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Abstract: We analyze the magnetic behavior of a CaKFe4As4 polycrystalline sample fabricated by
a mechanochemically assisted synthesis route. By means of DC magnetization (M) measurements
as a function of the temperature (T) and DC magnetic field (H) we study its critical parameters
and pinning features. The critical temperature Tc has been evaluated by M(T) curves performed in
Zero Field Cooling-Field Cooling conditions. These curves show the presence of a little magnetic
background for temperatures above Tc, as also confirmed by the hysteresis loops M(H). Starting from
the M(H) curves, the critical current density Jc of the sample has been calculated as a function of the
field at different temperatures in the framework of the Bean critical state model. The Jc(H) values
are in line with the ones reported in the literature for this typology of samples. By analyzing the
temperature dependence of the critical current density Jc(T) at different magnetic fields, it has been
found that the sample is characterized by a strong type pinning regime. This sample peculiarity can
open perspectives for future improvement in the fabrication of this material.

Keywords: iron-based superconductors; 1144 IBS family; DC magnetic properties; pinning properties;
pinning force analysis; magnetism and superconductivity

1. Introduction

Until 2016, with the discovery of the 1144 Iron-Based superconductors (IBSs) family [1],
the 122 and 11 IBS families have been the most studied due to their low anisotropy values,
high values of critical current density Jc, irreversibility field and upper critical field [2–10].
In this framework, the 1144 family [1] attracted significant interest in recent years due to
the stoichiometric nature of its layered structure. This group of IBSs shares in fact key
structural elements with the 122 family [11], well known for the optimum results obtained
following their application in the production of superconducting wires [12]. The 1144
and 122 compounds are both characterized by the intercalation of mixed Alkaline (A)
or Alkaline Earth (AE) ions between Fe-As planes, with the difference that in the 1144
structure A and AE elements do not mix in the same planes. The rigid alternation of A and
AE elements gives rise to the formation of stoichiometric superconductors characterized
by hole doping levels close to the optimal 0.4 observed in common 122 IBS, with critical
temperatures above 35 K and high critical currents.

Regarding the superconducting critical currents, it has been observed in 1144 single
crystals that the alternation of the elements in the intercalating planes can give rise to the for-
mation of peculiar lattice defects that resemble stacking faults observed in cuprates [13–15].
The presence of these defects has been associated with the high critical currents observed in
1144 single crystals and with peculiar second magnetization peak phenomena observed in

Materials 2021, 14, 6611. https://doi.org/10.3390/ma14216611 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-1372-357X
https://orcid.org/0000-0002-9137-2111
https://orcid.org/0000-0002-1976-0603
https://orcid.org/0000-0001-5438-8379
https://orcid.org/0000-0002-4534-3301
https://doi.org/10.3390/ma14216611
https://doi.org/10.3390/ma14216611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14216611
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14216611?type=check_update&version=1


Materials 2021, 14, 6611 2 of 9

such crystals, and linked to the material pinning dynamics. In this work, we have analyzed
the critical current density as a function of field and temperature together with the pinning
features of a polycrystalline sample. Specifically, after having obtained the Tc of the sample,
we have extracted the Jc(H) curves starting from the M(H) loops comparing their values
with the literature. After that, by analyzing the Jc(T) curves’ behavior and the pinning force
density as a function of the reduced field Fp(h) curves, a strong pinning regime has been
identified. The obtained results show that the sample can be considered for high-power
applications due to its strong pinning behavior and to the possibility to enhance the critical
current density values by improving the fabrication processes.

