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Abstract: Nanocracks can generate at the intersection of the deformation twin and grain boundary
(GB). A mathematical model is built to study the nanoinhomogeneity effect on nanocrack nucleation
and propagation in the nanocrystalline matrix. The boundary condition at the interface between the
nanoinhomogeneity and the matrix is modified by incorporating the interface effect. The influence
of the nanoinhomogeneity shear modulus, the nanoinhomogeneity radius, the nanoinhomogeneity
position, the interface effect, and the external stress on the nanocrack nucleation and propagation is
investigated in detail. The results indicate that the stiff nanoinhomogeneity suppresses nanocrack
nucleation and propagation and thereby improves the tensile ductility of nanocomposites without loss
of their predominantly high strength. Both the positive interface residual tension and interface elastic
constants suppress nanocrack nucleation and propagation, while the negative interface residual
tension and interface elastic constants promote nanocrack nucleation and propagation. Furthermore,
the effect of interface residual tension is rather significant. The interface elastic constants have a weak
effect on nanocrack nucleation and propagation.

Keywords: nanocomposite; crack; twin; nanoinhomogeneity; interface effect

1. Introduction

Nanocrystalline materials showing superior strength and hardness have recently at-
tracted a considerable amount of attention [1–6]. At the same time, in most cases, nanocrys-
talline materials exhibit disappointingly low tensile ductility and low fracture toughness,
which substantially limit their practical application [7–10]. Usually, the fracture of nanocrys-
talline materials often begins with nanocrack generation at grain boundaries and their triple
junctions [11–14]. Structural defects and stress concentrations located at grain boundaries
are the most probable sites of nanocrack nucleation [15]. For instance, the disclinations
created by GB sliding serve as powerful stress sources that can induce the generation of
nanocracks, and then the nanocrystalline materials tend to exhibit brittle behavior [13,14].
Many previous works have studied the crack generation from disclinations [16–18].

In addition, fracture and twin deformation often occur cooperatively in nanocrys-
talline materials. For example, the pre-existent crack can stimulate the generation of a
deformation twin in nanocrystalline materials [19]. Furthermore, molecular dynamics
simulations [20] have shown that the deformation twin also promotes crack generation
because of the high local stress produced from the intersection between the twin and grain
boundary in nanocrystalline Mo. The molecular dynamics simulations [20] are in good
agreement with the experiments [21,22] documenting cracks can nucleate at twin–grain
boundary intersections in coarse-grained γ -TiAl. Based on the above description, Ovid’ko
and Sheinerman [23,24] built a theoretical model to study crack nucleation at the intersec-
tion of the twin and grain boundary in thin-film and bulk nanocrystalline materials. They
found that the nanocrack is produced at twin thicknesses of a few nanometers, and the
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equilibrium nanocrack lengths increase with increasing twin thickness in bulk nanoma-
terials. Besides, the influence of the film surface on nanocrack nucleation is significant in
thin-film nanomaterials, when the distance between the film and the twin surface is less
than several twin thicknesses. Recently, Luo [25] investigated microcrack generation at the
intersection between the twin and GB. The deformation twin is represented as a wedge
disclination quadrupole. They found that when the aspect ratio of the twin is large, the
effect of the distant wedge disclination dipole can be neglected, so the disclination dipole
model is sufficiently precise to investigate the crack generation.

In contrast with single-phase nanocrystalline materials, nanocomposites have high
strength and crack resistance characteristics, which makes them highly attractive for a wide
range of engineering applications [26–33]. The mechanical properties of Ni/SiC nanocom-
posites produced by pulse electrodeposition have been studied by Zimmerman et al. [30].
It was interesting to note that not only the tensile strength but also the ductility of the
nanocomposites with 400 nm SiC particles were higher than those of pure nanocrystalline
Ni materials. However, at higher SiC concentrations, the ductility and strength of the
nanocomposites decreased significantly due to particle clustering. Lari Baghal et al. [33]
have recently reported the experimental results of second-phase SiC nano-particles incor-
porated in electrodeposited nanocrystalline Ni-Co. They found that uniformly distributed
SiC nanoparticles can significantly improve the ultimate tensile strength and elongation to
failure of the nanocomposites.

