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Abstract: Infection-related titanium implant failure rates remain exceedingly high in the clinic.
Functional surface coating represents a very promising strategy to improve the antibacterial and
bioactive properties of titanium alloy implants. Here, we describe a novel bioactive surface coating
that consists of a mussel-inspired carboxymethyl chitosan hydrogel loaded with silver nanoparticles
(AgNPs) to enhance the bioactive properties of the titanium alloy. The preparation of hydrogel is
based on gallic acid grafted carboxymethyl chitosan (CMCS-GA) catalyzed by DMTMM (4-(4,6-
dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride). To build a firm bonding between
the hydrogel and titanium alloy plate, a polydopamine layer was introduced onto the surface of
the titanium alloy. With HRP/H,O; catalysis, CMCS-GA can simply form a firm gel layer on the
titanium alloy plate through the catechol groups. The surface properties of titanium alloy were
characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and
water contact angle. Silver nanoparticles were loaded into the gel layer by in situ reduction to enhance
the antibacterial properties. In vitro antibacterial and cell viability experiments showed that the
AgNPs-loaded Ti-gel possesses excellent antibacterial properties and did not affect the proliferation
of rabbit mesenchymal stem cells (MSCs).

Keywords: carboxymethyl chitosan; gallic acid; titanium alloy; DMTMM; HRP/H,O;; catechol
group; hydrogel coating; antibacterial

1. Introduction

Titanium and its alloys have become much more popular than other metals in clin-
ics [1], for example, in orthopedic and cardiovascular implants, owing to their superior
tissue compatibility, mechanical properties, and corrosion resistance [2]. Despite clean
surgical procedures being followed and modern antibiotic regimes being used, the infection-
related titanium implant failure rates remain exceedingly high in the clinic. For example,
they account for approximately 14% of total implant failures in dental implant therapy.
Many studies have confirmed that the formation of bacterial biofilm on the surface of
titanium implants can cause serious inflammation and cause the loss of osseointegration,
which will eventually cause the implant to loosen and fall off. Therefore, building an
antibacterial coating on a titanium substrate is an effective strategy to prevent implant
infection and implant failure, and also avoid the side effects of systemic administration
on organs.

To date, various strategies have been reported to modify titanium surfaces with
antibacterial properties, which mainly include: (1) loading of antibacterial drugs, such
as antibiotics [3], or attaching antimicrobial peptides [4] to the surface; (2) introducing
inorganic antibacterial metal elements such as F, Cu, Zn, or Ag by alloy or modification [5];
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(3) applying a coating of antibacterial polymers [6]. Antibacterial drugs such as antibiotics
are generally combined with the substrate through covalent bonding [7] or non-covalent
adsorption [8-10]. However, these methods are not only prone to drug resistance, but also
usually have a burst phase at the initial stage of drug release, which prevents long-term
antibacterial effects. Many methods have also been performed to introduce inorganic
antibacterial metal elements to titanium surfaces, such as plasma spraying [11], micro-arc
oxidation [12], and ultrasonic spray coating [3]. Compared with organic antibacterial
drugs, metal elements exhibit broad-spectrum antibacterial activity, long acting time, and
no drug resistance. But these methods always lead to sacrificed mechanical property
and biocompatibility [13]. Antibacterial polymer is a type of high molecular antibacterial
agent, represented by chitosan. Layer-by-layer self-assembly (LBL) [14] and the sol-gel
method [15] are common methods for preparing polymer coatings. Hydrogels not only
possess viscoelasticity, low toxicity, and biocompatibility [16,17], but their unique swelling
properties are conducive to sustained drug release. Thus, using them is an effective strategy
to form a composite antibacterial coating. In particular, it has been proven that the in situ
hybridization of AgNPs in the hydrogel matrix can reduce the unwanted agglomeration
and burst leakage [5,18,19]. One key point for hydrogel application is to form robust
bonding between hydrogels and metals to achieve long-term stability.

Recently, mussel-inspired chemistry has shown great potential to build a convenient
adhesion of biopolymer to the solid substrate [16,20]. Extensive studies have certified that
catechol motifs contribute to strong adhesion [21]. Dopamine (DA), a mussel-inspired
polymer with abundant catechol, can form a polydopamine film on different ranges of
both inorganic and organic surfaces by spontaneous oxidative polymerization [21,22].
Besides, over the past decade, a variety of catechol-rich chemicals have been connected
to the chitosan backbone [23], such as 3,4-dihydroxyhydrocinnamic acid [6,24,25], 3,4-
dihydroxybenzealdehyde [26,27], ferulic acid [28-30], etc. Gallic acid (GA) is currently the
most used phenolic acid to be grafted onto chitosan, owing to its antioxidant properties
and low cost [31].

