
materials

Article

Adoption of the Wet Surface Treatment Technique for the
Improvement of Device Performance of Enhancement-Mode
AlGaN/GaN MOSHEMTs for Millimeter-Wave Applications

Chun Wang 1, Yu-Chiao Chen 2, Heng-Tung Hsu 3 , Yi-Fan Tsao 3 , Yueh-Chin Lin 1, Chang-Fu Dee 4

and Edward-Yi Chang 1,2,3,*

����������
�������

Citation: Wang, C.; Chen, Y.-C.; Hsu,

H.-T.; Tsao, Y.-F.; Lin, Y.-C.; Dee, C.-F.;

Chang, E.-Y. Adoption of the Wet

Surface Treatment Technique for the

Improvement of Device Performance

of Enhancement-Mode AlGaN/GaN

MOSHEMTs for Millimeter-Wave

Applications. Materials 2021, 14, 6558.

https://doi.org/10.3390/ma14216558

Academic Editor: Albena Paskaleva

Received: 2 October 2021

Accepted: 28 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Material Science Engineering, National Yang Ming Chiao Tung University, 1001 Tah Hsueh
Road, Hsinchu 30010, Taiwan; wangben2920.mse05g@nctu.edu.tw (C.W.); nctulin@yahoo.com.tw (Y.-C.L.)

2 Department of Electrical Engineering, National Yang Ming Chiao Tung University, 1001 Tah Hsueh Road,
Hsinchu 30010, Taiwan; bigjj600@gmail.com

3 International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 1001 Tah
Hsueh Road, Hsinchu 30010, Taiwan; hthsu@nctu.edu.tw (H.-T.H.); elle1352.05g@g2.nctu.edu.tw (Y.-F.T.)

4 Institute of Microengineering and Nanoelectronics (IMEN) Level 4, Research Complex, University
Kebangsaan Malaysia, Bangi 43600, Malaysia; cfdee@ukm.edu.my

* Correspondence: edc@mail.nctu.edu.tw

Abstract: In this work, a low-power plasma oxidation surface treatment followed by Al2O3 gate
dielectric deposition technique is adopted to improve device performance of the enhancement-mode
(E-mode) AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs)
intended for applications at millimeter-wave frequencies. The fabricated device exhibited a threshold
voltage (Vth) of 0.13 V and a maximum transconductance (gm) of 484 (mS/mm). At 38 GHz, an
output power density of 3.22 W/mm with a power-added efficiency (PAE) of 34.83% were achieved.
Such superior performance was mainly attributed to the high-quality Al2O3 layer with a smooth
surface which also suppressed the current collapse phenomenon.

Keywords: GaN; HEMT; E-mode; wet surface treatment; power performance; millimeter-wave
applications

1. Introduction

The quest for a high-capacity 5G network for increased data transmission requires
wide bandwidth and high signal-to-noise ratio (SNR) to maintain the quality of service
(QoS) of the system. Since the spectrum below 20 GHz has been crowded with commercial
applications, allocation of bandwidth wide enough to accommodate the required channel
capacity is almost impossible. As a result, operating at millimeter-wave frequencies has
been the only solution for next-generation communication systems targeting at multi-giga-
bit data transmission with minimum latency. In comparison with Si- and GaAs-based
transistors, GaN-based HEMTs exhibit superior performance at high frequencies in terms of
power density and efficiency due to the characteristics of the wide bandgap, high electron
mobility and large breakdown field of GaN material. Successful demonstrations of the
depletion-mode (D-mode) devices have been reported in [1–3].

Other than the D-mode devices, the E-mode devices exhibit certain advantages in
terms of practical operations at system level. Since the devices require only positive supply,
the complexity of the biasing network can greatly be reduced. Moreover, elimination of
the negative supply also helps the suppression of the system noise. In the past, several
approaches were reported for the development of E-mode devices. Fluorine plasma
treatment was applied to insert negative charges into the barrier layer, resulting in a positive
shift with the threshold voltage as a depletion region was formed in the 2DEG channel.
A maximum output power density of 3.6 W/mm and peak PAE of 42% were measured
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at 18 GHz from the E-mode AlGaN/GaN heterojunction FET (HFET) [4]. However, the
current collapse is a big issue caused by the plasma implantation. The technique of
applying a p-type GaN layer under the gate region can help avoiding the damage caused
by plasma. Normally-off HEMTs with the formation of the p-n junction exhibited the
cut-off frequency (fT) and maximum oscillation frequency (fmax) of 6.0 and 9.8 GHz by
adopting a gate-all-around structure in [5].

