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Abstract: Designers’ efforts to use the lightest possible materials with very good mechanical prop-
erties mean that in recent years magnesium alloys have been increasingly used. It is well-known
that the use of various plastic working processes allows achieving even better strength properties of
the material, often without significant loss of plastic properties in relation to the properties of prod-
ucts obtained in the casting process. The article presents the results of research on microstructural
changes and mechanical properties of the alloy AZ91 (MgAl9Zn1) occurring in samples subjected to
conventional plastic deformation and the KOBO method. The obtained results were compared to
the properties of reference samples, i.e., cast samples. The article presents the advantage of using
the low-temperature KOBO method compared to the high-temperature deformation in a conven-
tional manner. Moreover, it has been shown that the use of KOBO extrusion allows the alloy AZ91
(MgAl9Zn1) to obtain superplasticity properties with an elongation of up to 577% compared to the
cast reference sample, which is generally classified as difficult for plastic deformation.

Keywords: magnesium alloys; KOBO method; superplasticity; microstructure; mechanical properties

1. Introduction

In recent years, the use of magnesium alloys as construction materials has become
more and more popular. This is a consequence of the relatively easy access to the natural
resources of this element, as well as the popular methods of its processing and recycling.
Magnesium is the eighth-most abundant element in the Earth’s crust, at 2.74%. However, it
acquires the appropriate strength properties only in the form of alloys, which are commonly
considered the lightest construction material. The deformability of magnesium alloys is
limited by the structure of their crystallographic lattice. The dominant plastic deformation
mechanisms include dislocation slip, twinning, and grain boundary slip. The phenomenon
of dynamic recrystallization can also be observed [1]. As magnesium crystallizes in the
A3 hexagonal pattern, alloys based on magnesium can be processed mainly at elevated
temperatures. Plastically processed products made of magnesium alloys are characterized
by higher strength and plastic properties compared to products obtained in the casting
process. Among the alloys intended for plastic processing, there is no AZ91 (MgAl9Zn1)
alloy, which due to its good strength at room temperature, excellent castability, dimensional
stability, sea corrosion resistance, average aluminum content of about 9% by weight, is
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considered to be a typical foundry alloy. On the other hand, alloys from the Mg-Al-Zn
system, with Al content from 1% to 8% by weight, are recommended for plastic process-
ing. Due to its good mechanical properties and good technological characteristics, AZ91
(MgAl9Zn1) alloy is very often used for lightweight cast structural parts. It is widely
used, among others, for the production of castings for the automotive industry, mainly by
pressure casting methods, and to a lesser extent it is cast into permanent molds (molds),
as well as for disposable molds (sand, gypsum, and ceramic) [2–4]. Despite the fact that
AZ91 (MgAl9Zn1) alloy is included in the group of casting alloys, various forms of its
plastic forming are not excluded. Reguła et al. [5] presented results of laboratory tests of
hot extrusion of AZ91 (MgAl9Zn1) alloy in which the properties of extruded products
and castings processed according to different variants of heat treatment were compared.
Rajendran et al. [6] in their work focused on the analysis of the parameters of the AZ91
(MgAl9Zn1) alloy extrusion process. Tan et al. [7] investigated the structural changes of
AZ91 (MgAl9Zn1) alloy squeezed at 380 ◦C. On the other hand, Thirumurugan et al. [8] ana-
lyzed the microstructural changes of the AZ91 (MgAl9Zn1) alloy extruded at the following
temperatures: 250 ◦C, 300 ◦C, 350 ◦C. Kim et al. [9] found that the so-called extrudability
and mechanical properties of AZ91 (MgAl9Zn1) alloy can be adjusted by introducing the
additional factor—water cooling, during extrusion. Currently, the most advanced research
related to the processing of magnesium alloys on an industrial scale relates to extrusion
processes. The so-called extrudability of magnesium alloys is measured, inter alia, by the
extrusion rate. Magnesium alloys are extruded at a slower speed than aluminum alloys,
but with greater force. Too high squeezing speed favors the formation of blisters, hot brittle-
ness, and a reduction in mechanical properties. On the other hand, reducing the extrusion
speed may not be economical. The extrusion processes include the production of bars and
sections as well as profiles of various cross-sections. Currently, the best results have been
obtained for the processes of co-extrusion of magnesium pipes with the use of mandrels,
while as for the other methods of plastic working, the progress in the field of their forging
and stamping is clearly noticeable. At the same time, innovative methods of rolling sheets
of magnesium alloys [10–15] are being developed. For example, Kurz et al. [10] presented
the results of the casting experiments with the use of twin rolls of AZ31 (MgAl3Zn1)
magnesium alloy tapes. Bergea et al. [11] showed results of the influence of temperature on
the mechanical properties of the twin-roll cast, rolled, and heat-treated AZ31 (MgAl3Zn1),
investigated under tensile loading from different directions. Hu et al. [12] analyzed the
development of a model of the twin-roll casting of magnesium alloy by uniting equations
of temperature and flow fields. Results of the experimental rolling process with AZ31
(MgAl3Zn1) in extended temperatures have been presented in [13]. Neh et al. [14] focused
on opportunities for the production of strips via twin-roll casting and strip rolling of several
magnesium alloys containing aluminum or rare earth elements. Whereas, Minoa et al. [15]
investigated the properties of the wrought AZ61 magnesium alloy after twin-roll process.
A number of SPD (Severe Plastic Deformation) methods [16–25], and methods of superplas-
tic deformation [26,27] are currently under development. Among the methods of SPD, it is
enough to mention: multi pass tubular channel angular pressing (TCAP) [16], large strain
rolling [17], accumulative roll bonding (ARB) [18], accumulative back extrusion (ABE) [19],
cyclic extrusion compression (CEC) [20], equal-channel angular pressing (ECAP) [21–23],
and high pressure torsion HPT [24,25].