In this study, we report a novel bioactive surface coating that consists of a mussel-
inspired carboxymethyl chitosan hydrogel loaded with silver nanoparticles (AgNDPs) to
enhance the bioactive properties of the titanium alloy. As shown in Scheme 1, gallic acid
(GA) was successfully grafted onto the carboxymethyl chitosan (CMCS) backbone using
DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride) catalysis.
The obtained CMCS-GA can simply form a novel hydrogel coating on the titanium alloy
with a dopamine layer, under the catalysis of HRP/H;O;. It was expected that the resulting
hydrogel coating would show strong adhesion to the titanium alloy, and largely enhance the
biocompatibility and antibacterial property of titanium alloy. In addition, silver nanopar-
ticles (AgNPs) were synthesized in situ, using the reduction of carboxymethyl chitosan
to further enhance the antibacterial properties of the coating. The surface characteristics
of CMCS-GA hydrogel coating were tested by Fourier-transform infrared spectroscopy
(FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), etc.
In addition, the antibacterial and cell compatibility of the coating hydrogel were tested
in vitro.
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Scheme 1. Schematic illustration of the fabrication of the bioactive surface coating onto the titanium
alloy surface. Ti-DA represents Ti with dopamine. Ti-gel represents Ti with CMCS-GA-gel. Ti-gel-
AgNPs represents CMCS-GA-AgNPs.

2. Materials and Methods
2.1. Materials

CMCS, GA, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
(DMTMM) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). Tris(hy-
droxymethyl)aminomethane (Tris), AgNO3, and NaOH were purchased from Aladdin
Industrial Inc. (Shanghai, China). Escherichia coli (E. coli, ATCC 25922) and Staphylococ-
cus aureus (S. aureus, ATCC 25923) were purchased from China General Microbiological
Culture Collection Center (Beijing, China). All other reagents were of analytical grade.
Titanium alloy plates were provided by The General Hospital of the People’s Liberation
Army (PLAGH, Beijing, China). Rabbit mesenchymal stem cells (MSCs) were purchased
from Procell Life Science & Technology Co., Ltd. (Wuhan, China).

2.2. Preparation of CMCS-GA

The grafting of GA onto CMCS was achieved by the reaction between the carboxyl
group of GA and the amine group of CMCS catalyzed by DMTMM. Briefly, 0.25 g GA and
0.75 g DMTMM were dissolved in 25 mL deionized water (pH = 7.5) and stirred at room
temperature for 20 min under N to activate the carboxyl group, and this was followed by
adding 0.25 g CMCS dissolved in 25 mL deionized water. The reaction was then kept for
4 h at room temperature under N». Then, the product was precipitated with ethanol and
filtered with suction to obtain a solid product, and this was followed by lyophilization to
obtain the final CMCS-GA. The grafted gallic acid content in CMCS-GA was determined by
the Folin-Ciocalteau method (ref). Briefly, 1.0 mL of Folin—Ciocalteau reagent was added
to 0.5 mL CMCS-GA solution and reacted for 5 min in the dark. Then, 2.0 mL of sodium
carbonate (Nap,COj3) solution (200.0 g/L) was added to the mixture and kept at 30 °C for
1 h. The absorbance was measured at 747 nm by UV-Vis Spectrophotometer (NanoDrop
One, Thermo Fisher, Waltham, MA, USA). Gallic acid was used as a standard. The gallic
acid content in CMCS-GA was expressed as milligrams of gallic acid equivalent per gram
of conjugate (mg GAE/g).

2.3. Preparation of CMCS-GA Hydrogel on Titanium Alloy Plate

The clean titanium alloy plate was treated with 5 M NaOH for 6 h at 80 °C. Then, after
alkali heat treatment, the titanium alloy plate was soaked in 2% dopamine dissolved in
Tris-HCl buffer at pH 8.5 for 24 h (Table 1). The CMCS-GA obtained in the previous step
was dissolved in deionized water to make a 5% CMCS-GA solution. Then, 10 uL. 3% HRP
solution and 10 puL 0.1% H,O,; solution were mixed with 1 mL. CMCS-GA solution, and
dropped onto the titanium alloy plate and reacted at 37 °C for 2 h to form the hydrogel.
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The sample loaded with AgNPs was obtained by immersing the sample in 1 mM AgNOj;
for 1 h (Table 1).

