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Abstract: The development of novel anode materials for high energy density is required. Alloying Si
with other metals is a promising approach to utilize the high capacity of Si. In this work, we optimized
the composition of a Si–Ti–Al ternary alloy to achieve excellent electrochemical performance in terms
of capacity, cyclability, and rate capability. The detailed internal structures of the alloys were
characterized through their atomic compositions and diffraction patterns. The lithiation process of
the alloy was monitored using real-time scanning electron microscopy, revealing that the mechanical
stability of the optimized alloy was strongly enhanced compared to that of the pure silicon material.

Keywords: lithium-ion battery; Si alloy; anode materials; real-time monitoring; lithiation

1. Introduction

Graphite has become valuable as an electrode material for lithium-ion batteries (LIB)
in the past several decades. Graphite exhibits many excellent properties for use in LIB, such
as high specific capacity, appropriate voltage, good rate capability, good thermal stability,
low volume expansion during lithiation, and excellent electronic conductivity, while its
low cost is one of its biggest advantages. Nevertheless, further improvements in the energy
density of LIB have been pursued to meet the demands of applications such as electric
vehicles and massive energy storage systems. Towards this goal, Si has received attention
as a promising substitute for graphite [1]. Although the benefits of Si-anode materials are
exaggerated because of their large specific capacities, Si remains a very good candidate in
terms of the stack energy density, as proposed by Obrovac and Chevrier [2].

However, the repeated alloying/dealloying of Li into Si leads to unwanted volume
changes, which cause significant capacity losses due to material pulverization. These prob-
lems hinder the commercial use of Si anodes in LIB. To address these issues, various nanos-
tructural modifications such as nanoparticles [3–5], nanowires [6–8], nanotubes [9–11],
and nanosheets [12,13] have been developed for releasing large amounts of stress during
cycling. The strategy of alloying Si with other elements has also been actively applied. As
summarized in Obrovac and Chevrier’s review [2], either active or inactive elements can be
alloyed with Si to enhance the electrochemical performance of the anode material. When
nanosized Si is present in a matrix of other active elements, such as Sn, Zn, and Al, the
formation of the fully lithiated phase of Si (Li15Si4) is suppressed, leading to good cycling
performance. Si-Al alloy, which is cheap and highly conductive, has been used not only
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as an active material [14–16] but also as a precursor to fabricate nanostructured Si with
high porosity [17,18]. Meanwhile, alloying with inactive elements, such as Fe, Ni, Co, and
Ti (i.e., transition metal, TM) can reduce the overall alloy volume expansion, resulting in
improved cycling performance. The inactive matrix phase buffers the volume expansion
of the active Si phase and provides a continuous conduction pathway for electrons [19].
Fleischauer et al. proposed that the specific capacity of a particular Si-TM alloy can be
predicted from the effective heat of formation [20]. Ti has been used as an alloy component
with good electrochemical performance, and Si-Ti alloys have been manufactured using
various methods [21–24]. Recently, Lee et al. reported that Ti is not simply inactive, but in
fact binds to silicon atoms during lithiation [25].

Ternary alloys have also been developed to optimize the electrochemical performance
of anodes. Fleischauer and Dahn investigated Si–Al–Mn alloys with over 200 composi-
tions [26] using the combinatorial sputtering method to produce high-performance Si-alloy
anodes [27,28]. However, their approach was a non-equilibrium process, which has tech-
nical limitations for practical applications on a large scale. Hence, alternative methods,
such as spray-drying [29] or melt-spinning [30,31], have been proposed to improve the
processability for industrial use. In particular, the melt-spinning method has been ap-
plied to other alloys for LIB anode materials [32,33]. In this work, a Si–Ti–Al ternary
alloy prepared by melt-spinning was studied as an anode material for LIB. This ternary
alloy system has hardly been studied as an anode material for LIB [21]. Here, a relatively
uniform microstructure was obtained using arc-melting and spinning methods, which
led to good electrochemical performance. To determine the optimal composition, a three-
component (Si, Ti, and Al) phase diagram was used [34]. The structure of the Si alloy with
good cycling ability was determined, and the suppression of the volume expansion was
visually confirmed.

2. Experimental Section

Si alloys for the anode were prepared by mixing Si (99.999% purity), Ti (99.9% purity),
and Al (99.9% purity) in the molar ratios listed in Table 1. All alloys were prepared under
an Ar atmosphere using an arc-melting process [30]. In all three compositions, the weight
of Si was fixed at 50%, and only the ratios of titanium and aluminum were adjusted. The
theoretical capacities of the samples, which are estimated by the lever rule using the phase
diagram [35], are listed in Table 1.