For nanoscale inhomogeneity, with a large volume ratio of the interface area to the in-
homogeneity, the interface effect on the property of the material cannot be neglected. Gurtin
and his co-workers [34,35] first studied the interface stress of elastic isotropic solids with
continuum mechanics and proposed the interface stress model. The interface stress model
has been widely utilized to investigate the various mechanical problems in nanostructured
materials [36–45]. Fang and Liu [38,39] studied the interaction of nanoinhomogeneity with
screw dislocation and edge dislocation, respectively. Mogilevskayaet et al. [40] studied the
interaction between a circular inclusion and a straight crack with interface elasticity and
tension. They discussed the interface effect on the stress intensity factor at the crack tip
by using a complex boundary integral equation approach. The numerical results showed
that the interface tension may significantly change the stress intensity factor, while the
effect of surface elasticity is rather insignificant. Luo et al. [41] investigated the stress
field and crack nucleation behavior in a disclinated nanowire with the Gurtin–Murdoch
model. They found that the stress fields of the wedge disclination and the edge dislocation
are significantly affected by the surface effect. Zhu and Ju [42] investigated the effective
elastic moduli of composite materials containing randomly distributed nanoparticles by
incorporating the interface energy effect into a classical micromechanics framework. While
there has been much recent work on nanocomposites, there is little systematic work on the
influence of second-phase nanoparticles in the nanocrystalline matrix. The systematic stud-
ies of both stiff and soft second-phase nanoparticles with varying sizes and distributions in
the nanocrystalline matrix are likely to provide additional optimization of strength and
ductility in nanocomposite materials.

The main aim of this paper is to theoretically describe the nanoinhomogeneity effect
on nanocrack nucleation and propagation at the deformation twin stopped by GBs in
nanocomposite materials. The boundary condition at the interface between the nanoinho-
mogeneity and the matrix is modified by incorporating the interface effect. The influence
of the nanoinhomogeneity shear modulus, the nanoinhomogeneity radius, the nanoinho-
mogeneity position, the interface effect, and the external stress on the nanocrack nucleation
and propagation is discussed.

2. Model and Problem Formulation

As shown in Figure 1, a nanocrystalline matrix with the elastic properties µ2 and κ2
contains a circular nanoinhomogeneity of the radius R with the elastic properties µ1 and κ1,
where µj (j = 1, 2) is the shear modulus and κj = 3− 4υj for the plane strain state (υj is
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Poisson’s ratio). The center of the circular nanoinhomogeneity o is assumed for convenience
to locate the grain boundary. The nanocrystalline matrix is under a remote tension load σ.
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Figure 1. The nanocrack and nanoinhomogeneity at the nanoscale twin in a nanocomposite ma-
terial. (a) Full view. (b) Magnified inset highlights the nanoscale twin, the nanocrack, and the
nanoinhomogeneity.

According to Ovid’ko and Sheinerman [23], accompanying plastic deformation of
the nanocrystalline matrix, the twin ABCD is produced in a nanoscale grain. To simplify
the analysis, we suppose that the deformation twin ABCD is perpendicular to the grain
boundary that stops its growth. Therefore, following Romanov and Vladimirov [46] and
Ovid’ko and Sheinerman [23], the twin ABCD can be represented as a wedge disclination
quadrupole. Furthermore, in the fcc crystals, the magnitude of the wedge disclination
strength ω is 2arctan(

√
2/4). The thickness and length of the twin are given as h and

s, while the distance between point B and the circular nanoinhomogeneity center o is
denoted as d.

Due to the high internal stress fields induced by disclinations, they often serve as the
sites for crack nucleation. As shown in Figure 1, a nanocrack with length L is generated from
one of the negative wedge disclinations and lies alongside the GB. Under the assumption
that the twin length s is large compared with both the nanocrack length L and the twin
thickness h, the influences of disclinations located at points A and C on the nanocrack
nucleation and propagation can be ignored. That is to say, we studied the nucleation
and propagation of the nanocrack in the stress field induced by the external load, the
nanoinhomogeneity, and the disclination dipole.

