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Abstract: The influence of cooling conditions and surface topography after finish turning of Ti6Al4V
titanium alloy on corrosion resistance and surface bioactivity was analyzed. The samples were
machined under dry and minimum quantity lubrication (MQL) conditions to obtain different sur-
face roughness. The surface topographies of the processed samples were assessed and measured
using an optical profilometer. The produced samples were subjected to electrochemical impedance
spectroscopy (EIS) and corrosion potential tests (Ecorr) in the presence of simulated body fluid (SBF).
The surface bioactivity of the samples was assessed on the basis of images from scanning electron
microscopy (SEM) and energy-dispersive spectroscopy (EDS) analysis. The inspection of the surfaces
of samples after turning under dry and MQL conditions revealed unevenly distributed precipitation
of hydroxyapatite compounds (Ca/P) with a molar ratio in the range of 1.73–1.97. Regardless of the
cutting conditions and surface roughness, the highest values of Ecorr ~0 mV were recorded on day 7
of immersion in the SBF solution. The impedance characteristics showed that, compared to the MQL
conditions, surfaces machined under dry conditions were characterized by greater resistance and the
presence of a passive layer on the processed surface. The main novelty of the paper is the study of the
effect of ecological machining conditions, namely, dry and MQL cutting on the corrosion resistance
and surface bioactivity of Ti6Al4V titanium alloy after finish turning. The obtained research results
have practical significance. They can be used by engineers during the development of technological
processes for medical devices made of Ti6Al4V alloy to obtain favorable functional properties of
these devices.

Keywords: Ti6Al4V alloy; finish turning; surface topography; cooling conditions; corrosion resis-
tance; surface bioactivity; simulated body fluid (SBF); minimum quantity lubrication (MQL)

1. Introduction

An important aspect that proves the usability and longevity of metals in the human
body is their corrosion resistance [1]. As metal implants are surrounded by aggressive body
fluids constituting the internal environment of the human body, their corrosion cannot
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be avoided [2]. Ti6Al4V titanium alloy is very commonly used in medical devices and
applications [3,4]. In the environment of the human body, it exhibits neutral behavior and
high corrosion resistance, making it a biocompatible material [5]. Titanium and its alloys
belong to the group of materials with high corrosion resistance, resulting from their ability
to passivate, and, in environments containing high concentrations of chloride or sulfide
ions, they undergo pitting corrosion [6–9]. An important aspect of implant manufacturing
is the quality of the implant surface. For orthopedic implants, it is important to achieve
a surface with a designated roughness due to the need for a durable biomaterial–tissue
interface. For implants and surgical instruments that are in direct contact with blood, it
is important to achieve the lowest possible surface roughness. Producing surfaces with
assumed roughness maintains mechanical stability and allows bone tissue to grow into and
adhere to the implant surface. Higher implant surface roughness results in more favorable
cell adhesion and a more accurate bone–implant fusion [10]. However, higher surface
roughness contributes to the development of the implant corrosion process. This is related
to the characteristic post-treatment changes present on the surface, which contribute to
the formation of corrosion foci [11]. The surface roughness of titanium alloys for both
medical and other industries depends on the type and conditions of the treatment it is
subjected to [12]. Although titanium alloy Ti6Al4V shows very good mechanical properties
and is a widely known material used in industry, it belongs to the group of materials
that are difficult to process [13,14]. Due to its properties, high temperature is generated
within the cutting zone during machining and adversely affects the quality of the processed
surface [15,16].