An economical and efficient method of deformation, which creates a chance to obtain a
stable and fragmented microstructure of the product, is the cold extrusion of metal through
a die twisted on both sides, the so-called KOBO method. The method was developed at the
AGH University of Science and Technology as a structural criterion for designing plastic
processing processes of metallic materials [28,29]. It consists of taking complete control of
the evolution of the substructure and the related mechanical properties of the deformed
metal through external interference in the manner of its plastic flow. In particular, being the
essence of the KOBO method, properly induced periodic changes in the deformation path
lead to a several-fold reduction of the plastic resistance, which in practice means not only a
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significant reduction of the process energy, but above all obtaining the desired, fine-grained
and homogeneous structure, and thus high functional properties [30]. Technological pro-
cesses based on the KOBO method, in relation to conventional processes, are enriched
with a factor that causes cyclical changes in the deformation path in the deformed material
as a result of cyclical changes in its load pattern [31–33]. According to the patent claims,
this factor is usually a mechanism which is a source of additional torque, operating in a
predetermined plane in a cyclical manner and with a defined frequency. In the case of the
KOBO method, this factor causes permanent destabilization of the metal structure with the
domination of localized plastic flow in cyclically intersecting shear bands. According to
the appropriate procedure accompanying the application of the KOBO method to plastic
working processes, it is possible to carry out “cold” (i.e., below the recrystallization condi-
tions of a given material) plastic forming processes with a speed and degree of processing
much higher than in high-temperature processes, and the product obtains a fine-grained,
homogeneous structure and favorable mechanical properties [30]. Moreover, maintaining
a constant value of the extrusion force by adjusting the oscillation frequency of the die and
the speed of the punch movement is conducive to obtaining the same material properties
along the entire length of the sample [34,35]. The KOBO method was used during re-
search on plastic deformation of hard-to-deform materials, including: MMC (Metal Matrix
Composite), aluminum alloys (7075), titanium, bronze (CuSn8), magnesium alloys (AZ31
(MgAl3Zn1), AZ91 (MgAl9Zn1), AZ61 (MgAl6Zn1)) [36–38], and compared to the results
obtained for typical plastic forming processes, such as extrusion, pressing, forging, rolling
or drawing [39,40]. The KOBO technology was also used for the direct production of
wire (omitting the liquid phase) from aluminum scrap (e.g., from aluminum cans), waste
shavings from aluminum and titanium alloys [41,42], and waste from magnesium alloys.