According to Gurtin and Murdoch [34], the elastic field of the bulk solid can use
classic elasticity to characterize the differential equation, while the interface between
the nanoinhomogeneity and the matrix has its own elastic constants and is described
by a supplementary constitutive relation. Following the work of Sharma et al. (2003)
and assuming that the interface adheres to the nanoinhomogeneity without slipping, the
boundary conditions on the nanoinhomogeneity—matrix interface can be obtained as

u+
x1(t)− u−x2(t) = 0, u+

y1(t)− u−y2(t) = 0, |t| = R (1)
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σ+
rr1(t)− σ−rr2(t) = −

σ0
θθ(t)
R

, σ+
rθ1(t)− σ−rθ2(t) =

1
R

∂σ0
θθ(t)
∂θ

, |t| = R (2)

where µx and µy are displacements in the x and y directions; the subscript ‘1’ indicates the
nanoinhomogeneity and the subscript ‘2’ indicates the matrix; the superscripts + and −
indicate boundary values of the physical quantity as z approaches the interface from the
nanoinhomogeneity and the matrix, respectively; the superscript “0” indicates the interface
area; and σrr and σrθ are stress components in the polar coordinate. What is more, in light
of Povstenko [47], the constitutive equation for the interface area is obtained as follows:

σ0
θθ(t) = τ0 + (2µ0 + λ0 − τ0)ε0

θθ(t) (3)

where ε0
θθ and σ0

θθ indicate interface strain and stress, τ0 is the interface residual tension,
and µ0 and λ0 are interface elastic constants. Here we study a coherent interface, so the
interface strain ε0

θθ is equal to the associated tangential strain in the abutting bulk materials.
Taking into consideration the added constitutive equation for the interface area in

Equation (3) and the following constitutive equation for the nanoinhomogeneity:

εθθ1 =
λ1 + 2µ1

4µ1(λ1 + µ1)
σθθ1 −

λ1

4µ1(λ1 + µ1)
σrr1 (4)

the stress boundary conditions in Equation (2) on the interface are recast as follows

σ+
rr1(t)− σ−rr2(t) = −

2µ0 + λ0 − τ0

4Rµ1(λ1 + µ1)
[(λ1 + 2µ1)σθθ1(t)− λ1σrr1(t)]−

τ0

R
(5)

σ+
rθ1(t)− σ−rθ2(t) =

2µ0 + λ0 − τ0

4Rµ1(λ1 + µ1)

[
(λ1 + 2µ1)

∂σθθ1(t)
∂θ

− λ1
∂σrr1(t)

∂θ

]
(6)

where λ1 is the Lame constant of the nanoinhomogeneity.

3. Conditions for Nanocrack Nucleation and Propagation

In order to estimate the conditions for nanocrack nucleation and propagation, we use
the energetic criterion [48]

F > 2γ− γb (7)

where F is the energy release rate, γ is the specific surface energy, and γb is the specific (per
unit area) GB energy.

According to Indenbom [48], the energy release rate of nanocrack propagation is
obtained as

F =
π(1− ν)L

4µ2
(σ2

yy + σ2
xy) (8)

where σyy and σxy are the mean weighted values of the stress tensor calculated as [48]

σiy =
2

πL

L∫
0

σiy(x, y = 0)
√

x
L− x

dx, i = x, y. (9)

σyy and σxx are the stress components of the total stress induced by the external load,
the nanoinhomogeneity, and the disclination dipole BD.

According to the work of Fang and Liu [38] and Liu et al. [49], by a sufficient number
of calculations, we can obtain the stress components σyy and σxx fitting into Formula (9) as

