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Abstract: An analytical model is proposed to rapidly capture the thermal and residual stresses values
induced by the hybrid metal extrusion and bonding (HYB) process on dissimilar-metal butt-welded
joints. The power input for two welding velocities is first assessed using a thermal–mechanical
model solved by a heat generation routine written in MATLAB code. Subsequently, the obtained
temperature history is used as input to solve the equilibrium and compatibility equations formulated
to calculate the thermal and residual stresses. To verify the soundness of the analytical approach, a
Finite Element numerical model of the entire process is carried out and results are compared with
those coming from the proposed rapid method. It is found that the degree of accuracy reached by the
analytical model is excellent, especially considering the tremendous time reduction when compared
to that characterizing the standard numerical approach.

Keywords: dissimilar welds; S355; AA6082; residual stresses; rapid calculation; analytical method

1. Introduction

Metal structures subjected to welding processes are characterized by residual stresses
that are a consequence of heating and cooling cycles occurring in the joint and in the parent
material. The localized heating induced by welding results in non-uniform temperature
fields, which are associated with material thermal expansions and contractions. In the
case of butt-welded plates, during the heating phase, compression stresses arise near the
joint along the weld line. This happens because the thermal expansion of the hot area is
constrained by the mass of the parent material that remains cold. Localized high plastic
deformations in the metal, softened by the high temperature, are therefore promoted. If
the metal deforms plastically in a non-uniform manner, the elastic recovery during the
subsequent cooling phase does not fully occur, and the material remains in a state of
residual tension. It is known that residual tensile stresses can contribute to brittle fractures
or cause premature failures in components subjected to fatigue, while compression stresses
are responsible for deformations and buckling in thin large panels, such as those used in the
automotive industry. For these reasons, an assessment of the magnitude and distribution
of residual stresses can be extremely helpful in the design phase of a welded structure [1,2].

In the past, welding residual stress investigation employed only experimental mea-
surement methods. These methods can be divided in two categories: destructive and
non-destructive. The first category comprises, among the others, hole drilling and strain
gauge techniques [3–6], while non-destructive methods are X-ray diffraction (XRD), neu-
tron diffraction, and ultrasonic waves [6–8]. However, all these experimental techniques
are time-consuming and unable to capture the complete stress distributions over the en-
tire component geometry. For instance, although the XRD method is highly accurate, it
provides limited information about only a relatively thin surface layer [9,10].
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In recent years, the development of numerical Finite Element codes made it possible
to simulate the whole welding process, considering all the related effects such as the
precipitates’ dissolution, solid-state phase transformation, and elastic-plastic and creep
behavior of the material under investigation. For example, in his work, Deng [11] used a
coupled thermal, metallurgical, and mechanical 3D finite element model to investigate the
effects of solid-state phase transformation on welding residual stress and distortion in low
carbon and medium carbon steels, revealing that the final residual stress and distortion in
low carbon steel did not seem influenced by the solid-state phase transformation, while
for the medium carbon steel, the final residual stresses and distortions appeared to be
affected by the martensitic transformation. In addition, Chen et al. [12] developed a three-
dimensional finite element model to investigate the thermal history and thermomechanical
process of friction stir (FS) butt-welded AA6061-T6 plates. They investigated the evolution
of longitudinal, transversal, and through-thickness stress and used X-ray diffraction to
validate their results. D’Ostuni et al. [13] developed a FE model to simulate dissimilar
aluminum–titanium fiber-lased welds employing two-dimensional and three-dimensional
Gaussian heat sources. Finally, Obeid et al. [14] developed a 3D FE model to simulate a
circumferential single-pass weld overlay and two-pass girth welding and validated the
results coming from the model with experimental measurements. In general, numerical
methods provide useful and accurate information, but they need a great computational
effort and can be relatively time-consuming, depending on the dimension of the joint and
the number of welding runs to be simulated.