2. Materials and Methods

We have analyzed a disk-shaped pellet with diameter and thickness equal to 3 mm and
0.65 mm, respectively. The polycrystalline sample was obtained via a mechanochemically
assisted synthesis route [16]. Briefly, elemental powders were subjected to a milling
treatment using a steel vial and steel balls in a 30:1 ball to powder mass ratio for 5 h. The
pressed powders were then subjected to thermal treatment for 10 h at 750 ◦C, adopting
a 10 ◦C/min heating rate and a 5 ◦C/min cooling rate. With respect to our previous
work, a slight imbalance in the starting Ca:K ratio was introduced in order to minimize
K-122 phase segregation [17] starting thus from a nominal Ca:K:Fe:As = 1.2:1.18:3.75:4
atomic ratio. XRD diffraction patterns (data not shown) show the distinctive peaks of the
p4/mmm 1144 phase [1] as in our previous work [17] and do not highlight significant
presence of secondary phases (only traces of K-122 and CaO are evident). The sample has
been characterized by means of DC magnetic measurements applied perpendicularly to
the disk surface. The temperature and field dependence of the DC magnetization M(T) and
M(H), respectively, has been measured by means of a QD PPMS doted of a VSM insert. To
avoid the effect on the sample response due to the residual trapped field inside the PPMS
DC magnet [18], this field was reduced below 1 × 10−4 T [19]. The sample has been cooled
down to 2.5 K in zero field, then the H has been applied and the data have been gained for
rising temperatures (Zero Field Cooling) up to 300 K. Then, the sample has been cooled
again during the acquisition of the Field Cooling magnetization. For what concerns the
M(H) measurements, the sample has been cooled to the interested temperature in zero
field. Then, H was ramped up to +9 T, down to −9 T, and to +9 T again for acquiring the
complete M(H) loops [20].

3. Results and Discussion

To obtain the Tc of the sample, a M(T) measurement has been made in Zero Field
Cooling (ZFC)-Field Cooling (FC) conditions by using 0.01 T. The M(T) at H = 0.01 T is
reported in Figure 1. The Tc has been individuated as the beginning of the ZFC M(T)
transition (see inset of Figure 1). This value is approximately 35 K and it is consistent with
the values reported in the literature [1,21,22]. It is worth noting the presence of a slight
non-zero signal above Tc in the ZFC curve as already reported in other works on iron-based
systems [23–26], which can be limited by improving the fabrication processes [26–28].

The M(H) measurements have been performed at different temperatures in the range
between 5 K and 40 K (see Figure 2). The decrease of the hysteresis areas with increasing
temperature and the shape of M(H) loops imply the existence of flux pinning centers.
Moreover, the not perfect symmetry of the superconducting hysteresis loops indicates the
possible presence of surface barriers [29,30].
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Figure 1. Magnetization versus temperature M(T) measured in ZFC-FC conditions at H = 0.01 T. 
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It is visible a slight tilt of the curves probably due to the presence of a magnetic back-
ground or to magnetic impurities already detected in ZFC curve of Figure 1. In this frame-
work, Figure 3 shows the M(H) curve at T = 40 K. At this temperature, the sample is in the 
normal state, so approximately this curve represents the magnetic background of the sam-
ple, which coexists with superconducting signal at lower temperatures T < Tc. In particu-
lar, the coercive field is ≈100 Oe. 
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Figure 2. Magnetization versus field at different temperatures below Tc.

It is visible a slight tilt of the curves probably due to the presence of a magnetic
background or to magnetic impurities already detected in ZFC curve of Figure 1. In this
framework, Figure 3 shows the M(H) curve at T = 40 K. At this temperature, the sample is
in the normal state, so approximately this curve represents the magnetic background of
the sample, which coexists with superconducting signal at lower temperatures T < Tc. In
particular, the coercive field is ≈100 Oe.
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Figure 3. Magnetic hysteresis loop at T = 40 K.

To analyze the transport and pinning properties of the sample, the critical current
densities as a function of the magnetic field Jc(H) and the temperature Jc(T) have been
studied. In particular, the Jc(H) at different temperatures have been calculated by means of
the formula [31,32]:

Jc =
30∆M

d
, (1)

where ∆M = Mdn − Mup is the difference between the magnetization measured for de-
creasing (Mdn) and increasing (Mup) applied field, respectively, and d is the diameter. The
∆M is expressed in emu/cm3. In Figure 4, the obtained Jc(H) curves have been reported
for different temperatures. The obtained Jc values are in agreement with the ones reported
in the literature for other polycrystalline CaKFe4As4 samples [16,22,33].
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Now, by fixing the field and by cutting the Jc(H) obtained at different temperatures
and reported in Figure 4, the Jc(T) curves have been constructed and analyzed by using
different equations reported in the literature describing different pinning models [34–41].
In all the field ranges, the best fit of the Jc(T) curves has been obtained with equation
considering the presence of strong pinning defects [42–45]