Previous studies have analyzed the influence of cutting conditions and surface rough-
ness on the corrosion resistance of medical-grade materials in various solutions. Bertolini
et al. [17] investigated the corrosion resistance of Ti6Al4V alloy after turning under dry
and cryogenic conditions. Cutting speeds (vc) of 50 and 80 m/min, feed rates (f ) of 0.1
and 0.2 mm/rev, and a depth of cut (ap) of 0.25 mm were applied. The corrosion tests
were performed in 0.9% NaCl solution. It was shown that cryogenic processing effectively
improves the corrosion and fretting properties of the examined material. Bertolini et al. [18]
studied the effect of feed rate and dry and cryogenic conditions on the corrosion behavior
of AZ31 alloy. A feed rate within the 0.01–0.1 mm/rev range, cutting speed of 100 m/min,
and depth of cut of 0.25 mm were applied. The tests were performed in simulated body
fluid (SBF). The feed rate affected the surface roughness and corrosion behavior of AZ31
alloy. The corrosion resistance of AZ31 magnesium alloy was more favorable using a lower
feed rate and cryogenic conditions. Pu et al. [19] investigated the corrosion resistance
of magnesium alloy AZ31B-O following dry and cryogenic cutting conditions. A tool
edge radius of 30 and 70 µm, feed rate of 0.1 mm/rev, and cutting speed of 100 m/min
were used. The samples were tested in SBF and 5% NaCl solution. Compared to dry
machining, cryogenic ensure better surface integrity and corrosion resistance. Bruschi
et al. [20] investigated the corrosion behavior of 316L stainless steel to increase its resistance
to sterilization cycles. The processing was carried out under low-temperature conditions,
and the results were compared with the dry and wet conditions. The following parameters
were applied: vc = 200 m/min, f = 0.2 mm/rev, and ap = 0.3 mm. The tests were performed
in a commercial IGENAL-N sterilization solution. Corrosion resistance improved with
low-temperature conditions and deteriorated after dry conditions. Bertolini et al. [21]
analyzed the corrosion behavior of stainless steel 316L following low-temperature and wet
conditions. The following parameters were applied: vc = 200 m/min, f = 0.2 mm/rev, and
ap = 0.3 mm. The tests were performed in a commercial IGENAL-N sterilization solution.
Low-temperature conditions ensure a hardened and more elastic surface layer, which,
compared to wet conditions, increases the general and local corrosion resistance of the
tested steel.
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Zhang and Liu [22] evaluated the surface topography of Ti6Al4V alloy after finish
turning under dry conditions. The values of Ra and Rz parameters increased, and the
shapes of surface roughness profiles changed with increasing feed rate. Sartori et al. [23]
investigated the surface integrity of Ti6Al4V alloy after cryogenic and dry cutting
conditions. Surface topography deteriorated with cryogenic conditions, but fewer
surface defects were observed. Mia et al. [24] investigated the surface roughness of
Ti6Al4V alloy after turning under cryogenic liquid nitrogen (LN2) conditions. LN2 dual
jets improve the surface quality. The following cutting parameters were recommended:
vc = 140 m/min and f = 0.16 mm/rev. Deiab et al. [25] assessed the effect of dry, cooled
air, flood, cryogenic, minimum quantity lubrication (MQL), and minimum quantity
cooled lubrication (MQCL) conditions on the surface roughness of Ti6Al4V alloy. At
a higher machining speed and feed rate in dry and MQL conditions, the lowest Ra
parameter values were obtained. Sun et al. [26] analyzed the surface roughness of
Ti-5553 alloy under cryogenic conditions, and the results were compared to wet and
MQL conditions. The smallest values of the Ra parameter were obtained from MQL. Sun
et al. [27] investigated the surface integrity after turning titanium alloy TB6 under dry
conditions. A decrease in the Ra parameter value was observed with decreasing feed
rate. Fewer defects on the surface were observed with increasing cutting speed. Gupta
et al. [28] analyzed the effect of Ranque-Hilsch vortex fluid-assisted minimum quantity
cutting fluids (RHVT-MQCF) and MQL cutting conditions on surface roughness after
turning pure titanium. Favorable results were obtained for the machining conditions
with RHVT-MQCF.