In the case of thin plates butt-welded, some simplifications are possible, and this allows
one to face the problem via analytical approaches. The system of equations governing
the phenomenon can be solved by an iterative procedure easily implemented on current
computers with programs, allowing drastic reductions in computational effort compared
with more sophisticated non-linear FE analyses. The use of analytical models for the study
of residual stresses has already been proposed by different authors in the past. Goff [15]
simplified the problem by assuming constant thermal properties of the material and a
linear temperature distribution in a direction perpendicular to the weld line. Tall [16] used
the classical Rosenthal’s solution [17] for the temperature assessment and suggested an
iterative method in which for each temperature increase, the thermal stresses needed to be
in equilibrium; the results obtained for each temperature increment were then added to the
stresses calculated in the previous time interval. Agapakis and Masubuchi [18] extended
the Tall’s previous work by solving, with an iterative procedure, the constitutive and
equilibrium equations that govern the problem. J. Cañas et al. [19,20] proposed a model
in which the plates were divided into bars, and the governing equations were written in
matrix form, allowing them to obtain a more efficient calculation algorithm. In all of these
works, the welded plates did not present any constraint. Finally, Ferro et al. [21] proposed
a more general model for the calculation of residual stresses induced by fusion welding,
starting from the model proposed by Cañas et al. [19,20] and extending the model also to
the case of fully constrained plates.

Recently, a new solid-state joining method known as the hybrid metal extrusion and
bonding (HYB) process has appeared on the horizon [22]. So far, various experimental
studies of the HYB process applied to similar and dissimilar metals welds were carried
out in order to better understand and predict the effect of process parameters on welded
materials; however, only recently was a great effort spent in the development of numerical
models [23,24]. Recently, good experimental results were found for dissimilar aluminum–
steel butt welds obtained by the HYB technique [25–27]. Numerical models were widely
used in the literature to study the thermal field and residual stress arising during similar and
dissimilar metal welds production; however, analytical investigations on dissimilar welded
joints produced through this novel welding technique are still missing in the literature.

The present work is aimed at filling this gap by extending the analytical model
proposed by Ferro [21] to dissimilar aluminum–steel butt-welded joints produced via HYB.
The equations that solve the problem were written in matrix form and solved by an iterative
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procedure using MATLAB® code. A 3D finite element model was also developed that
uses a double ellipsoid volume function with Gaussian power distribution to simulate the
moving heat source. Results coming from the two different approaches, numerical and
analytical, were finally compared with each other with the goal of verifying the soundness
of the analytical method.

2. Materials and Methods
2.1. Geometry and Materials

A 4 mm thick aluminum alloy AA6082 plate butt-welded to a 4 mm thick structural
steel S355 plate was considered. All dimensions are shown in Figure 1.
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Figure 1. Geometry of the welded plates.

Materials properties, as a function of temperature, are shown in Figures 2 and 3. More
in detail, thermal properties were kept constant with temperature since previous studies
have shown that this simplifying hypothesis gives acceptable results when considering the
residual stress computation. The thermal conductivity, thermal diffusivity, and melting
temperature of the aluminum alloy were set equal to 170 W/(mK), 62 mm2/s, and 638 ◦C,
respectively. On the other side, with reference to same thermal properties, their values for
the steel were 44 W/(mK), 11.5 mm2/s, and 1510 ◦C. The Poisson’s ratio was also kept
constant with temperature and equal to 0.34 and 0.28 for aluminum and steel, respectively.
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Material properties as a function of temperature can be also written in closed form as
in Appendix A.

For the sake of simplicity, microstructural changes, with particular reference to sec-
ondary phases evolution in AA6082 aluminum alloy, were not considered herein. How-
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ever, their effects on thermal and residual stresses were implicitly taken into account by
temperature-dependent mechanical material properties.
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2.2. The HYB Process

