution, specific focus is
therefore on the reporting of the methods utilized to obtain reliable rheological data.

Three practical limitations arise from the rheological tests in view of corrosion casting,
as explained in what follows. A first practical limitation is that the stabilization of the
rheometer readings can be rated as difficult both at low shear rates and at low viscosity
values. This is most clear from the oscillations with a high amplitude on the viscosity
readings under such operating conditions (cf. Figure 2, left). Such oscillations can be
filtered out to an acceptable extent by the experimental protocol in Figure 2 (left to right)
and further illustrated in the Supplementary Information. Oscillations are fortunately also
reduced as the viscosity builds up during polymerization, and they are smaller with higher
values of shear rate. The oscillations are inherent to the equipment working principles. A
control system based on shear stress control is characteristic of the rheometer used in the
present work. For a test at a constant shear rate, the shear stress has to be adjusted by the
control system. The initial low viscosity of the fluid yields a low response that makes it
difficult for the equipment to control the shear stress. The equipment could eventually
stabilize if the fluid was not also undergoing a polymerization, which makes the viscosity
change over time and thus makes the stabilization point a variable. This explains our desire
to use a concentric cylinder (CC) geometry. This geometry possesses a large surface that
enhances the response, minimizing most of this first practical limitation.

A second limitation is the volume reduction, which is an intrinsic feature of polymer-
ization due to a difference in the density of the monomer and polymer [98], leading to
a difficult constraint for geometries requiring a constant sample size. In addition, here,
the CC geometry is relevant. If it is operated with a sufficiently high liquid level, it has
acceptable tolerance to shrinkage, solving the second limitation.

A third limitation is that experiments have been conducted only to a maximum value of
viscosity of 1000 mPa·s because above this point, the geometry cleaning becomes difficult. The
time to reach that upper viscosity value is shown in Table 3, selecting four cases from Table 1
that address the most relevant variations in Figure 4, namely a reference case with only MMA
(Case 3), one case with MMA and BA (Case 5), and two cases of MMA with respectively
the methacrylate and acrylate-based crosslinker (Cases 7 and 9). A further distinction is
made between rheological measurements with and without temperature control. Without
temperature control, the exothermicity effect increases the polymerization rate and, in that
way, the viscosity increases are faster compared to the situation with temperature control.
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Without temperature control, solidification is reached more easily, although the relative time
changes in Table 3 are still moderate (e.g., 10%). This solidification of the polymerizing mixture
is a practical difficulty, but it also allows estimating the pot life of the mixture. This pot life
is defined as the time that a polymerizing mixture can be manipulated for its application.
Therefore, a quick correlation between the times shown in Table 3 and the pot life is possible.
As it is difficult to clean mixtures with too high viscosity, accordingly, a casting mixture would
be also difficult to manipulate or to be injected into a cavity for a similar timing.

Table 3. Time for the polymerizing mixture to reach a viscosity value of 1000 mPa·s during a
rheological test at a constant shear rate 1.

Case from Table 1 T0 = 20 ◦C
No Temperature Control

T = 20 ◦C
Constant Temperature

3 ≈37 min ≈41 min
5 ≈27 min ≈33 min
7 ≈17 min ≈19 min
9 ≈21 min ≈25 min

1 Only shear rates of 1 s−1, 3 s−1, and 10 s−1 were considered here, as the shear rate of 80 s−1 was not reaching
this limiting value in the maximal time.

As shown in Figure 6, for every case in Table 3, the viscosity increases with time, as
expected for a polymerization. Each curve in this figure exhibits an exponential shape over
a large part of the time variation, at least with a vertical logarithmic scale. This logarithmic
vertical scale visually smoothens the steepness of the growth but also allows distinguishing
the details that otherwise would be invisible at the early stages of polymerization. Con-
sistent with the results in Table 3, the viscosity results under isothermal conditions, as
displayed in the right column in Figure 6, are relatively lower compared to the left column
results in Figure 6 (no temperature control) due to less pronounced gel effects.

More in detail, it follows from Figure 6 that the green curves corresponding to a shear
rate of 1 s−1 grow exponentially over the whole time range. For a shear rate of 3 s−1, there
is a small zone at the beginning in which the yellow curve is convex upward, and then,
the curve form becomes exponential and overlaps the curve of 1 s−1. For a shear rate of
10 s−1, there is also a convex zone (blue curves) that extends further than in 3 s−1 and
then, again, the curve overlaps with the previous two. For a shear rate of 80 s−1, a convex
zone extends from the beginning over most of the time of the experiment to allow for the
development of an exponential behavior only at the end of the experimental time (orange
curves), except in subplot b, in which such exponential development is absent. Notably,
the slopes of the exponential parts, once reached, are very similar for each subplot. Such
variation is consistent with the starting of the gel effect during the polymerization [92,99].