It is well-known that metals and their alloys with a finely divided structure, even up
to the nanometric scale, have superplastic properties [43,44]. The reduction in grain size
should lead to a reduction in the optimal temperature for the occurrence of superplasticity
or to an increase in the optimal strain rate at which this phenomenon occurs. This assump-
tion underlies the design of most SPD methods. Research results obtained and described by
the teams of Mukherije [44] and Valiev [45–47] had a considerable influence on the course of
research on the mechanisms of superplastic flow. According to Mukherijee, superplasticity
is a property of polycrystalline materials that tend to achieve enormous elongations before
tensile fracture. In other words, superplasticity defines this phenomenon as the ability
of materials to undergo great plastic deformation without disturbing internal cohesion,
appearing at high homologous temperatures under the influence of stresses, the magnitude
of which is extremely low and strongly dependent on the rate of deformation. As a result
of stretching, there is resistance to the formation of the neck or the so-called multi-neck
and the tendency to huge, even exceeding 1000%, elongations. According to the theory of
Mukherjee [48–50], the superplastic flow of microcrystalline materials is often described by
the equation determining the dependence of the strain rate on the stress.

Superplastic properties were revealed, inter alia, during the tests of the PbSn60 al-
loy [51,52] of the Inconel 718 alloy [53], the aluminum alloy A1MgSi [54] and in magnesium
alloys, including AZ91 (MgAl9Zn1) [55–59]. Matsubara et al. [55] examined cast AZ91
(MgAl9Zn1) alloy after conventional hot extrusion and through angular channel extru-
sion. He observed a reduction in grain size from 50 µm in the cast state to 12 µm after
conventional extrusion and ~0.7 µm after conventional extrusion and then angular extru-
sion at 200 ◦C. It was found that as a result of the combination of conventional extrusion
and extrusion through an angular channel, the alloy showing moderate plasticity in the
as-cast state obtained superplastic properties—800% elongation at 150 ◦C. On the other
hand, the work [56] showed that AZ 91 alloy with an average grain size of 4 µm after the
Friction Stir Processing (FSP) process allowed to obtain an elongation of the material at the
temperature of 330 ◦C at the level of 1251% and 827%. In [57], the process of extrusion of
the conventional AZ91 (MgAl9Zn1) alloy at 250 ◦C was carried out, followed by angular
extrusion at 175 ◦C. In the static tensile test performed at the temperature of 200 ◦C with the
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speed of 6 × 10−5 s−1, the elongation of 661% was obtained. Wei et al. [56] achieved 455%
elongation in rolled AZ91 (MgAl9Zn1) magnesium alloy at high strain rates. Al-Zubaydi
et al. [25] presented the results of research on the superplasticity of samples made of AZ91
(MgAl9Zn1) alloy, conventionally extruded and additionally deformed by the HPT (High
Pressure Torsion) method at room temperature. The analyzed samples obtained even 760%,
1164% and 1308% elongation. The use of superplastic properties of magnesium alloys
allows for the production of very complex and at the same time light and durable details
with thin walls and of any shape [58].

The article presents the results of research on microstructural changes and mechanical
properties occurring in samples subjected to conventional extrusion and extrusion by the
KOBO method. The obtained results were compared to the properties of reference samples,
i.e., cast samples. Moreover, in order to verify whether the cast magnesium alloy AZ91
(MgAl9Zn1) subjected to plastic deformation could exhibit superplastic properties, tensile
tests were carried out at the temperature of 300 ◦C and 350 ◦C.

2. Methodology and Materials

The alloy AZ91 (MgAl9Zn1) was used for the tests. The composition was determined
on the basis of chemical analysis carried out with the GDS-850A LECO optical emission
spectrometer (LECO, 3000 Lakeview Ave. St. Joseph, MI, USA). The obtained results were
compared with the values from the PN-EN 1753: 2020-01 standard [59] and presented in
Table 1.

Table 1. Chemical composition of AZ91 (MgAl9Zn1) alloy and the values determined in accordance with PN-EN 1753:
2020-01 [59].