σyy(x, y = 0) = [ R2

(d−x)2 + 2]{ σ
4 + Dω

2 ln x+h
x + µ2

κ2µ1

+∞
∑

k=1
B−k(d− x)−k

−Dω
2κ2

[ln d−x−R2/d
d−x−R2/(d+h) −

h
d−x + d+h−R2/(d+h)

d−x−R2/(d+h) −
d−R2/d

d−x−R2/d ]}
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+ (d− x− R2

d− x
){Dω

2
(

1
x
− 1

x + h
)− µ2

κ2µ1

+∞

∑
k=0

kB−k(d− x)−k−1

−Dω
2κ2

[ 1
d−x−R2/d −

1
d−x−R2/(d+h) +

h
(d−x)2 −

d+h−R2/(d+h)
(d−x−R2/(d+h))2 +

d−R2/d
(d−x−R2/d)2 ]}

+ R2

(d−x)2 {
κ1µ2
µ1

+∞
∑

k=0
Ak(

R2

d−x )
k
− µ2

µ1
A0 − κ2[

σ
4 + Dω

2 ln R2/(d−x)−(d+h)
R2/(d−x)−d )]

+
Dω

2
[ln

R2/(d− x)− R2/d
R2/(d− x)− R2/(d + h)

− h(d− x)
R2 +

d + h− R2/(d + h)
R2/(d− x)− R2/(d + h)

− d− R2/d
R2/(d− x)− R2/d

]} (10)

σxy(x, y = 0) =
R2

(d− x)2 (
µ2

κ2µ1

1 + κ2

κ2c7

R2

(d− x)2
σ

2
− R2

(d− x)2
σ

2κ2
− κ1µ2

µ1

c9

c8

R2

(d− x)2
σ

2
− (d− x)2

R2
σ

2
)

− (d− x− R2

d− x
)

(
µ2

κ2µ1

1 + κ2

κ2c7

R2

(d− x)3 σ− R2

(d− x)3
σ

κ2
) (11)

where

A0 = (1+κ2)µ1
κ1µ2−µ2+2µ1(1+b)

σ
4 + Dω

2
c1

1−c2
ln d+h

d −
µ1

κ1µ2−µ2+2µ1(1+b)
τ0

R ,

Ak = −Dω
2

c4
c3

R−2k{ 1
k [(

R2

d+h )
k
− ( R2

d )
k
]− hδ1k + (d + h− R2

d+h )(
R2

d+h )
k−1
− (d− R2

d )( R2

d )
k−1
}

+Dω
2

1+κ2
c3

1
k [

1
dk − 1

(d+h)k ],

B−k =
Dω

2
1+κ2
κ2c5
{ 1

k [(
R2

d+h )
k
− ( R2

d )
k
]− hδ1k + (d + h− R2

d+h )(
R2

d+h )
k−1
− (d− R2

d )( R2

d )
k−1
}

+
Dω

2
c6

c5

R2k

k
[

1
dk −

1

(d + h)k ]

D = µ2
2π(1−ν2)

, a = 2µ0+λ0−τ0

4Rµ1
, b = 2µ1(2µ0+λ0−τ0)

4Rµ1(µ1+λ1)
, c1 = µ1(1+κ2)

µ2κ1+µ1(1+b) ,

c2 = µ1−µ1(1+b)
µ2κ1+µ1(1+b)

c3 = 1 + (a + b)(k + 1) +
µ2κ1

µ1
+

a(a + b)(1 + k)(1− k)
1 + (k− 1)a + µ2/(κ2µ1)

, c4 =
a(1 + κ2)(1 + k)

κ2[1 + (k− 1)a + µ2/(κ2µ1)]

c5 = 1 + a(k− 1) +
µ2

µ1κ2
+

a(a + b)(1 + k)(1− k)
1 + (k + 1)(a + b) + µ2κ1/µ1

c6 =
(a + b)(1 + κ2)(1− k)

1 + (k + 1)(a + b) + µ2κ1/µ1
, c7 = 1 + a +

µ2

µ1κ2
− 3a(a + b)

1 + 3(a + b) + µ2κ1/µ1

c8 = 1 + 3(a + b) +
µ2κ1

µ1
− 3a(a + b)

1 + a + µ2/(κ2µ1)

c9 = 3a(1+κ2)
κ2[1+a+µ2/(κ2µ1)]

and δij is the Kronecker delta.
With Equations (8) and (9) substituted into formulas (7), we obtain the following

necessary condition for nanocrack growth: q > qc, where

q =
8µ2

(2γ− γb)(Dωπ)2L
[(

L∫
0

σyy

√
x

L− x
dx)