The starting point of each curve in the low-viscosity region in Figure 6 is also located at
a higher value of viscosity as the shear rate increases. As the shear rate increases, there is a
dampening effect on the viscosity build-up at the beginning of the experiment, which is visible
modestly at 3 s−1 and extends importantly at 80 s−1. The curve for 80 s−1 remains lower at
higher times as well. On the one hand, there is the influence of the energy from the rheological
test itself on the polymerizing system. As the rheometer spindle rotates at a constant velocity,
it transmits energy to the system, creating motion and consequently agitation, reminding that
no stirrer bar is present as in a conventional large flask experiment. This better mixing for
higher shear rates enhances the initial reaction rates so that the growing chains of a certain
size start creating entanglement among themselves earlier. This effect translates into an earlier
viscosity build-up and finally in molecular diffusion control for the polymerization. On the
other hand, higher shear rates are also leaning more toward shear thinning once a polymer
is formed, which then lowers the viscosity at least if the shear rate is sufficiently high [100].
Overall, at 80 s−1, the better mixing is first winning; then, shear thinning takes over, but
in the end, a similar increase in viscosity results. At the lower shear rates, the system first
needs to generate sufficient high molar mass chains to obtain a steady growth. Thus, from an
“intrinsic” property point of view, the lines at a shear rate of 3 s−1 are the most recommended.
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Figure 6. Curves of viscosity versus reaction time at four shear rates (1 s−1 in green, 3 s−1 in yellow,
10 s −1 in blue, and 80 s−1 in orange), for four coformulations (from top to bottom) (1) MMA (subplots
(a,b)), (2) MMA + BA (9:1) (subplots (c,d)), (3) MMA + EGDMA (98:2) (subplots (e,f)), (4) MMA +
EGDA (98:2) (subplots (g,h)) (Cases 3, 5, 7, and 9 in Table 1). Every test case was evaluated under two
types of conditions: initial temperature of 20 ◦C followed by no temperature control (left column),
and constant temperature of 20 ◦C (right column). All data are reported after the application of
protocol in Figure 2.
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It should be noted that the literature data are less clear in the overall framework
of Figure 6, with e.g., a polymerization rate decrease with increasing shear rate [92], a
molar mass build-up being hindered with increasing shear rate [101], and a viscosity
build-up rate decrease with increasing shear rate [102]. The results in Figure 6 show that
these observations are likely only true in certain reaction time regions, benefiting from the
application of the developed protocol of Figure 2.

Furthermore, upon comparing the rows of coformulations in Figure 6, it follows that
with only MMA, the viscosity increase is the slowest (subplots a and b). With BA added
in the coformulation, a faster increase is obtained (subplot c and d), and with crosslinker
(subplot e–h), again, a viscosity acceleration takes place. A closer inspection shows that
with the EGDMA crosslinker, the fastest increase results. This is consistent with the MMA
conversion data in Figure 4, bearing in mind that the 2% cases are considered. Only with a
5% EGDA crosslinker amount, as explained in Figure 4, one can obtain the opposite effect:
thus, the fastest increase with an acrylate-based crosslinker.

From a practical point of view, one can conclude that for the four cases (Cases 3, 5,
7, and 9), the green rheological curves in Figure 6 (3 s−1) give more information than
the related MMA conversion and thus the GC curves in Figure 4. One still sees the time
dependencies in Figure 6, but at the same time, there is a more direct link with the actual
macroscopic behavior. Next to that, in practical casting, one has a significant period at high
shear rates, which can easily range between 0.01 and 500 s−1 based on typical injection
speeds and various thicknesses.

3.3. Analysis of Mechanical Properties

The mechanical property characterization of the cast materials has been performed
considering two types of mechanical testing specimens, namely, dog-bone specimens and
unnotched rectangular specimens, as described in Section 2.8. Additional insights have
been gained from casting these specimens in silicone molds, as they are not perfectly rigid
and they act as a heat sink for the energy generated by the polymerization reaction. This
represents a better approximation of the conditions of the actual corrosion casting process,
therefore producing results closer to the targeted long-term application. In the present
subsection, emphasis is on the tensile test results yielding the tensile modulus and tension
at break, the flexure test results delivering the flexure modulus and the tension at break,
and the Charpy impact test results allowing measuring the energy dissipated by impact.
This impact can be expressed directly or as a quotient including the area of the surface
receiving the impact. The joint screening of these three mechanical tests provides a general
vision of the stiffness, flexibility, and brittleness of the material, as rarely done for corrosion
casting. The raw data and images of the broken test samples are provided in the Supporting
Information. Statistical analysis has been performed on these raw data with the final results
included in Figure 7.