There are few studies in the open literature which looked into the effect of surface
topography and cutting conditions on the corrosion resistance after finishing turning of
titanium alloys. Yet, the processing conditions affect both the surface topography [29]
and the corrosion resistance [30]. The existing articles do not consider the influence
of modern cooling conditions, i.e., near-dry cutting, which improves the surface qual-
ity [31] while offering numerous economic and environmental benefits [32]. In addition,
there is no information on the effect of surface topography and cooling conditions on
surface bioactivity after the turning process of titanium alloys, which can be considered
a novelty in this research work. As studies have shown, surface topography affects
surface bioactivity. Ravelingien et al. [33] investigated the effect of surface topography
on the surface bioactivity of Ti6Al4V alloy after alkali treatment. The titanium plates
had different surface roughness (Ra = 0.13 µm, 0.56 µm, 0.83 µm, and 3.63 µm) and
were prepared by Al2O3 grit-blasting. For samples with Ra = 0.56 µm, complete hy-
droxyapatite (HA) coating was obtained after 7 days of storage in SBF. Constantinescu
et al. [34] studied the effect of surface roughness of Ti6Al4V alloy on the shape, size,
and distribution of HA. The samples were sandblasted with Al2O3 particles of different
sizes. It was found that surface roughness affects the morphology and distribution of
HA. Demirci et al. [35] analyzed the effect of surface modifications of Ti6Al4V alloy on
the ability to form apatite. Samples were produced using the additive method (AM)
using varying laser powers. The samples were stored in SBF for 2 weeks. Depending on
the production laser power, surface roughness and topography, as well as wettability
and microstructure, affected the formation of apatite on the surface.

A high surface bioactivity of titanium alloys, shaped by various techniques to pro-
duce orthopedic implants, is achieved by anodizing the surface in solutions containing
phosphate ions or by forming layers with morphology favoring the surface bioactiv-
ity [36]. Increasing the surface bioactivity of titanium implants can also be achieved by
covering their surface with a layer containing calcium and phosphorus hydroxyapatite.
HA-coated titanium alloys exhibit higher surface bioactivity than uncoated ones [37].
HA coating aids implant fixation and increases implant life. The dense layer of HA
coating on the implant surface has a beneficial effect on biointegration, improves the
stability of the implant and bone tissue junction, and minimizes the release of metal
ions in the human body [38]. Hydroxyapatite is a ceramic material that is a natural bone
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component. In the assessment of the in vitro surface bioactivity of titanium alloys, it
was verified, inter alia, whether hydroxyapatite is released on a given surface of the
alloy following processing [39]. HA is like a bioceramic that has very good biological
properties facilitating bone repair and reconstruction [40]. The surface roughness of
titanium alloys suitable for the growth of osteoblasts is 0.2–0.7 µm, and, in the literature,
many reports can be found on the protective and bioactive layers on titanium alloys and
their corrosion resistance [41–44].

Summarizing the literature review, it was found that, in the research works to
date, there is a lack of information on the effect of finish turning of Ti6Al4V titanium
alloy under ecological conditions on the corrosion resistance and surface bioactivity
in SBF solution, whose chemical composition is most similar to human blood plasma.
In the research, the simultaneous effect of feed rate and surface roughness on these
performance properties of Ti6Al4V titanium alloy has also basically not been analyzed.
This can be considered a research gap. Therefore, the current study aimed to analyze
the effect of dry and MQL conditions and surface topography after finish turning of
Ti6Al4V titanium alloy on corrosion resistance and surface bioactivity in SBF solution.
This research is of practical importance and can be used as a step in the development
of technological processes in the production of medical devices, to ensure favorable
operating properties of these devices.

2. Materials and Methods
2.1. Workpiece Details and Preparation

Ti6Al4V alloy, with the chemical composition and mechanical properties compliant
with ISO 5832-3:2016 [45] standard, was examined (Table 1). Ti6Al4V alloy is characterized
by high strength-to-weight ratios and has high corrosion resistance; thus, it is used in many
industries including medical, automotive, aerospace, and marine [46].

Table 1. Chemical composition and mechanical properties of Ti6Al4V titanium alloy, According to ISO 5832-3:2016.