Table 1. Si, Al, and Ti molar ratios for the ternary alloys and their theoretical capacities.

Sample Si Ti Al Theoretical Capacity (mAh/g)

STA1 0.50 0.15 0.35 1111.1
STA2 0.50 0.10 0.40 1366.4
STA3 0.50 0.05 0.45 1650.6

The alloys were fabricated into ribbons using the melt-spinning method. The alloys
were heated inside a graphite nozzle by a high-frequency induction current in an Ar
atmosphere. This kept the alloys in the melt phase while they were squeezed out through
a slit onto a rotating copper wheel (1400 rpm), where they were rapidly cooled. The
average thickness of the alloy ribbons was ~35 µm. The cooling was very fast; consequently,
the nucleation was faster than the crystal growth, resulting in very fine structures. Alloy
powders were obtained by grinding 10 g of the alloy with 600 g of zirconia (5 mm diameter).
A schematic of the Si-alloy fabrication process is shown in Figure 1.
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Figure 1. Schematic of the Si-alloy fabrication process.

The negative electrode slurry was prepared by mixing the alloy powders, Ketjen black
(Lion, Tokyo, Japan), and polyimide binder (Kureha, Tokyo, Japan) with a weight ratio of
86.6:3.4:10 in N-methylpyrrolidone. The solvent was dried at 80 ◦C in a convection oven
(JEIO TECH, Daejeon, Korea) for 2 h, and then the binder was cured at 350 ◦C in a hydrogen
atmosphere for 2 h. Following this, 2032 coin half cells were fabricated using Li metal (anode),
silicon alloy (cathode), 1 M LiPF6 in ethylene carbonate and diethyl carbonate with a volume
ratio of 3:7 (electrolyte, Solbrain, Kongju, Korea), and a polypropylene separator (Enerever,
Suwon, Korea). The electrochemical characteristics of the coin cells were analyzed in the
operating voltage range of 0–2 V in constant current (CC) and constant voltage (CV) modes
with rates of 0.1 C and 0.05 C, respectively. The discharging rate was 0.1 C.

The crystal structures of the silicon alloys were examined using X-ray diffraction
(XRD) at ambient temperature (Rigaku MiniFlex 600, Rigaku Corporation, Tokyo, Japan)
using filtered Cu-Kα radiation (λ = 1.54056 Å). The surface morphologies of the alloys
were observed using field-emission scanning electron microscopy (FE-SEM; SU500, Hitachi,
Tokyo, Japan). Atomic resolution images were taken using a 200 kV aberration-corrected
scanning transmission electron microscope (JEM-ARM200CF, Jeol Ltd., Tokyo, Japan).
The detector angle ranges for the high-angle annular dark-field (HAADF) and annular
bright-field (ABF) imaging modes were 70–175 and 7.5–17 mrad, respectively. Elemental
distribution maps of the samples were acquired using scanning transmission electron
microscopy (STEM) along with energy dispersive X-ray spectroscopy (EDX) (JED-2300T,
Jeol Ltd., Tokyo, Japan) that was equipped with a dual-type detector having a large effective
solid angle (~1.2 sr). The electron probe size was ~1.1 Å. Cross-sectional transmission
electron microscopy (TEM) and selected area electron diffraction (SAED) were performed.
The samples were prepared using a focused ion beam (FIB, Auriga CrossBeam Workstation,
Carl Zeiss, Oberkochen, Germany).

We combined a scanning electron microscope (GeminiSEM 300, Carl Zeiss, Oberkochen,
Germany) with a charging circuit to visually observe the lithiation process of the alloys.
One microprobe (MM3A-EM, Kleindiek, Reutlingen, Germany) was placed on a Si alloy
particle inside the SEM, while the other probe was connected to the lithium metal. Then, a
current of 10 µA was supplied between the probes for 1 h to lithiate the Si alloy. During
lithiation, changes in the Si alloy particles and lithium metal were monitored using SEM.