The HYB process is based on the principles of continuous extrusion and allows joining
to be performed using aluminum filler metal (FM), similar to gas metal arc welding
(GMAW) but without any melting involved. Figure 4 highlights the core parts forming the
HYB PinPoint extruder. In the situation of butt-welding, the two plates to be joined are
divided from each other by a fixed spacing so that an I-groove forms between them. During
the welding operation, the PinPoint extruder shown in Figure 4 moves along the joint
line at a constant travel speed, while the rotating pin with its moving dies is submerged
between the plates. This enables the extrudate to flow downwards in the axial direction
and mix with the base metal (BM) in the groove under conditions of high pressure and
severe plastic deformation. Metallic bonding between the FM and the BM occurs as a result
of these two contributions, along with oxide dispersion [22]. By taking into consideration
the mass balance involved, the extrudate flow rate can be adjusted (by using the rotational
speed of the drive spindle as the main process variable) in such a way that the groove
between the plates is filled with solid aluminum in a continuous manner. More information
about the HYB welding technique can be found elsewhere [25,29,30].
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3. Modelling

Figure 5 shows a flowchart of the numerical/analytical work proposed. As a starting
point, the welding conditions such as welding speed, rotational speed, and geometry of
the tool were fixed. These input parameters were used to calculate the corresponding heat
input by using a semi-analytical heat generation model already proposed by Leoni et al. [24].
The obtained heat input was then used both in FE and analytical model to calculate the
thermal and residual stresses.
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Figure 5. Flowchart showing the steps involved in calculating the net power input using the heat
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corresponding welding condition.

Table 1 shows the welding conditions investigated.

Table 1. Welding conditions modelled.

Materials Welding Technique Welding Speed Pin Rotational Speed

AA6082–SS355 HYB 12 and 16 mm/s 350 RPM

3.1. Thermal FE Model

The numerical model was developed using WELDSIM Finite Element code. The
geometry was modeled with 47,032 and 17,000 hexahedral finite elements for the plates
and the backing plate, respectively. Moreover, a finer mesh was created in the vicinity of the
weld line in order to capture the high temperature gradients that characterize that region
(Figure 6a) with the smallest element size of 0.75 mm. The effect of the filler material was
also taken into account by element activation; finally, the moving heat source was modeled
as a double ellipsoid power density distribution function, as proposed by Goldak [31]. The
power density of the double-ellipsoid heat source describing the heat flux distribution in
the front and rear of the heat source can be expressed as follows:

p f (x, y, z, t) =
6
√

3p0

k1k2k3, f π
√

π
e−3x2/k1

2
e−3z2/k2

2
e−3(y+v(τ−t))2/k3, f

2
(1)

pr(x, y, z, t) =
6
√

3p0

k1k2k3,rπ
√

π
e−3x2/k1

2
e−3z2/k2

2
e−3(y+v(τ−t))2/k3,r

2
(2)

where x, y, and z (mm) are the coordinates as in Figure 6a, k1, k2, k3, f , k3,r (mm) are
the half-width, the depth, and the front and rear length of the double ellipsoid heat
source, respectively, τ (s) is the lag time, p0 (W) is the net power input, and v (mm/s) the
welding speed.

The heat transfer coefficient with the backing plate was considered to be 200 W/m2 ◦C,
while convective heat loss was modeled using a convective heat transfer coefficient equal
to 20 W/m2 ◦C, in agreement with a high air-flow assumption [32].
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3.2. Thermal Analytical Model

The Rosenthal’s equation was used for the rapid thermal field calculation in the
analytical model:

T = T0 +
p0/d
2πλ

exp
[
−vy

2α

]
K0

( vr
2α

)
(3)

In Equation (3), T0 is the reference temperature set equal to 20 ◦C, y is the coordinate
of a point of the plate in the same direction of the weld line, r is the distance from the
heat source center, v is the welding speed, K0 is the modified Bessel function of the second
type and zero order, λ is the thermal conductivity, and α is the diffusivity. The Rosenthal’s
Equation (3) is based on the following assumptions [33]:

• the plates are considered semi-infinite and of thin thickness;
• the equation describes the temperature range induced by a linear source: temperature

gradient along the thickness of the plates is neglected;
• the thermal field refers to a quasi-stationary condition of the welding process.