Table 1. Titanium alloy plates with different treatments.

Alkali Heat Treatment Dopamine CMCS-GA-gel AgNO;
Ti X X X X
Ti-OH v X X X
Ti-DA 4 v X X
Ti-gel v v 4 X
Ti-gel-AgNPs v v v 4

2.4. Fourier-Transform Infrared (FTIR) Spectroscopy

The FTIR spectra of CMCS, GA, and CMCS-GA were measured with the Fourier-
transform infrared spectrometer (Vertex 70 V, Bruker, Karlsruhe, Germany) by collecting
32 accumulative scans in 4000-400 cm ! regions, to confirm that gallic acid was successfully
grafted onto the chitosan backbone.

2.5. Scanning Electron Microscope (SEM)

The titanium alloy plates with different treatments were characterized after the sam-
ples were sputtered and plated with gold for about 60 s. The surface morphology of
titanium alloy plates was investigated by using a scanning electron microscope (SEM,
Thermo Scientific Apreo 2C, Waltham, MA, USA), operating at 5 kV acceleration voltage.

2.6. Water Contact Angle

The static water contact angle was measured by the sessile drop method using a
contact angle goniometer (JY-82B Kruss DSA, Kruss, Hamberg, Germany). Images of water
spreading on the sample surfaces were recorded by a camera, and the contact angle was
analyzed with professional software. Three measurements were made for each sample.

2.7. X-ray Photoelectron Spectroscopy (XPS)

For chemical composition analysis, specimens were characterized using X-ray pho-
toelectron spectroscopy (Thermo Fisher, ESCALAB 250Xi, Waltham, MA, USA), with a
focused monochromatic Mg Ka X-ray source (1253.6 eV) for excitation. The electron take-
off angle was 60° in the dry state, and the analyzer was operated in the constant energy
mode for all measurements.

2.8. Antibacterial Property

The antibacterial property of samples was tested by the zone of inhibition (ZOI) and
counting colonies methods. Escherichia coli (E. coli, ATCC 25922) and Staphylococcus aureus
(5. aureus, ATCC 25923) were selected as reference strains for antibacterial testing.

For inhibitory zones (ZOI), the nutrient agar medium in the petri dish was inoculated
with 100 pL of 107-10® CFU/mL bacteria. Titanium alloy plates were placed on the petri
dish and incubated with bacteria at 37 °C for 24 h, and then the diameter of the zone of
inhibition was measured. Three replicates were tested for each sample.

For colony count, a single colony was incubated in 4 mL liquid LB medium for 4 h.
Then, 100 pL bacterium solution was incubated with 1 g CMCS-GA-gel and CMCS-GA-
gel-AgNPs in 4 mL liquid LB medium for 4 h, respectively. After that, the 100 pL 10°-fold
diluted bacteria solution was spread on the solid medium to count. Three parallels were
set for each sample.

2.9. Cell Viability

Rabbit mesenchymal stem cells (MSCs) were used to study the adhesion and toxicity
of the surface modification of the titanium alloy plate to cells. Titanium alloy plates with
different treatments were sterilized in 75% ethanol for 2 h, then washed three times with
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sterile PBS, and equilibrated in the culture medium for 2 h. MSCs were seeded on the
plates with a density of 1x10° cells per well. After 6, 24, and 48 h, the surface of each
titanium alloy plate was washed three times with PBS to remove any loosely attached
cells. Then, 0.5 mL of 10% CCK-8 medium was added to each well and they continued to
incubate for 1 h, then the absorbance was measured at 450 nm (Fluoroskan FL, Thermo
Fisher, Waltham, MA, USA). Three parallels were set for each sample. At the same time,
fluorescence imaging was used to observe the adhesion of MSCs at different time intervals.
The cells were stained with a Live/Dead Cell Double Staining Kit.

3. Results and Discussion
3.1. FTIR Test

To verify whether gallic acid was successfully grafted onto the chitosan backbone,
FTIR was used to characterize CMCS, GA, and CMCS-GA. As shown in Figure 1, all
samples possess the characteristic peak around 3420 cm ™!, which is caused by the hydroxyl
stretching vibration overlying CMCS and GA. The characteristic peaks at 1614 cm ™! of
CMCS and 1666 cm ™! of GA correspond to the vibration of C=0 in the -COOH group.
The peaks at 1055 cm ! of CMCS and 1069 cm~! of CMCS-GA are attributed to the
C-O-C stretching vibration of the polysaccharide chain. The several characteristic bands of
aromatic rings of GA at 1400~1600 cm ! can also be observed. For CMCS-GA, the newly
formed bond at 1593 cm™! (C=0O,N-H) indicates that amide linkages were established
between CS and GA, whereas the peak at 1373 cm ™! is designated to O-H of phenolic
hydroxyl on GA. All the above results demonstrate the successful conjugation of GA with
CMCS. The content of gallic acid in CMCS-GA is determined as 71.7 mg GAE/g.
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Figure 1. FTIR spectra of CMCS, GA, and CMCS-GA.