Chemical Composition (%)

O V Al Fe H C N Ti

<0.20 3.5 5.5 <0.30 <0.0015 <0.08 <0.05 rest

Mechanical Properties

Modulus of Elastic (MPa) Tensile Strength (MPa) Yield Strength (MPa) Fatigue Strength (MPa)

110–114 960–970 850–900 620–725

The machining was performed on a CNC lathe CKE6136i (Dalian Machine Tool
Group Corporation, Dalian, China) using a turning with a CoroTurn SDJCR 2020K 11
(Sandvik Coromant, Sandviken, Sweden) tool holder and a CoroTurn DCMX 11 T3
04-WM 1115 (Sandvik Coromant, Sandviken, Sweden) insert. The geometry of the
cutting insert was as follows: κr = 93◦, γo = 18◦, αo = 7◦, rε = 0.4 mm. The material
used for the cutting insert was cemented carbide GC 1115 with (Ti, Al)N + (Al, Cr)2O3
coating deposited by Physical Vapour Deposition (PVD). The inserts were changed after
each test, so each sample was machined with a new and sharp edge. The samples were
machined under dry and MQL conditions because today’s manufacturing industry is
very much focused on environmental protection [47] and a reduction in the consumption
of machining fluids [48]. Furthermore, MQL has been successfully applied to improve
the machinability of difficult-to-cut materials [49,50]. In the MQL method, we used
ECOCUT MIKRO 20 E oil, which was produced by mixing with air. The oil mist was
produced using the Lenox 1LN Mikronizer (Lenox, East Longmeadow, MA, USA). The
preferred oil mist formation conditions suggested by Maruda et al. were applied [51]:
oil flow 39.4 mL/h, airflow 5.8 L/m, pressure 0.48 MPa, and 0.2 m distance of the
nozzle from the point of contact between the material and the cutting edge. The samples
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with minimum (Ramin = 0.29–0.37 µm) and maximum (Ramax = 1.62–2.22 µm) surface
roughness obtained after finish turning were examined. Surface roughness affects the
corrosion of metals and, as commonly known, depends on the feed rate (f ). For samples
with Ramin, a lower feed rate was used for MQL conditions (f = 0.1 mm/rev) to obtain
surface roughness parameters similar to dry machining (f = 0.14 mm/rev). Regardless
of the machining conditions, the feed rate for the samples with Ramax was 0.35 mm/rev.
Due to the small diameter of the sample, a constant cutting speed (vc) of 80 m/min was
set, as well as a constant cutting depth (ap) of 0.5 mm, typical for the finish cutting. Both
the length and the diameter of the samples were 15 mm.

2.2. Measurement of Surface Roughness Metrics

The processed surface was examined using a Sensofar S Neox 3D optical profilometer
(Sensofar Group, Barcelona, Spain), and the measurement results were analyzed using
Mountains Maps Premium 7.4 software (Digital Surf, Besançon, France). The measurement
area used was 1.30 × 1.75 mm. Selected parameters of the surface roughness amplitude
were analyzed in accordance with the ISO 4287:1999 [52] standard Ra (arithmetic mean
deviation of the roughness profile), Rz (maximum height of the roughness profile), Rp (max-
imum peak height of the roughness profile), Rv (maximum valley depth of the roughness
profile), Rsk (skewness of the roughness profile), Rku (kurtosis of the roughness profile),
roughness profiles, and 2D topographies of the processed surface. In industry, parameters
Ra and Rz are widely used to evaluate product quality. The parameters Rsk and Rku can be
complementary to the parameters Ra and Rz and allow the evaluation of the functional
properties of the surface [53,54]. The tests were repeated three times and the standard
deviation did not exceed 5%.