It is worth noting that p0, the actual thermal power of the pin, is calculated employing
the model described by Leoni et al. [24] and summarized with the following equation:

p0 = p0

(
ω , τm, Tint, v, rtip, rsh, d, h1, h2,

·
m , TFM

)
(4)

where ω (rad/s) is the angular velocity of the tool, τm (MPa) is the shear stress at the
tool-matrix interface, Tint (◦C) is the temperature at the tool-matrix interface, v (mm/s) is
the welding speed, rtip (mm) is the radius of the tip of the tool, rsh (mm) is the radius of the
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shoulder of the tool, d (mm) is the thickness of the plates, h1 (mm) is the difference between
the radius of the tip and half width of the groove, h2 (mm) is the difference between the
radius of the shoulder and half width of the groove,

·
m (kg/s) is the flow of the hot filler

material being extruded, and TFM (◦C) is the temperature of the hot extrudate. Equation (4)
describes the physical framework of the heat generation during the hybrid metal extrusion
and bonding process (i.e., the extrusion of filler material and the friction between the tool
and the base material). It is noted that the coupling between the mechanical (shear stress)
and thermal field (T) (Equation (3)) is solved by an iterative routine written in MATLAB
code and described elsewhere [24].

4. Residual Stress Assessment
4.1. Finite Element Analysis

Following the computational welding mechanical (CWM) approach, the temperature
history at each node of the model was used as load for the mechanical computation.
The mechanical boundary conditions are summarized in Figure 7 (Ux = 0 for x = 0 and
for x = 2B, where Ux is the displacement in x direction, and B is the plate width). The
plates were left free to deform in the y direction. In addition to the in-plane boundary
constraints, in the FE model, the out of plane movement of the plates was constrained
(Figure 7). The interface between the two plates was modelled as perfectly bonded as the
weld proceeded. A sequential and uncoupled thermal and mechanical simulation was
used since the thermo-mechanical coupling was already considered in the previous power
input calculation (Equation (4)). It is worth noting that the materials constitutive laws were
kept the same for both the numerical and analytical model. In particular, for the sake of
simplicity, an elastic perfectly plastic law was used for the two materials to be welded.
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4.2. Analytical Model

With reference to Figure 8, in order to write the equations that govern the problem in
matrix form (constitutive, equilibrium, and compatibility equations), the welded plates
were divided into a discrete number (n) of bars. For the sake of simplicity, all bars had the
same width (b), while n was chosen sufficiently high to account for the temperature gradient
near the weld line with a good approximation. It was assumed that at each time step the
temperature of each bar was uniform, depending only on its x coordinate (i.e., T = T (x, t)).
In other words, the temperature gradient in the y direction was neglected, a hypothesis
that tends to be valid more and more as the welding speed increases. As for the FE model,
boundary conditions were applied at the plate ends according to the HYB process (Ux = 0
for x = 0 and for x = 2B, where Ux is the displacement in x direction, and B is the plate
width, while the boundary conditions in y direction are described by the compatibility
Equation (11)). The Von Mises yield criterion was used, and materials viscous-plastic
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effects were neglected; the yield stress, the elastic modulus, and the thermal expansion
coefficient of both materials were considered functions of temperature, as described by
Equations (A1)–(A14).
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If Ny,i and Nx,i are the forces on cross sections in bar i-th originating from the internal
stresses and normal to the x and y axes, respectively, the equilibrium equations of forces
and momentum can be written in matrix form (Figure 8) as follows [21]:

CT Ny = 0 (5)

Nxi = Nx f or i = 1 . . . n (6)

where

C =


1 d1

. . . . . .
1 di

. . . . . .
1 dn

 (7)

Ny =


Ny1
. . .
Nyi
. . .
Nyn

 (8)

where n is the number of discrete bars, and di is the x-distance of bar i-th from the origin
(Figure 8).