Gate recess is the major technology for the realization of the E-mode devices [6–8]. The
barrier thickness under 8 nm with a proper gate-recessed process exhibited excellent RF
characteristics in terms of the fT and fmax in [8]. The major issue with a gate recess process
is the unavoidable damage to the surface leading to possible performance degradations.
Thus, techniques of surface treatment, damage-free gate recess, and dielectric passivation
have been proposed to suppress the possible damage that causes the current collapse
phenomenon [9–15]. There are various surface treatments and cleaning methods, such
as UV/ozone [16], wet chemical [17], plasma [18], descum [19] and O2 treatment [20]
which have been adopted for the improvement of the surface states. For instance, with
the SF6 plasma treatment, the gate leakage and pulse I–V characteristics were improved
effectively due to the reduction in the amount of carbon on the semiconductor surface [18].
Besides, an Al2O3 dielectric layer under the gate region was adopted to suppress the
hydrogen-induced weak bonds for leakage current reduction in [11]. The fabricated E-
mode metal-insulator-semiconductor HEMTs (MISHEMTs) demonstrated an output power
density of 5.76 W/mm and a PAE of 57% at 4 GHz.

In this work, we fabricated an enhancement-mode AlGaN/GaN metal-oxide-semiconductor
high-electron-mobility transistor (MOSHEMT) using the wet surface treatment technology
followed by the deposition of a high-quality Al2O3 layer. Compared with hydrochloric
acid cleaning, a better surface morphology was achieved after the adoption of the wet
surface treatment. Moreover, the imperfect layer of the gate region surface which included
the native oxide and the bombardment damage caused by the plasma etching process
could be effectively removed. Improvement in the device performance was observed with
such surface treatment due to the suppression of the current collapse phenomenon. The
maximum output power density and peak PAE were measured to be 3.22 W/mm and
34.83%, respectively, at 38 GHz.

2. Materials and Methods

Figure 1 shows the cross section of the thin-barrier AlGaN/GaN MOSHEMT grown
on 4-inch Sapphire substrate by metal-organic chemical vapor deposition. The T-gate with
asymmetric head toward the drain side was adopted for the purpose of the breakdown-
voltage enhancement. Figure 2 displays the top view SEM images of AlGaN/GaN
MOSHEMTs at different magnifications. The epitaxial structure consists of a 100 nm
AlN nucleation layer, a 350 nm iron-doped GaN buffer layer, a 1700 nm i-GaN layer, a
1 nm AlN spacer layer, and a 10 nm Al0.26Ga0.74N barrier layer. Room temperature Hall
effect measurement exhibits a sheet carrier density of 9.7 × 1012 cm−2, a sheet resistance
of 324 Ω/�, and an electron mobility of 1980 cm2/V·s, respectively. Figure 3 shows EDX
analysis of aluminum and gallium elements. It is observed that the aluminum was rich
in the AlGaN barrier and gradually decreased when it reached the GaN buffer layer. The
cross-section HRTEM image is also shown in Figure 4.
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transistor (HEMT) device and (b) SEM image of the magnification of the Source/Drain spacing 
region. 

  

Figure 3. Energy-dispersive X-ray spectroscopy (EDX) analysis of (a) aluminum and (b) gallium 
element. 
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toresists, the T-shape gate was formed as shown in Figure 1 and the width of the foot and 
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Figure 4. The cross-section high-resolution transmission electron microscopy (HRTEM) image of
the interface.