3.2. Surface Morphology

The surface morphology of the titanium alloy plates was studied during the treatment
process. The treatment process involved alkaline heat treatment of the titanium alloy plate
to introduce the reactive hydroxyl groups, followed by dopamine treatment to form the
polydopamine layer, and the addition of CMCS-GA in order to form a gel. After each
treatment step, both a photograph and a SEM image were taken of each sample, for the
purpose of comparison. The results show that the untreated titanium alloy plate has a
smooth surface and metallic color, which slightly changes to a brighter color, and a uniform
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porous structure appeared on the surface in the SEM image after the alkaline treatment,
as shown in Figure 2. After the dopamine treatment, the formation of the polydopamine
layer caused the surface of the titanium alloy to turn brown, as the phenolic hydroxyl
group on dopamine is oxidized to a quinone. Furthermore, the application of the prepared
CMCS-GA further changed the surface color to a darker brown, and a smooth surface once
again replaced the porous structure in SEM image, which can be attributed to the further
oxidative cross-linking of phenol in gallic acid and dopamine to form a dense and uniform
gel layer on the surface of the titanium alloy.

Ti-gel Ti-gel-AgNPs

Wty
S
£ s

9
2
Ti-gel-AgNPs

Figure 2. Surface morphology of titanium alloy plates with different treatments.

3.3. Water Contact Angle

Figure 3 shows the contact angle results of the original titanium alloy (Ti), Ti-OH, Ti-
DA, and Ti-gel. For the original titanium, the contact angle is approximately 71° (Figure 3a).
After alkali heat treatment, the contact angle decreases to 55° (Figure 3b), which is due
to a large number of hydrophilic hydroxyl groups on the surface. The construction of
the polydopamine layer destroys the hydrophilic surface formed by alkali heat treatment
(Figure 3c). The reason for this is the combination of amine groups and hydroxyl groups
during the polymerization of dopamine reduces the number of hydroxyl groups. However,
CMCS-GA hydrogel reduces the contact angle of the sample surface to 63° (Figure 3d), as
CMCS-GA contains a large amount of hydrophilic carboxyl and hydroxyl groups, making
the surface more hydrophilic than the original titanium alloy. The hydrogel improves the
wettability of the titanium alloy surface, which can help with the adhesion and proliferation
of cells on the surface [32].
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Figure 3. The contact angle image of (a) Ti, (b) Ti-OH, (c) Ti-DA, and (d) Ti-gel.

3.4. Chemical Composition

The chemical composition of the sample was further tested by XPS. Figure 4 shows the
XPS spectra of original titanium alloy (Ti), Ti-OH, Ti-gel, and Ti-gel-AgNPs. In Figure 4a,
the peak at bonding energies of 458.1 and 463.8 eV correspond to Ti 2p3/2 and Ti 2p1/2,
respectively. The peak of Ols also can be clearly seen at 533.1 eV. This means that the
original titanium surface is mainly composed of TiO,. Elements C and N are attributed to
impurities contained in the titanium alloy and unavoidable ambient air adsorption. After
alkali heat treatment (Figure 4b), the peak of O1ls still clearly exists in the spectrum, but the
peak of C1s is no longer discernible, which proves that the surface of the titanium alloy
is covered by many hydroxyl groups. The peak of Ti disappeared in Figure 4c, indicating
that the surface of the titanium alloy is covered by a dopamine and gel layer. The peak
of Ag3d at 368.4 and 374.4 eV is clearly present in Figure 4d. In relation to Figure 4c, the
newly emerged peak results from AgNPs formation.

3.5. Antibacterial Activity

It is widely acknowledged that chitosan exhibits a bactericidal effect only at very high
concentrations. To improve the antibacterial property of hydrogel, it is worth considering
introducing silver nanoparticles, with well-established inhibitory effects. Polysaccharides
can be used as reducing agents and stabilizers to provide a green method for simply
obtaining silver nanoparticles through in situ reduction [33]. The antibacterial activity test
was assessed against E. coli. and S. aureus.