Under the hypothesis of materials elastic perfectly plastic behavior, the constitutive
equations are:

qy = qy
e + qy

t + qy
p + ∆qy

p (9)

qx
i = qx

ei + qx
ti + qx

pi + ∆qx
pi f or i = 1 . . . n (10)

where qy is the vector containing the total elongations of each discrete bar for the longi-
tudinal direction; qy

ei is the elastic contribution to the elongation of the i-th bar governed
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by Hooke’s law; qy
ti is the elongation of the i-th bar due to the thermal expansion; qy

pi is

the plastic deformation accumulated in the previous time steps for the i-th bar; ∆qy
pi is

the plastic deformation of the i-th bar at current time step; qx
i is the total elongation of the

i-th bar in the x direction, qx
ei is the elastic contribution to the elongation in x direction of

the i-th bar, and it is governed by Hooke’s law; qx
ti is the elongation in x of the i-th bar

due to the thermal expansion; qx
pi is the plastic deformation in x direction for the i-th bar

accumulated in the previous time steps; ∆qx
pi is the plastic deformation of the i-th bar in x

direction calculated at the current time step.
Finally, the compatibility equations are:

qy = Cu (11)

n

∑
i = 1

qx
i = 0 (12)

where u is the displacement vector associated with the degrees of freedom δ and θ, as
shown in Figure 9.
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Figure 9. Schematic representation of the deformed and undeformed configuration for the
welded plates.

Using the Von Mises criterion, the material yields when:

σVM = σyield (13)

where σyield is the yield stress of the alloy (i.e., S355 or AA6082) at the corresponding temperature.
Equation (9) can be written as follows:

qy = ANy − Ax + At(T − T0) + qy
p + ∆qy

p (14)

where A is a diagonal matrix whose terms are (L/(E(Ti)db)) (where Ti is the temperature of
the i-th bar at the time step considered), Ax is a vector in which each element is represented
by the term (νNx/(E(Ti)d ) ), At is another diagonal matrix whose terms are Lα(Ti), and T
is the vector containing the temperatures for each bar.

Using Equations (11) and (14), the vector Ny can be expressed by the equation:

Ny = A−1
(Cu + Ax − At(T − T0)− qy

p − ∆qy
p) (15)
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And from the combination of (15) and (5):

u =
[
CT A−1C

]−1
CT A−1

(−Ax + At(T − T0) + qy
p + ∆qy

p) (16)

Finally, from Equations (10) and (12), one can obtain the following equation:

Nx =
1

b
dL ∑ 1

E(Ti)

(
v
b ∑

Ny
i

E(Ti)
− b∑ α(Ti)(Ti − T0)−∑ (qx

pi + ∆qx
pi)

)
(17)

The unknown terms were ∆qy
pi and ∆qx

pi. The calculation routine started by assum-

ing the increase in plastic deformation (∆qy
pi) as well as the force in the transverse (x)

direction to be initially null. Using Equation (3), the temperature vector (temperature of
each bar) was calculated, and therefore the material properties (which depend on tem-
perature), and matrixes A, Ax, and At. Under such conditions, a first value of Ny, using
Equations (15) and (16), was determined. The following condition was then imposed:∣∣∣Ny

i

∣∣∣ ≤ Npi f or i = 1 . . . n (18)

where Npi indicates the yield force of the i-th bar (temperature dependent). It was then
possible to calculate a first value of the plastic elongation (∆qy

pi) by using the previous
value of the vector u and Equations (11) and (14).

This first approximation of plastic elongation was then used in (15), (16), and (18)
for a second approximation of the vector Ny, and such procedure was repeated until
convergence was achieved for the time step considered.

Subsequently, a first approximation of Nx was calculated with Equation (17), using
the values of Ny

i from the previous step and assuming to be null the increase of plastic
deformation (∆qx

pi).
After having imposed the following condition (19) (derived from (13)),(Nx

dL

)2
+

(
Ny

i
db

)2

−
Nx Ny

i
d2Lb

0.5

≤ σyield,i (19)

and using Equation (17), a first approximation of the term ∆qx
pi was obtained, and this

was used for a second approximation of Nx; this was repeated until convergence was
achieved. The value of Nx was then used to determine the new value of Ny, and if the
last value was not equal to the previous one (within the tolerance imposed), Nx and ∆qx

pi

were recalculated using the last obtained value of Ny; this iteration was repeated until
convergence was achieved.