Device fabrication started with the wafer cleaning by dipping in the acetone and
isopropanol solution to remove the organic particles or contaminations. The ohmic contact
consisted of a Ti/Al/Ni/Au metal stack deposited by ULVAC EVA650 E-gun evaporation
system (EVA650, Ulvac, Hsinchu, Taiwan). Ohmic metal alloying was then formed at 820 ◦C
for 30 s in N2 ambient using a Premtek RTP-T41 rapid thermal annealing (RTA) system.
A 25 nm-SiNx was deposited by STS310PC plasma-enhanced chemical vapor deposition
(PECVD) with in-situ nitrogen plasma treatment prior to the film deposition [21]. The SiNx
film could reduce the dangling bond on the surface and act as hard mask at the recess
region. The 150 nm gate foot was defined by using a 50 kV JEOL e-beam lithography (EBL)
system (JBX 6000 FS) and the gate region was opened by fluorine-based ICP dry etching to
remove SiNx film. Next, the gate recess process was performed using Cl2-based plasma
with the following parameters: 40 sccm flow rate, 0.1 Pa pressure, and 200 W of RF power
with 5 W of bottom bias. O2 plasma was performed by the ICP system (Nesca-20 plus,
Cello Technology, Hsinchu, Taiwan) with low RF power of 50 W and the 5 W for the bottom
bias. Afterwards, a thin oxide layer was formed on the surface. Then, the oxide layer
was removed by wet surface treatment using NH4OH solution for 5 min. A 7 nm Al2O3
insulator was deposited by a Fujitec G2 atomic layer deposition (ALD) system (Fujitec
G2, Veeco, Plainview, NYC, USA) immediately after the surface treatment. The growth
rate was 1 Å/cycle for 70 cycles and the temperature was kept at 250 ◦C. Afterwards, the
active region was defined by nitrogen ion implantation. With the use of the ZEP/GL-2000
photoresists, the T-shape gate was formed as shown in Figure 1 and the width of the foot
and head were 150 nm and 400 nm. A 15 nm SiNx layer was deposited by PECVD after
Ni/Au gate metal deposition and the lift-off process. The recessed depth of the gate region
was approximately 4 nm. Finally, Ti/Au was deposited as an interconnect metal. The
process flow is shown in Figure 5. The gate-source and gate-drain distance were 0.7 µm,
and 1.1 µm, respectively.

Figure 6 shows the root mean square roughness of the AlGaN layer surface morphol-
ogy by an atomic force microscope. Substantial reduction in the surface roughness from
0.66 nm to 0.4 nm was observed for the device with surface treatment. Moreover, an AFM
image with an atomically clean morphology was achieved after applying the treatment.
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Figure 6. Surface morphology of the AlGaN/GaN heterostructure after etching barrier layer (a)
without treatment and (b) with wet surface treatment.

3. Results and Discussion
3.1. X-ray Photoelectron Spectroscopy (XPS) Measurement

X-ray photoelectron spectroscopy (XPS) was adopted to investigate the surface chem-
ical composition after applying the wet surface treatment. Generally, an imperfect layer
caused by the environment pollutants, the native oxide, and the bombardment damage
existed after the gate recess process. The existence of such a layer would degrade the device
characteristics. It is thus of crucial importance to address this issue especially for devices
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at millimeter-wave frequencies. Figure 7 shows the Ga 3d and Al 2p core-level spectra of
the control sample with HCl surface treatment and the sample with wet surface treatment,
respectively. The Ga 3d and Al 2p peaks were separated into four main peaks Ga–O, Ga–N,
Al–O and Al–N bonds. It is obvious that the intensity of the Ga–O and Al–O with a larger
binding energy are much lower in the experimental sample. In other words, the Ga–O
and Al–O bonding proportion decreased at the surface region. Such an effect indicates
that with the application of wet surface treatment, the imperfect layer can be effectively
removed. In [17], the XPS analysis showed the reduction of the Ga–O and Al–O percentage
after the TMAH treatment, which was considered to be the removal of the damage and the
oxides at the AlGaN gate surface region.
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3.2. Direct Current (DC) and Pulsed Current–Voltage (I–V) Characteristics