Before corrosion resistance and surface bioactivity testing, the samples were
washed in an IS-1 (Intersonic, Olsztyn, Poland) ultrasonic washer in distilled water to
remove machining residues, such as machined material or oil that sticks to the surface.
Samples of Ti6Al4V titanium alloy were subjected to electrochemical tests using the
Atlas 0531 Electrochemical Unit and Impedance Analyzer potentiostat/galvanostat
(Atlas-Sollich, Rebiechowo, Poland). The chemical composition of the simulated body
fluid can be found in [55]. The SBF used in this study had a temperature of 37 ± 1 ◦C,
and a pH in the range of 7.2–7.4. An area of 0.25 cm2 was marked on each sample,
which was then exposed to the electrolyte. The remainder of the sample was covered
with a layer of paint. The tests were repeated three times and the standard deviation
did not exceed 3%.

The samples were subjected to electrochemical impedance spectroscopy (EIS) tests,
preceded by a 1 min measurement of the corrosion potential (Ecorr). EIS studies were
performed according to ISO 16773-2:2016 [56] and ISO 16773-3:2016 [57] standards. The
tests were carried out in a three-electrode system, in which the reference electrode was
silver chloride, with a platinum plate as the counter electrode. Changes in electrochemical
properties of the samples were recorded after 1 h and then after 1, 7, 14, 28, 46, and
72 days of immersion in SBF solution. EIS spectra were recorded within the 10−5–0.1 Hz
frequency range. The results obtained were analyzed, and Bode and Nyquist charts
were plotted. The sample surfaces were assessed on the basis of SEM images and EDS
analysis obtained using a JSM-5600LV scanning microscope (JEOL, Tokyo, Japan) with
an EDS 2000 X-ray microanalyzer and an AVT-HORN camera (AVT, Aachen, Germany).
To neutralize the influence of Ti, Al, and V on the effectiveness of registration of the
presence of hydroxyapatite compounds on the surfaces of the tested titanium alloy samples,
analyzed by EDS, these elements were excluded from the list of analyzed elements. A
similar approach was put forward by Feldshtein et al. [58].

The experimental research plan is shown in Figure 1.
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Figure 1. Experimental research plan.

3. Results and Discussion

Surface roughness parameters were obtained for samples with minimum and max-
imum Ra for Ti6Al4V alloy after finish turning under the ecological cutting conditions
shown in Table 2.

Table 2. Surface Roughness Parameters for Samples with Ramin and Ramax Obtained after Finish
Turning.

Cutting
Conditions

Surface
Roughness

Range
Ra (µm) Rz (µm) Rp (µm) Rv (µm) Rsk Rku

Dry Ramin
0.29 2.18 1.16 1.01 −0.208 2.68

MQL 0.37 2.33 1.27 1.07 0.135 2.49

Dry
Ramax

2.22 11.8 7.23 4.62 0.287 2.58
MQL 1.62 8.80 5.43 3.37 0.311 2.64

Garcia-Martinez et al. [59] showed that machining under MQL conditions reduces
surface roughness and improves surface integrity compared to dry machining. For samples
with Ramin after dry turning, a reduction in surface roughness parameters Ra, Rz, Rp, Rv,
and Rsk in the range of 6% to 165% was obtained compared to MQL conditions. On the
other hand, for samples with Ramax machined under MQL conditions, a reduction in Ra,
Rz, Rp, and Rv parameters was obtained in the range of 25% to 27%.

Figure 2 shows the surface roughness profiles of samples with Ramin and Ramax pa-
rameters obtained after finish turning under dry and MQL conditions.