2

+ (

L∫
0

σxy

√
x

L− x
dx)

2

] (12)

qc =
32π(1− ν)

ω2 (13)

4. Results and Discussion

Utilizing Equations (12) and (13), the influence of nanoinhomogeneity on nanocrack
nucleation and propagation in the nanocrystalline matrix can be evaluated in detail. We use
the following parameter value for the nanocrystalline Ni matrix: µ2 = 79 Gpa, υ2 = 0.31,
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γ = 1.725 J/m2, γb = 0.69 J/m2 [23]. We give α = π/4, because the value of α = π/4
corresponds to the direction of the maximum shear stress (induced by the external tensile
load) at which the nanotwin generation is most favorable. In addition, we define the
intrinsic lengths β = µ0/µ1, η = λ0/µ1 and χ = τ0/µ1. According to results in Miller and
Shenoy [43], the absolute values of the intrinsic lengths β, η, and χ are nearly 0.1 nm.

4.1. Influence of Nanoinhomogeneity Shear Modulus on Nanocrack Nucleation

The variation of q versus the nanocrack length L for different values of the nanoin-
homogeneity shear modulus µ1 (d = 60 nm and R = 50 nm) without an interface effect
is depicted in Figure 2. The horizontal line in Figure 2 shows the value of qc. When
the curve q lies higher than the horizontal line qc, the nanocrack will grow. The critical
nanocrack length Lc and equilibrium nanocrack length Le correspond to the left and right
intersection points of the curve q with the horizontal line qc, respectively. A nanocrack is
generated when the crack length reaches its critical value Lc. Then the nanocrack grows
until its length reaches the equilibrium value Le. It is shown in Figure 2 that, compared
with the one-phase case (µ1 = µ2), the stiff nanoinhomogeneity (µ1 > µ2) increases the
critical nanocrack length Lc and decreases the equilibrium nanocrack length Le, while the
soft nanoinhomogeneity (µ1 < µ2) would lead to the opposite situation. This indicates
the stiff nanoinhomogeneity suppresses nanocrack nucleation and propagation, while
soft nanoinhomogeneity promotes nanocrack nucleation and propagation. In particular,
when the shear modulus of the nanoinhomogeneity is large enough (µ1 > 212 Gpa), the
nanocrack is no longer generated.
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4.2. Influence of Nanoinhomogeneity Radius and Position on Nanocrack Nucleation

In this section, we focus on the case of Ni/SiC (metal-ceramic) nanocomposites. In the
case of SiC nanoinhomogeneity, we obtained µ1 = 217 Gpa, υ1 = 0.23 [50]. The variation of
q versus the nanocrack length L for different values of the SiC nanoinhomogeneity radius R
(h = 2.7 nm and d = 85 nm) without an interface effect is depicted in Figure 3. It is shown
that the SiC nanoinhomogeneity in the nanocrystalline Ni matrix increases the critical
nanocrack length Lc and decreases the equilibrium nanocrack length Le. This indicates the
SiC nanoinhomogeneity suppresses nanocrack nucleation and propagation [33]. As the SiC
nanoinhomogeneity radius increases, the effect of the SiC nanoinhomogeneity will continue
to grow stronger. In particular, when R > 75 nm, the nanocrack is no longer generated.
The size of the second phase can be controlled in nanocomposites, so the analytical results
could serve as a guide for the design of nanocomposites.
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The variation of q versus the nanocrack length L for different values of distance d
between the twin and SiC nanoinhomogeneity (h = 2.7 nm and R = 50 nm) without an
interface effect is depicted in Figure 4. It is shown that, as the SiC nanoinhomogeneity
approaches the twin, the effect of the SiC nanoinhomogeneity will continue to grow
stronger. Especially, for a small enough value of d (d < 58 nm), the nanocrack is no longer
generated. Figures 3 and 4 clearly demonstrate that the SiC nanoinhomogeneity in the
nanocrystalline Ni matrix suppresses nanocrack nucleation and propagation and thereby
improves the tensile ductility of nanocomposites without loss of their predominantly high
strength. The experimental results [30,33] demonstrate SiC nanoparticles can improve
the ductility and tensile strength of the nanocrystalline Ni matrix. Lari Baghal et al. [33]
consider the improvement to be ascribed to the suppressing effect of SiC nanoparticles
on nanocrack propagation that can delay the fracture of the nanocomposites, which is
consistent with our analytical result.
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4.3. Influence of Interface Effect on Nanocrack Nucleation