Ferro et al. [21] showed that the term coupling the longitudinal with the transversal
stress (i.e., νNx/L) is much smaller than the main term, Ny

i /b, and that the transversal stress
is no longer negligible only below 300 ◦C, where the yield strength is not significantly
affected by the temperature (Figure 3). This means that, at each time step, the first calculated
value of Nx does not have a significant influence on the vector Ny obtained by assuming
initially Nx = 0, and therefore Ny is limited only by the yield stress of the material.

The algorithm described (see also Figure A1 in Appendix A) was written in MATLAB®

code. The input data required by the program were the geometry of the tool (radius of the
pin and shoulder), the rotational speed of the tool (ω), the welding speed (v), the plate size
(L, 2B, d), the groove width, and the total number of bars (n) (in this work, b = 1 mm, while
the time step (∆t) was set equal to 1 s).
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5. Results
5.1. Temperature Results

In Figure 10, the analytical solution of the temperature evolution along the direction
perpendicular to the weld line and at different distances from the heat source is compared
with that coming from FE model. The results of the two models showed good agreement
despite some small differences in the weld line where the Rosenthal’s solution (asymp-
totic) overestimates the temperature field. However, it is known that no melting occurs
during the process [26]; therefore, the latent heat was not considered in the simulations.
Moreover, since the analytical solution was considered uncoupled for aluminum and steel,
a discontinuity at the interface is observed. In Figure 11 the temperature evolutions at
points taken at the same distance from the weld line for both sides are shown. As expected,
the analytical solution approximates better the temperature at the aluminum alloy side
since it is already known that the Rosenthal’s equation is more suitable for materials that
have high thermal conductivity and thermal diffusion coefficients [33]. The differences
between analytical and FE results may be due to the natural simplifications required by the
Rosenthal’s equation solution, such as the semi-infinite plate geometry deriving from the
quasi-stationary thermal field distribution hypothesis. However, despite these apparent
discrepancies between the temperatures of the two approaches, the results are in over-
all agreement, especially if one considers that the most important effect comes from the
distribution of the temperature, which finds good agreement between the two methods.
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Figure 10. Temperature at different time steps for the welding speed of (a,c) 12 mm/s and
(b,d) 16 mm/s and power input of (a,c) 1000 W and (b,d) 1100 W, respectively, calculated via
(a,b) FE model and (c,d) via rapid analytical method. Temperatures values were taken considering
the mid-thickness of a cross section taken orthogonal to the welding direction in the middle length of
the plates.

5.2. Thermal and Residual Stress Results

Figure 12 compares the evolution of the longitudinal stress obtained with the numer-
ical and the analytical method proposed. For the comparison with the analytical model,
FEM results were taken from the mid-thickness of a cross section at the mid-length of the
plates. Because the plates were thin, the residual stress was assumed constant throughout
the thickness. A good match was found, and the validity of the procedures adopted, as
well as the hypotheses formulated, were confirmed.
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Figure 11. Temperature–time plots exported from two points at the same distance from the weld
line (i.e., 6 mm, see schematic representation at the bottom graphs) considering the two welding
conditions (i.e., welding speeds of 12 and 16 mm/s and power inputs of 1000 and 1100 W, respectively)
for both (a) aluminum and (b) steel sides.
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Figure 12. Longitudinal (y direction) stress at different time steps for the welding speed of
(a,c) 12 mm/s and (b,d) 16 mm/s and power input of (a,c) 1000 W and (b,d) 1100 W, respectively,
calculated via (a,b) FE model and (c,d) via rapid analytical method. Values of stress refer to the
mid-thickness of a cross section taken orthogonal to the welding direction in the middle length of
the plates.