Within the range of minimum parameter values, Ra = 0.29–0.37 µm and Rz = 2.18–2.33 µm,
regardless of the cooling conditions, flattened peaks were observed on the surface rough-
ness profiles attesting to the plastic deformation of the surface layers characteristic of the
processed implant surface [60]. However, within the range of maximum Ra = 1.62–2.22 µm
and Rz = 8.80–11.08 µm parameter values, there were visible feed marks. For example,
Figure 2 shows a cutout of the 2D surface topography along with the surface roughness
profile for a Ramax sample after dry cutting.
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The correlation of the Rsk and Rku parameters yields an Rsk–Rku topological map,
which enables an evaluation of the surface irregularity distribution. The parameters Rsk
and Rku are responsive to high peaks and deep pits located on the machined surface [61].
The Rsk–Rku topological map for Ti6Al4V alloy after finish turning is shown in Figure
3. Compared to the surface area of samples with Ramin, an increase in Rsk parameters
was obtained for samples with Ramax. Very high peaks and very deep pits were seen on
surfaces with Ramax, whereas high peaks and deep pits were seen on surfaces with Ramin
machined under MQL conditions. In turn, flattened peaks were seen on the surface with
Ramin under dry machined conditions. Regardless of the cooling conditions for the samples
with Ramin and Ramax, the surfaces were characterized by regular shapes, as evidenced by
the parameter value Rku < 3.
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Figure 4 shows 2D surface images of the samples with Ramin and Ramax after finishing
turning. For Ramin, on the surface processed under dry and MQL conditions, scratches
were observed, which were caused by the unfavorable shape of the chip entangling the
workpiece [62,63] and irregularly spaced stickers, resulting from the adhesive bonds of the
chips to the processed surface [64]. For Ramax, on the surface processed in the tested cooling
conditions, clear traces of feed rate, which are typical of turning, were found. In addition,
scratches occurred under dry cutting conditions and stickers with MQL. A summary of the
surface topography results of samples with Ramin and Ramax of Ti6Al4V alloy after turning
under dry and MQL conditions is presented in Table 3.
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MQL compared to dry: decrease  

Ra, Rz, Rp, and Rv of 25–27% 
Very high peaks and very deep pits, 

regular shapes 
Feed marks, scratch 

MQL Feed marks, stickers 

The results of the impedance tests showed that the cutting conditions and surface 
topography after finish turning of Ti6Al4V alloy affected the bioactivity of the surface and 
the release of hydroxyapatite and changed the electrochemical characteristics of the layer. 
SEM images and EDS analyses of the surfaces after finish turning after dry and MQL con-
ditions after 7 days of storage in SBF solution are shown in Figure 5. 

Figure 4. The 2D topographies of Ti6Al4V titanium alloy surface after finish turning.

Table 3. Summary of Surface Topography Results of Samples with Ramin and Ramax of Ti6Al4V Alloy after Finish Turning
under Ecological Cutting Conditions.

Cutting
Conditions

Surface
Roughness

Range

Surface
Roughness

Profiles

Surface
Roughness Parameters Rku–Rsk Topological Maps 2D Surface Images

Dry
Ramin Flattened peaks

Dry compared to MQL: decrease
Ra, Rz, Rp, Rv, and Rsk of 6–165%

Flattened peaks,
regular shapes

Scratch, stickers
MQL High peaks and deep pits,

regular shapes

Dry Ramax Feed marks
MQL compared to dry: decrease

Ra, Rz, Rp, and Rv of 25–27%
Very high peaks and very
deep pits, regular shapes

Feed marks, scratch
MQL Feed marks, stickers

The results of the impedance tests showed that the cutting conditions and surface
topography after finish turning of Ti6Al4V alloy affected the bioactivity of the surface
and the release of hydroxyapatite and changed the electrochemical characteristics of the
layer. SEM images and EDS analyses of the surfaces after finish turning after dry and MQL
conditions after 7 days of storage in SBF solution are shown in Figure 5.
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Figure 5. SEM pictures and EDS analysis results for Ti6Al4V alloy with Ramin and Ramax under dry and MQL conditions
after 7 days of storage in SBF.