Figure 5 shows the results of the zone of inhibition (ZOI) test of original titanium
alloy (Ti), Ti-gel, and Ti-gel-AgNPs. For bare original titanium, the ZOI is 0 for both E. coli
and S. aureus. After loading the gel layer, the ZOI increases to 1.21 £ 0.05 mm and 1.12
=+ 0.03 mm for E. coli and S. aureus, respectively, which can be attributed to the cationic
antibacterial property of CMCS. The zone can be observed more clearly after loading
AgNPs; the ZOl'is 17 &= 0.20 mm for E. coli and 23 4= 0.20 mm for S. aureus. The antibacterial
activity could be due to the synergistic effects of CMCS and silver particles.
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Figure 4. XPS spectra of (a) original titanium alloy (Ti), (b) Ti-OH, (c) Ti-gel, and (d) Ti-gel-AgNPs.
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Figure 5. The zone of inhibition (ZOI) of E. coli. (a—c) and S. aureus. (d—f) after incubation with
original titanium alloy (a,d), Ti-gel (b,e), and Ti-gel-AgNPs (c,f).

The above results were also proven by counting colonies. Figure 6 shows the colonies
number of E. coli and S. aureus after incubation with CMCS-GA-gel and CMCS-GA-AgNPs,
respectively. The blank controls of both bacteria contained approximately 108 CFU /plate.
The colonies number is reduced to approximately 107 CFU/plate after co-incubation with
the CMCS-GA-gel. As a Gram-negative bacterium, E. coli contains a lot of hydrophobic
lipids and proteins in its cell wall, which makes its cell surface less hydrophilic than Gram-
positive bacteria. Therefore, hydrophilic CMCS exhibits a more significant inhibition on



Materials 2021, 14, 6901

90f11

S.aureus. After loading AgNPs, the colonies number is decreased to 1.7 x 10° CFU/plate
for both S. aureus and E. coli.

Figure 6. Colonies number of E. coli. (a—c) and S. aureus. (d—f) after incubation with CMCS-GA-gel
and CMCS-GA-AgNPs. (a,d) are blank controls; (b,e) are the group incubated with CMCS-GA-gel.
(d,f) are the group incubated with CMCS-GA-AgNPs.

3.6. Cell Viability

The biocompatibility of titanium alloy plates with different treatments was assessed
by the in vitro viability of MSCs in direct contact samples, using a CCK-8 assay. The
MSCs were seeded on the titanium alloy plates surfaces and cultured for 6 h, 24 h, and
72 h. Cell viability was measured by OD 450 nm with a plate reader. As shown in
Figure 7, after 6 h, 24 h, and 72 h incubation, there was no significant difference between
the viability of cells incubated in all samples. This result is consistent with that observed
by fluorescence imaging, which indicated that MSCs seeded on the hydrogel surfaces
were able to proliferate along with increasing culture time. Similar results were reported
previously for the biocompatibility of AgNPs-loaded hybrid hydrogels [18,34]. From
these results, we suggest that the CMCS-GA-AgNPs composite hydrogels are potential
biomaterials with excellent antibacterial activities and without significant cell cytotoxicity.

a b
Ti Ti-gel Ti-gel-AgNPs
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6h | m— ] NS
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e 3 Ti-gel-AgNPs T .
S 1
0
<
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Figure 7. MSCs fluorescence imaging (a) and viability (b) after co-cultured with Ti, Ti-gel, Ti-gel-
AgNPs for 6 h, 24 h, and 72 h. NS means no significant.
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4. Conclusions

In summary, we have demonstrated a novel bioactive surface coating that consists
of a mussel-inspired carboxymethyl chitosan hydrogel loaded with AgNPs to enhance
the bioactive properties of the titanium alloy. The coating of CMCS-GA-gel could en-
hance the hydrophilicity of the titanium alloy plate surface, which helps the adhesion
and proliferation of cells on the surface. The antibacterial activity test showed that the
Ti-gel loaded with AgNPs possessed a significant antibacterial effect. Since S. aureus is a
Gram-positive bacteria with a more hydrophilic surface, CMCS-GA-gel is more efficient
against S. aureus than E. coli. Ti-gel and Ti-gel-AgNPs show similar biocompatibility in
terms of MSCs adhesion and proliferation, in comparison with Ti. These results suggest
that this CMCS-GA-gel provides a promising alternative as a design for a multifunctional
hydrogel coating for Ti implants that supports cell adhesion, spreading, and drug loading.
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