In more detail, the curve showing the longitudinal residual stress value as a function of
the transversal direction (x) coming from the analytical model overlaps with that obtained
using the FE model (Figure 13). At the interface between the two materials, a discontinuity
is observed, which is due to the different yield stresses characterizing the two materials.
Again, good agreement was observed for both the chosen welding speeds. The slightly
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wider plasticized zone found with the analytical solution, steel side, can be attributed to
the temperature value in that zone, which tends to be overestimated by the Rosenthal’s
equation with respect to the more accurate FE calculation (Figure 13). Except for this minor
difference, the solutions were in good agreement.
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Figure 13. (a) Comparison between the residual longitudinal (y direction) stress calculated with the
two methods (i.e., FEM and analytical model), considering a cross section taken at the mid-length
of the plates and for a welding speed of 12 mm/s and a power input of 1000 W. (b) Comparison
between the residual longitudinal stress calculated with the two methods (i.e., FEM and analytical
model), considering a cross section taken at the mid-length of the plates and for a welding speed of
16 mm/s and a power input of 1100 W.

Finally, a comparison between the computational time required by the two methods is
presented in Table 2 (RAM: 32 GB, Processor: Intel® Xeon® E-2174G CPU 3.8 GHz)

Table 2. Computational time required by the methods used.

FEM Analytical

64,111 s (~18 h) ~10 s

6. Conclusions

A rapid analytical model for the prediction of residual stresses was developed. The
hypotheses on which the analytical model formulation is based were validated by com-
paring the results obtained with a more accurate FE analysis. The numerical analysis was
carried out using a 3D model and a double ellipsoid heat source with Gaussian power
distribution, while the Rosenthal’s equation was used to calculate the thermal field in the
analytical model. In the numerical analysis a thermal source was applied along the welding
line, having a constant travel speed, while in the analytical model it was assumed that at
each time step each section parallel to the weld line was subjected to the same temperature
across its entire length (T = T (x, t)). Despite this substantial difference, a good agreement
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was found between the thermal and mechanical results coming from the two approaches.
The simplified model was found to be more advantageous in terms of computational time;
it allows one to carry out parametric studies, and it can conceivably be further developed to
analyze the effects of different welding setup or stress relief heat treatments on the residual
stresses induced by the welding process. In conclusion, although the FE analysis allows one
to avoid drastic simplifying hypotheses and provides a series of more detailed information,
the proposed simplified method becomes more attractive when a rapid estimation of the
thermal and residual stress arising in dissimilar metal welds is required.
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List of Symbols

Symbol Value Description

A

E from Equations (A5)–(A8), Equation (A13),
L = 500 mm
d = 4 mm
b = 1 mm

Diagonal matrix containing (L/(E(Ti)db)) terms

At

L = 500 mm
α from Equations (A9) and (A14)
T from Equation (3)

Diagonal matrix containing (Lα(Ti)) terms

Ax

υsteel = 0.28
υalu = 0.34
E from Equations (A5)–(A8) and (A13)
d = 4 mm

Diagonal matrix containing (νNx/(E(Ti)d)) terms

B 100 mm Width of the plate, mm
b 1 mm Width of the discrete bars used in the analytical model, mm
C Equation (7) Vector containing the values of the distance of each bar from the origin
d 4 mm Plates thickness, mm
EAlu Equation (A13) Elastic modulus of aluminum, MPa
ESteel Equations (A5)–(A8) Elastic modulus of steel, MPa

h1 0.75 mm
Difference between the radius of the tip of the tool and half width
of the groove, mm

h2 3.5 mm
Difference between the radius of the shoulder of the tool and half width
of the groove, mm

K0 Function Bessel function of the second kind and zero order
k1 4 mm Half-width of welding pool for the Goldak’s equation, mm
k2 4 mm Depth of welding pool for the Goldak’s equation, mm
k3, f 5 mm Half-length of welding pool for the Goldak’s equation, mm
k3,r 5 mm Half-length of welding pool for the Goldak’s equation, mm
L 500 mm Length of the plates, mm
·

m 5.2 × 10−4 kg/s6.9 × 10−4 kg/s Mass flow of the extrudate, kg/s
n 200 Number of discrete bars
Nx Equation (17) Force in x direction, N
Ny Equation (15) Vector containing the forces in y direction for each bar, N
p0 1000 and 1100 W Power input, W
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p f Equation (1) Power density of the double-ellipsoid heat source, front, W/mm3