Spherical precipitates unevenly covering the surface of the samples were observed for
samples after turning under dry and MQL conditions. Analysis of the content of calcium
and phosphorus confirmed the presence of hydroxyapatite, in which the Ca/P molar ratio
was 1.73–1.78 for samples with Ramin and 1.85–1.97 for samples with Ramax. It should be
emphasized that the secretions of hydroxyapatite were more irregular on samples after
turning with MQL conditions than on samples subjected to dry machining; furthermore,
their stoichiometric composition was closest to the composition of hydroxyapatite, which
is a bone component (Ca/P = 1.67) [36]. Changes in the corrosion potential of samples
made of Ti6Al4V alloy with Ramin and Ramax after turning under dry and MQL conditions
stored in SBF solution are shown in Figure 6a.

For samples with Ramin and Ramax after turning under dry and MQL conditions,
over time after immersion in SBF, the values of the corrosion potentials decreased and
then significantly increased, to reach the values of Ecorr ~0 mV. Then, they decreased to
Ecorr ~−120 to −140 mV, which continued until the 72nd day. The increase in the value of
corrosion potentials on the seventh day from the moment of immersion in SBF proves the
existence of positive ion adsorption processes from the solution, forming a double electrical
layer at the alloy surface, from which hydroxyapatite is released [65]. The results obtained
in the first hours/days after immersion in the solution are very important, as they may
indicate the body’s reaction to the metal placed in it as an implant [66].

The results of impedance tests for samples made of Ti6Al4V alloy with Ramin and
Ramax after turning with dry and MQL conditions after 7 days of storage in SBF solution
are presented in the form of Bode and Niquist diagrams in Figures 6 and 7. The impedance
characteristics (Figures 6 and 7) indicate that, regardless of the surface roughness of samples,
compared to MQL, under dry conditions, surfaces were characterized by a greater resistance
and an almost capacitive response, illustrated by a phase angle close to −80◦ recorded in a
wide frequency range by control systems including in the range of 10−1–103 Hz, indicating
the presence of a passive layer on the processed surface. The test results for the anodized
titanium alloy Ti4Al4V reported in the literature show a similar characteristic [12,37,39]. In
the Niquist illustration, samples after turning under MQL conditions were characterized
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by one loop (Figure 7b); when compared to samples with Ramax, higher resistance values
were recorded for samples with Ramin. It is reported in the literature that, in the case
of polished samples, larger diameters of the loops are observed, which are evidence of
a higher resistance [12]. For samples with Ramax, the lowest resistance occurred 7 days
after immersion in SBF solution. Then, after 28 days, the resistance value increased and
remained at a similar level for 72 days, suggesting that no hydroxyapatite was recorded
on the surfaces of the samples during this period. The obtained data were then filtered.
The equivalent circuit Rs (P1, R1(P2, R2)) provided the best fit to the test data, where Rs is
the electrolyte resistance, R1 and CPE1 are the hydroxyapatite layer resistivity and metal
capacity, and R2 and CPE2 are the charge transfer resistance and double-layer capacity
(Figure 7e). A summary of the corrosion resistance and surface bioactivity test results
of samples with Ramin and Ramax of Ti6Al4V alloy after turning under dry and MQL
conditions is presented in Table 4.
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Figure 6. The results of electrochemical tests of Ti6Al4V alloy samples after turning under dry and MQL conditions with
Ramin and Ramax stored in SBF: changes in corrosion potential for 72 days (a) the value of the phase angle at the frequency of
0.1 Hz after 7 days (b) the Bode phase plots after 7, 28, and 72 days (c,d) and the Bode plots after 7, 28, and 72 days (e,f).
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Figure 7. Niquist charts for samples of Ti6Al4V alloy after turning with Ramin and Ramax after 7, 28, and 72 days of storage
in SBF, under dry (a) and MQL (b) conditions; comparison of impedance characteristics in Niquist representation (c) and
Bode phase plots (d) with equivalent circuit illustrating the nature of samples (e).



Materials 2021, 14, 6917 12 of 16

Table 4. Summary of Corrosion Resistance and Surface Bioactivity Results of Samples with Ramin and Ramax of Ti6Al4V
Alloy after Turning under Ecological Cutting Conditions.