Figure 7 displays the average mechanical testing values for the cases of Table 1, thus
Cases 3, 5, 7, and 9. To remind the reader, Case 3 represents the homopolymerization of
MMA, while Case 5 is the copolymerization of MMA and BA, and Case 7 and Case 9 are
respectively copolymerizations with EGDMA and EGDA crosslinker. From subplot a, it
can be observed that the material with the highest stiffness is the homopolymer of MMA
(Case 3, blue bar), being closely followed by the crosslinked material of MMA and EGDA
(Case 9, ochre bar), and then the casting materials from Case 7 (MMA/EGDMA) and
Case 5 (MMA/BA). The tensile tension at break, as displayed in subplot b, is maximized
for the crosslinked materials, thus Case 7 (green bar) and Case 9 (ocher bar). Hence, PMMA
proves to be a stiff material if subjected to elongation, and its resistance can be enhanced
either by the utilization of EGDMA or EGDA as a crosslinker. As shown in subplot a, for
EGDA (Case 9), the highest tensile modulus results through this coformulation design.
Crosslinkers allow creating 3D networks of chemical bonds in the polymer structure that
are responsible for increasing the resistance but also the rigidity, which can compromise
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the capacity to withstand stress [103–106]. Only upon careful selection of the crosslinker,
one can overcome this issue as clear from the high yellow bars in both Figure 7a,b.
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Figure 7. Results of mechanical screening testing, considering the same cases as for the rheological
analysis in Figure 6 (see also Table 1): (a) Tensile modulus in MPa, (b) Tensile stress at break in MPa,
(c) Flexure modulus in MPa, (d) Flexure stress at break in MPa, (e) Impact energy in joules; (f) Impact
energy per square meter at the impact face. The color coding is introduced in Figure 4. Images of
broken test samples are provided in the Supporting Information, which also includes the raw data
for Figure 7 before statistical averaging.

From Figure 7c,d, flexure mechanical properties can be compared. Subplot c displays
the flexure modulus that is similar for the materials from Case 3, Case 7, and Case 9 (blue,
green, and ocher bars). In contrast, the material of Case 5 (orange bar), corresponding to the
copolymerization of MMA and BA, exhibits a flexure modulus lower than the other three
yet not far below. The flexure stress at break reveals a marked difference. The maximal
values result for the two crosslinked materials, with the highest one for Case 7 (green
bar). Case 3 (blue bar) and Case 5 (orange bar) are considerably inferior regarding the
flexure stress at break. It is clear that while the flexure moduli are similar among Case 3
(MMA), Case 7 (MMA/EGDMA), and Case 9 (MMA/EGDA), the increased resistance at
break displayed by the materials with either the methacrylate crosslinker or the acrylate
crosslinker make Case 7 and Case 9 superior.
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The Charpy impact results in Figure 7e,f show that the crosslinker cases are quite
different in performance. For Case 7 (MMA/EGDMA), much higher values are obtained.
Case 9 still (MMA/EGDA) gives reasonable values, but they are not higher than with
MMA only. Hence, if it is desired to maximize all mechanical properties of the four cases
in Figure 7, the crosslinking case with EGDMA (Case 7, green bars) is the most interesting.
Moreover, upon comparing the rheological data in Figure 6 and the macroscopic property
data in Figure 7, it is clear that strong increases of viscosity can be relevant in view of the
material design. Specifically, the sharpest increase for Case 7 in Figure 6 (third row) is
translated into the best overall performance in Figure 7. However, one should also identify
for a given application the minimal macroscopic property value needed, meaning that a
lower bar in Figure 7 is not by default a negative result for a final application.

4. Conclusions

This experimental study has addressed a formulation matrix comprised of four acrylic
monomers, i.e., MMA, BA, EGDMA, and EGDA in view of their long-term corrosion
casting potential, considering characterization techniques from the chemical to the material
level. The progress of polymerization has been first examined as the MMA conversion
variation through GC analysis. The conversion profiles have been compared, and cases of
interest have been selected for further rheological and material evaluation, also bearing
in mind an analysis of the potential cracking of samples. Four formulations have been
selected, one with only MMA, and three copolymerizations being 9:1 MMA/BA, 98:2
MMA/EGDMA, and 98:2 MMA/EGDA.