3. Results and Discussion

Figure 2 displays SEM images of the anode particles. All three materials consisted of ir-
regular particles, 10–20 µm in size, with rough surfaces; there was no apparent dependence
of the outer appearance on the alloy atomic ratio. The XRD patterns of the three materials
are shown in Figure 3. All three materials contained Si, Al, and TiAl3 phases. STA1 had
both TiSi2 and Ti2AlSi3 phases, while STA2 had only Ti2AlSi3 due to its higher Al content.
However, STA3 had neither TiSi2 nor Ti2AlSi3, that is, a crystalline phase containing both
Ti and Si was not formed in STA3.
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The particle cross-sections were then investigated using STEM with EDX. As shown
in Figure 4, STA1 had a significant amount of a Ti–Si composite phase (yellow color in
Figure 4b), whereas STA3 had only a small amount. Ti (green color in Figure 4n) was rarely
observed in STA3. In STA2, the Si-only phase (red color in Figure 4h) appeared to be richer
than that in STA1, which may be related to the higher theoretical capacity of STA2. The
SAED patterns (Figure 4f,l,r) also confirmed the crystalline phases of the respective materi-
als, which were consistent with the XRD results. Figure S1 (supplementary information)
shows the internal structure of STA2 as determined from STEM measurements.
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Figure 5 shows the cycling performance and incremental discharge rate capability of
the samples in a coin cell assembly. The cycling properties in the voltage range from 0.01 to
2.0 V were determined using a discharge rate of 0.1 C. Increasing the Al content (decreasing
the Ti content) resulted in a significant increase in the initial capacity. The crystalline phases
of Ti and Si, such as TiSi2, are not active in electrochemical lithiation [36]. Hence, STA3,
which contains the most Si-only phase, had the highest capacity. However, STA3 exhibited
a significant capacity decline in the early cycles owing to the lack of TiSi2 or Ti2AlSi3,
which plays a role in charge transport as well as structural support [36]. Meanwhile,
STA2, which showed an initial capacity of ~1400 mAh/g, maintained a high capacity of
~890 mAh/g after 50 cycles. The high initial capacity of STA3 at 0.05 C rapidly declined as
the discharge rate increased, and at 5.0 C, it became almost the same as that of STA2. Thus,
the electrochemical performance evaluation indicates that STA2 has an optimal composition
as an anode material for LIB. The capacity retention and Coulombic efficiency of the samples
were also consistent with this evaluation (Figure S2 in the supplementary information).

SEM combined with a charge/discharge circuit was used to visually confirm the
durability of the alloy system in situ during lithiation. Figure 6 displays frames from
a video of the lithiation processes in the STA2 sample. Li atoms in contact with the
active material of STA2 penetrated the bulk of STA2 (circle in Figure 6b); however, no
noticeable changes such as crack formation or expansion were observed in the alloy active
material. Compared to pure silicon active material, where large cracks develop as lithiation
progresses (Figure S3 in the supplementary information), it is apparent that STA2 had high
durability throughout the lithiation process. Movies of the lithiation processes of STA2 and
pure Si, from which the images in Figure 6 and Figure S3 were taken, are provided in the
supplementary information.
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In accordance with the above results, an effective anode material requires both Si–Ti–
Al and Si-only phases for durability and capacity, respectively. When the amount of Ti
is too large (STA1), the Si-only phase is not sufficiently formed; thus, the capacity of the
material is reduced. On the contrary, when Ti is insufficient (STA3), the mechanical stability
of the material is not guaranteed. Although this work provides a practical guideline for
optimizing the composition of the Si–Ti–Al ternary alloy, there remains a future task to
develop a more precise and systematic approach to achieve the optimal composition.

4. Conclusions

We demonstrated Si–Ti–Al ternary alloys as high-performance negative electrodes for
lithium-ion batteries. The relatively uniform microstructure of the alloys was accomplished
by an arc-melting and spinning process. The optimized composition for the best electro-
chemical performance, STA2, contains both the Ti2AlSi3 phase, which plays a role in charge
transport and stability, and the Si-only phase, which is responsible for the high capacity.
The excellent mechanical robustness of STA2 against lithiation during electrochemical
charging was visualized in situ using SEM. No significant damage during the charging
process, such as cracks or splits, was observed, which indicates a significant improvement
in the mechanical characteristics of the Si anode materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14226912/s1, Figure S1: Atom-resolved high angle annular dark field (HAADF)-STEM
images for (a) Ti2AlSi3 and (b) Si of STA2. The corresponding fast Fourier transform diffraction
pattern is also shown at the right bottom of each image, Figure S2: Capacity retention and Coulombic
efficiency of STA1, STA2, and STA3, Figure S3: SEM images of the lithiation process.
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