Cutting
Conditions

Surface
Roughness Range

Precipitation of
Hydroxyapatite, after

7 Days

Stoichiometric
Composition (Ca/P),

after 7 Days

Highest Values
of Ecorr

Impedance Characteristics

Dry
Ramin

Irregular, spherical 1.78

~0 mV,
after 7 days

Higher resistance, an
almost capacitive response,
presence of a passive layer

MQL More irregular, spherical 1.73 Low resistance, lack of
presence of a passive layer

Dry Ramax
Irregular, spherical 1.97

High resistance, an almost
capacitive response,

presence of a passive layer

MQL More irregular, spherical 1.85 Low resistance, lack of
presence of a passive layer

4. Conclusions

The aim and novelty of this work was to analyze the effect of ecological dry and MQL
machining conditions and surface topography of Ti6Al4V titanium alloy after finish turning
on corrosion resistance and surface bioactivity. The surface topographies of the processed
samples were assessed and measured using a Sensofar S Neox 3D optical profilometer.
Samples with different surface roughness were subjected to electrochemical impedance
spectroscopy and corrosion potential tests in the presence of simulated body fluid. The
following was established:

1. For samples with Ramin after dry turning, a reduction in surface roughness parameters
of 6% to 165% was obtained compared to MQL conditions. On the other hand, for
samples with Ramax machined under MQL conditions, a reduction was obtained of
25% to 27%.

2. Regardless of the cutting conditions within the minimum range Ra = 0.25–0.37 µm,
flattened peaks were observed on the surface roughness profiles, and, within the
range of the maximum Ra = 1.62–2.22 µm, there were visible feed marks.

3. Rsk–Rku topological map showed very high peaks and very deep pits on surfaces with
Ramax, as well as high peaks and deep pits on surfaces with Ramin, machined under
MQL conditions. Flattened peaks were seen on the surface with Ramax under dry
machined conditions. On the 2D images of the surface with Ramax, clear traces of the
feed rate were recorded, and, on the surfaces with Ramin, scratches and irregularly
spaced stickers were observed under the analyzed cutting conditions.

4. After turning under dry and MQL conditions, unevenly distributed precipitates of
hydroxyapatite compounds were present on the surfaces of the samples. The Ca/P
molar ratio for samples with Ramin was within the range 1.73–1.78, whereas that for
samples with Ramax was within the range 1.85–1.97.

5. For the studied cutting conditions and surface roughness, the highest values of Ecorr
~0 mV were recorded on day 7 of immersion in the SBF solution.

6. The impedance characteristics indicated that, compared to MQL conditions, under
dry conditions, surfaces were characterized by a greater resistance and an almost
capacitive response, illustrated by a phase angle close to −80◦ recorded in a wide
frequency range by control systems including in the range of 10−1–103 Hz, indicating
the presence of a passive layer on the processed surface.

7. The obtained research results have practical significance. They can be used by engi-
neers during the development of technological processes for medical devices made of
Ti6Al4V alloy, to obtain favorable functional properties of these devices, i.e., corrosion
resistance and bioactivity of the surface after finish turning. Therefore, a lower surface
roughness under dry conditions is recommended to achieve this success.
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Nomenclature

ap Depth of cut (mm)
Ecorr Corrosion potential (mV)
EDS Energy dispersive spectroscopy
EIS Electrochemical impedance spectroscopy
f Feed rate (mm/rev)
HA Hydroxyapatite
MQL Minimum quantity lubrication
Ra Arithmetic mean deviation of the roughness profile (µm)
Ramin The minimum value of the surface roughness parameter Ra (µm)
Ramax The maximum value of the surface roughness parameter Ra (µm)
Rku Kurtosis of the roughness profile
Rp Maximum peak height of the roughness profile (µm)
Rsk Skewness of the roughness profile
Rv Maximum valley depth of the roughness profile (µm)
Rz Maximum height of the roughness profile (µm)
SBF Simulated body fluid
SEM Scanning electron microscope
vc Cutting speed (m/min)
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