The variation of q versus the nanocrack length L for different values of the interface
residual tension χ (d = 15 nm and R = 10 nm) is depicted in Figure 5. It is shown that
if the interface residual tension is positive (χ > 0), it will increase the critical nanocrack
length Lc and decrease the equilibrium nanocrack length Le; if the interface residual
tension is negative (χ < 0), it will decrease the critical nanocrack length Lc and increase
the equilibrium nanocrack length Le. This indicates that the positive interface residual
tension suppresses nanocrack nucleation and propagation, while the negative interface
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residual tension promotes nanocrack nucleation and propagation. Furthermore, the effect
of interface residual tension is rather significant.
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The variation of q versus the nanocrack length L for different values of interface elastic
constants β and η (d = 15 nm and R = 10 nm) is depicted in Figure 6. It can be seen
that the positive interface elastic constants increase the critical nanocrack length Lc and
decrease the equilibrium nanocrack length Le, but the negative interface elastic constants
would lead to the opposite result. This indicates that the positive interface elastic constants
suppress nanocrack nucleation and propagation, which means the local hardening at the
interface occurs due to the positive interface elastic constants. On the other hand, the
negative interface elastic constants promote nanocrack nucleation, and local softening at
the interface is produced. However, the interface elastic constants have a weak effect on
nanocrack nucleation and propagation.
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4.4. Influence of External Stress on Nanocrack Nucleation

The variation of q versus the nanocrack length L for different values of external stress
σ (µ1 = µ2) without an interface effect or nanoinhomogeneity is depicted in Figure 7. It is
shown that, as the external stress σ increases, the critical nanocrack length Lc decreases and
the equilibrium nanocrack length Le increases. This result seems natural since the external
stress σ drives nanocrack nucleation and propagation [23].
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5. Concluding Remarks

In this paper, we have theoretically studied the nanoinhomogeneity effect on nanoc-
rack nucleation and propagation at the deformation twin stopped by GBs in nanocomposite
materials. The influence of the nanoinhomogeneity shear modulus, the nanoinhomogeneity
radius, the nanoinhomogeneity position, the interface stress, and the external stress on
nanocrack nucleation and propagation was investigated in detail. The results indicate that:

(1) The stiff nanoinhomogeneity suppresses nanocrack nucleation and propagation,
while the soft nanoinhomogeneity promotes nanocrack nucleation and propagation. In
particular, when the shear modulus of the nanoinhomogeneity is large enough, the nanoc-
rack is no longer generated. Therefore, when manufacturing nanocomposites, we can
choose the appropriate shear modulus of the particle to ensure that, as far as possible, the
nanocrack is not generated, thereby improving the ductility of nanocomposites.

(2) The SiC nanoinhomogeneity in the nanocrystalline Ni matrix suppresses nanocrack
nucleation and propagation and thereby improves the tensile ductility of nanocomposites
without loss of their predominantly high strength. The analytical results are consistent
with the corresponding experimental data [30,33].

(3) As the SiC nanoinhomogeneity radius increases and the SiC nanoinhomogeneity
approaches the twin, the effect of the SiC nanoinhomogeneity on nanocrack nucleation and
propagation will continue to grow stronger. In particular, when the nanoinhomogeneity
radius is more than a certain value, the nanocrack is no longer generated. The size of the
particle can be controlled in nanocomposites, so the analytical results could serve as a
guide for the design of nanocomposites.

(4) Both the positive interface residual tension and the interface elastic constants
suppress nanocrack nucleation and propagation, while the negative interface residual
tension and the interface elastic constants promote nanocrack nucleation and propagation.
Furthermore, the effect of the interface residual tension is rather significant. However, the
interface elastic constants have a weak effect on nanocrack nucleation and propagation.

(5) When the external stress increases, the nanocrack generates and grows more easily.
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