Jstr
c (T) = Jstr

c (0) e−3(T/T∗)2
, (2)

where Jstr
c (T) is the temperature dependence of Jc in the framework of strong pinning

regime, Jstr
c (0) is Jc at T = 0 K and T* characterizes the vortex pinning by strong defect

centers. The Jc(T) curves fit for different magnetic fields is reported in Figure 5. It can be
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noted how the strong pinning model fits well our experimental data for all the considered
field ranges. From these fits, the critical current density values at T = 0 K has been extracted
as indicated with a red open circle in each of the panels of Figure 5, while T* ≈ 24 K for
all the fits. Collecting these values, the Jc(H) at T = 0 K has been obtained and reported
in Figure 6. This curve has been fitted with several critical state models describing the
field dependence of Jc [46–51]. The best fit has been obtained by using the Kim critical state
model [47,48]

Jc(H) =
Jc(0)

1 + H/Bk
, (3)

where Jc(0) is the value of Jc at H = 0 K and Bk is a parameter associated with the internal
field. From the fit, Bk ≈ 0.63 T and the Jc at T = 0 K and H = 0 T, Jc(0,0), can be obtained:
Jc(0,0) = 36,800 A/cm2.
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The fit of the Jc(T) curves by means of several pinning models is a powerful tool for
discovering the pinning regime acting in the sample. On the other hand, it does not give
specific information on the pinning defect type present in the sample. In this context, for
deepening this aspect, it is helpful to study the behavior of the normalized pinning force
density Fp/Fmax

p as a function of the reduced magnetic field h = H/Hirr (where Hirr is the
irreversibility field) by using the Dew–Hughes model [29]:

Fp

Fmax
p

= Chp(1 − h)q, (4)

where C is a proportionality constant, and p and q are fitting parameters that allow
individuating the pinning defect type of the material. Equation (4) considers a maximum
in the Fp/Fmax

p vs. h behavior. In particular, for δl pinning the Fp/Fmax
p maximum occurs

at hmax = 0.33 with p = 1 and q = 2 in the case of point pins, at hmax = 0.20 with p = 0.5
and q = 2 in the case of surface pins, while no maximum occurs with p = 0 and q = 2 in
the case of volume pinning [29]. For δTc pinning, the maximum is expected for higher h
than δl pinning [29]. In our case, Hirr = 6 T has been determined by taking the value of the
magnetic field at which Jc ≈ 10 A/cm2 [52]. In Figure 7, the fit of Fp/Fmax

p vs. h curve with
Equation (4) has been reported.
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T = 30 K fitted with Equation (4). Fit details are reported in the text.

The fit of Equation (4) with the experimental data gives hmax ≈ 0.33, p ≈ 1 and q ≈ 2,
thus indicating that the point pins dominate the pinning mechanism inside our sample
at T = 30 K. This has also been verified for other temperatures. It is worth to underline
that this result is in agreement with the fit of the Jc(H) at T = 0 K performed in Figure 6. In
fact, the Kim critical state model can describe a superconductor having a homogeneous
point defects distribution. In our opinion, since strong pinning regime has been found
characterizing the sample, better current transport properties could be achieved with a
better connection among the grains of our polycrystalline sample, which often is the key to
enhancing the critical current density values in this class of superconductors [53–57].

4. Conclusions

We have studied the magnetic response of a CaKFe4As4 polycrystalline sample by
using DC magnetization measurements as a function of the temperature and magnetic field.
From the analysis of the Zero Field Cooling M(T) curve, Tc has been found equal to 35 K. A
slight magnetic background has been found in the M(T) and M(H) curves for T > Tc. In
particular, due to the magnetic contribution, the superconducting hysteresis loops have
shown a slight tilt, while the M(H) at 40 K has shown a coercive field different from zero,
suggesting the presence of a ferro/ferrimagnetic phase or of magnetic impurities inside
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the sample. However, the magnetic contribution did not affect the critical current density
calculated starting from the M(H) curves. In particular, the field dependence of the critical
current density Jc(H) has shown values in agreement with other polycrystalline samples
present in the literature. By analyzing the Jc(T) curves at different magnetic fields and
the Fp(h), it has been found that a strong pinning regime characterized by point pins acts
in the sample for all the field ranges. Finally, the Jc(H) at T = 0 K has been obtained and
fitted in the framework of the Kim critical state model coherently with the presence of
point pins in the sample. Although the current transport capabilities are not excellent, the
obtained results suggest that the enhancement of the number of the strong defects and a
better connection among grains, which can be obtained by manipulating the fabrication
processes, can significantly increase the critical current density values of the sample.
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