Rheological tests have been performed for these four cases, all possessing a low initial
viscosity and undergoing chemical reaction to deliver highly viscous polymer systems. A
novel protocol has been developed for processing the data acquired from constant shear
rate tests, which allows visualizing the rheological behavior of a polymerizing system from
low to high viscosity. The rheological data allowed to assess the pot-life and the influence
of shear rate within the range of corrosion casting shear rates.

Material properties of the four systems have been subsequently determined via tensile,
flexure, and Charpy impact tests. An innovative approach has been used to fabricate molds
for systems with initial low viscosity and subsequent shrinkage, which allowed the creation
of more representative specimens for the mechanical tests. By comparing the results, a
relationship between the formulation and the final material properties has been established.
The blend MMA/EGDMA (2% crosslinker) exhibited the best performance, in case the
desire is to maximize the tensile, flexural, and impact material properties.

Overall, it can be concluded that this study presents an endeavor at combining a
formulation range along with rheological and material analysis to establish a more efficient
approach for the development of acrylic blends in the scope of manufacturing more sustain-
able polyacrylic casts. The proposed research strategy is also relevant for future research
on polyacrylic materials in general both in industry and academia, mainly contributing to
a better linkage of the chemistry and material level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14226939/s1, Figure S1: Plots illustrating the rheological data processing for Case 3;
Figure S2: Plots illustrating the rheological data processing for Case 5; Figure S3: Plots illustrating the
rheological data processing for experiment Case 7; Figure S4: Plots illustrating the rheological data
processing for experiment Case 9; Figure S5: Conversion, as the percentage BA consumed, versus
time for two different formulations (see Table 1 main paper). Case 5 and 6; Figure S6: Conversion,
as the percentage EGDMA consumed, versus time for two different formulations (see Table 1 main
paper). Case 7 and 8; Figure S7: Conversion, as the percentage EGMA consumed, versus time for two
different formulations (see Table 1 main paper). Case 9 and 10; Figure S8: Material tests: (a) specimen
after break in a tensile test, (b) several specimens after the tensile test, (c) specimen during a flexure
test, (d) several specimens after flexure test; Figure S9: Results of mechanical screening testing,
considering the same cases as for the rheological analysis in Figure 6 of the main text (see also Table 1
of the main text).
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43. Walocha, J.; Litwin, J.A.; Miodoński, A.J. Corrosion casting technique. In Scanning Electron Microscopy for the Life Sciences; Schatten,

H., Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 16–32. [CrossRef]
44. Vandeghinste, B.; Trachet, B.; Renard, M.; Casteleyn, C.; Staelens, S.; Loeys, B.; Segers, P.; Vandenberghe, S. Replacing vascular

corrosion casting by in vivo micro-ct imaging for building 3D cardiovascular models in mice. Mol. Imaging Biol. 2011, 13, 78–86.
[CrossRef]

45. Minnich, B.; Bartel, H.; Lametschwandtner, A. Quantitative microvascular corrosion casting by 2D- and 3D-morphometry. Ital. J.
Anat. Embryol. 2001, 106, 213–220.

46. Kratky, R.G.; Roach, M.R. Shrinkage of Batson’s and its relevance to vascular casting. Atherosclerosis 1984, 51, 339–341. [CrossRef]
47. Hossler, F.E. Vascular Corrosion Casting Can Provide Quantitative as Well as Morphological Information on the Microvasculature

of Organs and Tissues. Micros. Today 1998, 6, 14–15. [CrossRef]
48. Hodde, K.C.; Steeber, D.A.; Albrecht, R.M. Advances in corrosion casting methods. Scanning Microsc. 1990, 4, 693–704.
49. Pollitt, C.C.; Molyneux, G.S. A scanning electron microscopical study of the dermal microcirculation of the equine foot. Equine

Vet. J. 1990, 22, 79–87. [CrossRef]
50. Murakami, T.; Hitomi, K.; Ohtsuka, A.; Jones, A.L.; Itoshima, T.; Hitomi, K.; Ohtsuka, A.; Jones, A.L. A Monomeric Methyl and