pr Equation (2) Power density of the double-ellipsoid heat source, rear, W/mm3

qx
e,i Calculated Elastic deformation of i-th bar in the x direction, mm

qy
e Calculated Vector containing the elastic deformations in the y direction, mm

qx
i Calculated Deformation of i-th bar in the x direction, mm

qx
p,i Calculated Plastic deformation of the i-th bar in the x direction, mm

qy
p Calculated Vector containing plastic deformations in the y direction, mm

qx
t,i Calculated Thermal deformation of the i-th bar in the x direction, mm

qy
t Calculated Vector containing the thermal deformations in the y direction, mm

qy Calculated Vector containing the deformations in the y direction, mm
r Generic point Distance of a generic point from the heat source center, mm
rsh 5.5 mm Pin shoulder radius, m
rtip 2.75 mm Pin tip radius, m
T Equation (3) Temperature, ◦C
T From Equation (3) Vector containing the temperature of each bar, ◦C
T0 20 ◦C Reference temperature, ◦C
T0 Vector of T0 Vector containing the reference temperature of each bar, ◦C
TFM 450 ◦C Temperature of the hot extrudate, ◦C
t Variable Time, s
u Vector with δ and θ Vector of the degrees of freedom in the compatibility equation
Ux 0 mm Displacement in x direction
v 12 and 16 mm/s Welding speed, mm/s
x - x-coordinate, transverse direction, mm
X - coordinate in the local heat source reference system, mm
y - y-coordinate, welding direction, mm
Y - coordinate in the local heat source reference system, mm
z - z-coordinate, mm
α Equations (A9) and (A14) Thermal diffusivity, mm2/s
αsteel Equation (A9) Thermal diffusivity of steel, mm2/s
αAlu Equation (A14) Thermal diffusivity of aluminum, mm2/s
δ Calculated First degree of freedom of the compatibility equation, mm
∆t 1 s Time step, s
∆qx

p,i Calculated Plastic deformation in x direction at the current time step, mm

∆qy
p Calculated Vector of plastic deformation in y direction at the current time step, mm

λ See below Thermal conductivity, W/mm◦C
λAlu 170 W/mm◦C Thermal conductivity of aluminum, W/mm◦C
λSteel 44 W/mm◦C Thermal conductivity of steel, W/mm◦C
ω 37 rad/s Angular rotation speed, rad/s
σyield,Alu Equations (A10)–(A12) Yield stress of aluminum, MPa
σyield,Steel Equations (A1)–(A4) Yield stress of steel, MPa
σVM Calculated Von Mises stress, MPa
τ 20.8 and 15.6 s Lag factor in Goldak’s equation, s
τm Calculated Shear stress at tool-matrix interface, MPa
θ Calculated Second degree of freedom of the compatibility equation, rad

υ
υsteel = 0.28
υAlu = 0.34

Poisson ratio
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Appendix A

σyield,Steel = 350 f or T ≤ 420 (A1)

σyield,Steel = 1.127E− 5T3 − 0.01942T2 + 10T − 1254.3 f or 420 < T ≤ 700 (A2)

σyield,Steel = 165.6− 0.1037T f or 700 < T ≤ 1500 (A3)

σyield,Steel = 0.01 f or 1500 < T (A4)

ESteel = 206000− 44.44T f or T ≤ 200 (A5)

ESteel = 26300− 325T f or 200 < T ≤ 700 (A6)

ESteel = 1.229E− 5− 159.9T + 0.05094T2 f or 700 < T ≤ 1200 (A7)

ESteel = 5000 f or 1200 < T (A8)

αSteel = 1.29E− 5 + 2.218E− 9T (A9)

σyield,Alu = 120− 0.03392T f or T ≤ 300 (A10)

σyield,Alu = 283− 0.58T f or 300 < T ≤ 460 (A11)

σyield,Alu = 69− 0.107T f or 460 < T ≤ 638 (A12)

EAlu = −0.1155T2 − 41.06T + 71000 (A13)

αAlu = 2.188e− 8T + 2.25e− 5 (A14)
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