The measured DC characteristics of the thin barrier E-mode AlGaN/GaN HEMTs is
shown in Figure 8. As observed, the fabricated 2 × (0.15 × 25) µm2 devices with surface
treatment exhibits a lower maximum drain current of 859 mA/mm compared to the devices
without surface treatment, which has a maximum current of 931 mA/mm at VG = 2 V.
After the wet surface treatment, a peak extrinsic transconductance (gm) 484 mS/mm and
a threshold voltage (Vth) of +0.13 V were achieved at VDS = 5 V due to the removal of
the surface oxidation layer by wet recess. While scaling down the distance between gate
and channel, higher gm and lower current density were obtained for E-mode device. As
for the gate leakage current for both cases shown in Figure 8c, further improvement in
the leakage current is also observed for the device with surface treatment. The forward
gate current of the device with wet surface treatment exhibited two orders of magnitude
lower than that without surface treatment, evidencing the effect of the removal of the
imperfect layer. Further investigation on the trapping levels at the interface was conducted
through the pulsed-IV measurements. Figure 9 shows the results with a 200 ns pulse
width and 0.1% duty cycle. With the gate stress measurements under a quiescent bias of
(VGS0, VDS0) = (−4 V, 0 V), the device with wet surface treatment shows minor collapse
ratio of 3.7% which is much smaller than that of 17.78% for the one without treatment. It
is obvious that the plasma damage caused by the dry etching process can be suppressed
after the combination of the oxidation and wet etching treatment. The drain lag ratio
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has also decreased from 17% to 12.58% at VGS = 1 V and VDS = 5 V under the condition
(VGS0, VDS0) = (−4 V, 10 V). Improvement in the current collapse phenomenon has been
identified from both drain and gate lad measurements. It is worth mentioning that the
drain lag results are owing to the deep traps in epitaxial layers, such as GaN iron-doped
buffer [22,23]. These trapping electrons from defects may cause the degradation of the
device’s electrical properties.
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thin barrier AlGaN/GaN HEMTs (a) without and (b) with wet surface treatment.

3.3. Small-Signal Characteristics Comparison

The small-signal RF S-parameters were measured from 100 MHz to 40 GHz using
a Keysight N5227B network analyzer. A standard short-open-load-through (SOLT) cali-
bration method was adopted to calibrate the system with the reference planes set at the
tips of the corresponding probes. Figure 10 shows the measurement results for the devices
with and without wet surface treatment. The extracted unit current-gain cutoff frequency
(fT) and the maximum oscillation frequency (fmax) were 46/60 GHz and 109/100 GHz
for the device with/without surface treatment. We have used the small-signal equivalent
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circuit using the procedure in [24] to extract parameters. Figure 11 shows that there is
no difference between the Smith chart of the measured and fitted curves. The total gate
capacitance (Cgs + Cgd) for devices without and with surface treatment are 98.95 fF and
86.7 fF, respectively. Thus, the higher cut-off frequency (fT) of the device with wet surface
treatment can be attributed to the lower gate capacitance. However, slight degradation
in fmax for the device with surface treatment is possibly due to the decrease of the output
current and the lower 2DEG density.
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3.4. Large-Signal Performance

The large-signal performance was characterized using an on-wafer load-pull system
at 38 GHz under continuous mode excitation. Figure 12 shows the measurement results
with the device biased at class AB operation and the impedance is optimized for maximum
output power. The optimal source and load impedance for the device without treatment
are (32.20 + j24.12) Ω and (92.15 + j126.12) Ω and those for the device with treatment
are (35.85 + j28.31) Ω and (226.07 + j216.15) Ω, respectively. Under these conditions, a
maximum output power density of 2.1 W/mm with a linear power gain (Gp) of 8.2 dB
and a PAE of 22.84% were obtained at VDS = 10 V for the device without wet surface
treatment. On the other hand, with the suppression of current collapse, a higher maxi-
mum output power density of 3.22 W/mm and a PAE of 34.83% were achieved for the
device with surface treatment. Such a substantial improvement in the performance at
Ka-band is mainly attributed to the suppression of the current collapse issue [25]. The
measurement results have evidenced that the device technology presented in this paper
is promising for future applications in power amplifiers at millimeter-wave frequencies.
Furthermore, the proposed MOSHEMT outperforms other E-mode AlGaN/GaN HEMTs
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on SiC substrate [4,7,26]. The reported work exhibits a good power performance at rela-
tively low VDS. In all, the experimental results of the thin barrier E-mode AlGaN/GaN
HEMT on Sapphire shows a great potential for low power consumption and low-cost
power amplifier application.
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4. Conclusions

A high-performance thin barrier enhancement-mode AlGaN/GaN HEMT was fab-
ricated with wet surface treatment and high-quality Al2O3 as the gate dielectric layer.
After the dry etching process and wet etching treatment, the damaged surface layer was
removed. Moreover, the current collapse was eliminated due to the reduced trapping
effect. Compared to a device without surface treatment, substantial improvement in
the radiofrequency (RF) performance was achieved. The device exhibited a superior
power performance, including a maximum output power density of 3.22 W/mm and
a peak PAE of 34.83% at 38 GHz. These results demonstrate an attractive technique
for fabricating high-performance E-mode HEMTs for power amplifier applications at
millimeter-wave frequencies.
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