Hydroxypropyl Methacrylate Injection Medium and Its Utility in Casting Blood Capillaries and Liver Bile Canaliculi for Scanning
Electron Microscopy. Arch. Histol. Cytol. 1984, 47, 223–237. [CrossRef]

http://doi.org/10.1007/BF00351404
http://doi.org/10.5772/intechopen.89867
http://doi.org/10.1016/j.biomaterials.2004.02.028
http://www.ncbi.nlm.nih.gov/pubmed/15207466
http://doi.org/10.1002/jbm.10129
http://doi.org/10.1002/(SICI)1097-4636(19971215)37:4&lt;465::AID-JBM4&gt;3.0.CO;2-J
http://doi.org/10.1081/MA-120016045
http://doi.org/10.1016/j.sjdr.2016.04.004
http://doi.org/10.1002/(SICI)1097-4636(199708)36:2&lt;190::AID-JBM7&gt;3.0.CO;2-F
http://doi.org/10.4012/dmj.2014-077
http://doi.org/10.1111/joa.12504
http://doi.org/10.1002/sca.4950100202
http://www.ncbi.nlm.nih.gov/pubmed/6755297
http://doi.org/10.1111/ahe.12450
http://doi.org/10.1183/13993003.04106-2020
http://doi.org/10.1002/sca.4950240303
http://doi.org/10.2535/ofaj1936.24.4_259
http://www.ncbi.nlm.nih.gov/pubmed/13026125
http://doi.org/10.1002/jemt.1060080205
http://doi.org/10.1016/j.mvr.2003.12.004
http://doi.org/10.1017/CBO9781139018173.003
http://doi.org/10.1007/s11307-010-0335-8
http://doi.org/10.1016/0021-9150(84)90182-5
http://doi.org/10.1017/S1551929500068620
http://doi.org/10.1111/j.2042-3306.1990.tb04215.x
http://doi.org/10.1679/aohc.47.223


Materials 2021, 14, 6939 17 of 19

51. Murakami, T. Application of the Scanning Electron Microscope to the Study of the Fine Distribution of the Blood Vessels. Arch.
Histol. Jpn. 1971, 32, 445–454. [CrossRef] [PubMed]

52. Taniguchi, Y.; Ohta, Y.; Tajiri, S.; Okano, H.; Hanai, H. Supplement to New Improved Method for Injection of Acrylic Resin.
Okajimas Folia Anat. Jpn. 1955, 27, 401–406. [CrossRef]

53. Aharinejad, S.; MacDonald, I.C.; Mackay, E.C.; Mason-Savas, A. New aspects of microvascular corrosion casting: A scanning,
transmission electron, and high-resolution intravital video microscopic study. Microsc. Res. Tech. 1993, 26, 473–488. [CrossRef]
[PubMed]

54. Krucker, T.; Lang, A.; Meyer, E.P. New polyurethane-based material for vascular corrosion casting with improved physical and
imaging characteristics. Microsc. Res. Tech. 2006, 69, 138–147. [CrossRef]

55. Rueda Esteban, R.J.; López McCormick, J.S.; Martínez Prieto, D.R.; Hernández Restrepo, J.D. Corrosion Casting, a Known
Technique for the Study and Teaching of Vascular and Duct Structure in Anatomy. Int. J. Morphol. 2017, 35, 1147–1153. [CrossRef]

56. Edeleva, M.; Marien, Y.W.; Van Steenberge, P.H.M.M.; D’hooge, D.R. Impact of side reactions on molar mass distribution,
unsaturation level and branching density in solution free radical polymerization of n -butyl acrylate under well-defined lab-scale
reactor conditions. Polym. Chem. 2021, 12, 2095–2114. [CrossRef]

57. Edeleva, M.; Marien, Y.W.; Van Steenberge, P.H.M.; D’hooge, D.R. Jacket temperature regulation allowing well-defined non-
adiabatic lab-scale solution free radical polymerization of acrylates. React. Chem. Eng. 2021, 6, 1053–1069. [CrossRef]

58. Van Steenberge, P.H.M.; D’hooge, D.R.; Wang, Y.; Zhong, M.; Reyniers, M.-F.; Konkolewicz, D.; Matyjaszewski, K.; Marin, G.B.
Linear Gradient Quality of ATRP Copolymers. Macromolecules 2012, 45, 8519–8531. [CrossRef]

59. Shipp, D.A.; Wang, J.-L.; Matyjaszewski, K. Synthesis of Acrylate and Methacrylate Block Copolymers Using Atom Transfer
Radical Polymerization. Macromolecules 1998, 31, 8005–8008. [CrossRef]
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