Chemical Composition
The Content of Elements in wt.%

Al Zn Mn Si Fe Cu Ni Ti Mg

AZ91 alloy 8.5 0.75 0.13 0.02 0.02 0.01 0.002 0.025 Balance
Values according to

PN-EN1753: 2020-01 [59] 8.5 ÷ 9.5 0.3 ÷ 1.0 <0.15 <0.30 <0.03 <0.025 <0.001 – Balance

AZ91 (MgAl9Zn1) alloy ingots with dimensions Ø 40 × 50 mm for the KOBO process
and Ø 96 × 100 mm for extrusion process, were produced by casting into a disposable
sand mold. A molding material in the form of a mixture of sand and SUPER-ECO resin
was used to make the sand mold. AZ91 (MgAl9Zn1) alloy was melted in a specialized
resistance furnace (PTM-15/G, CZYLOK, Jastrzębie Zdrój, Poland) in a steel crucible in
a protective SF6 atmosphere. The FLUX preparation was used for the refining of the
alloy. The preparation protected the bath against ignition. Metal melting took place at a
temperature of 680–700 ◦C. The molten metal was poured into the sand mold. After the
metal solidified, the mold was broken, and the casting was machined.

The extrusion process was carried out at a temperature of 370 ◦C using a horizontal
counter-rotating hydraulic press (ZAMET, Tarnowskie Góry, Poland) with a stamp force
of 500 T. The extrusion speed was 0.5 mm/s. In this way, a press iron with a diameter of
15 mm and λ = 45 was produced.

Extrusion with the KOBO method was carried out at ambient temperature with the
use of the KOBO laboratory stand for extruding metals and alloys through a die rotated on
both sides (Figure 1).
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Figure 1. Scheme of the extrusion process using the KOBO method: (1) stamp, (2) ingot, (3) container,
(4) reverse twisted die.

The stand consists of a horizontal hydraulic press (Hydromet, Bytom, Poland) with
a punch force of 100 T equipped with a module that allows for double-sided (reverse)
rotation of the die, a recipient and a cooled die holder. The rotation angle of the die was 8◦

and the frequency was 3 or 6 Hz. The alloy was deformed to a diameter of Ø 6 and λ = 44.4.
The extrusion speed was 0.1 mm/s.

Metallographic examinations were performed on the Zeiss Axio Observer Z1m light
microscope (Carl Zeiss, Jena, Germany). The metallographic specimens were etched with
a 4% solution of HNO3 in ethyl alcohol. Microscopic observations were also carried
out using the SCIOS-FEG, FEI scanning electron microscope, equipped with a chemical
composition microanalyzer.

Static tensile tests for cast materials, after extrusion and the KOBO process, were
carried out on samples with a measuring base length of L0 = 25 mm and a measuring
diameter of d0 = 5 mm in accordance with the PN-EN ISO 6892-1:2020-05 [60]. The samples
were stretched at ambient temperature at a speed of 8 × 10−4 s−1.

Superplasticity tests were carried out on samples with a measuring base length equal
to L0 = 30 mm and a measuring diameter of d0 = 4 mm, the total length of the sample was
Lt = 50 mm, and the thread length (M6) was 9 mm.

The coefficient m, called the stress sensitivity to the strain rate, whose high value
characterizes the superplastic state, was determined on the basis of the formula:

m =
∂logσ
∂log

.
ε

(1)

where: σ—stress
.
ε—strain rate.

3. Results and Discussion

The primary microstructure of the sand casting is shown in Figure 2. Crystallization
of this type of casting is slower than in the case of castings cast into metal molds due to the
heat balance in the liquid alloy-mold material system.
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Figure 2. Microstructure of AZ91 (MgAl9Zn1) sand casting magnesium alloy recorded with (a,b) optical microscope,
(c,d) SEM.

It is heterogeneous, with a clear dendritic microsegregation of the alloy components.
This is the effect of an unstable crystallization front during the solidification of the sand
casting. It causes the components with lower solubility in the α-Mg solution to move
further from the crystallization front.

The matrix of the alloy is a solid solution of α-Mg, which is confirmed by the re-
sults of microanalysis in microarea 2 (Figure 2d). The microstructure shows the discon-
tinuous precipitates of Mg17Al12 phases with lamellar morphology (Figure 2b–d) and
massive precipitations of the pre-eutectic phase, which, based on the results of the mi-
croanalysis of the chemical composition (Figure 2, Table 2) and the presence in them Zn
atoms substituted for the Al subnetwork (micro-area 1 in Figure 2d) can be identified as
Mg17Al11.5Zn0.5, or Mg17(Al,Zn)12 (Figure 2b–d) [61]. Moreover, the multi-component eu-
tectic of Mg + Mg17Al12 can be distinguished in the microstructure (Figure 2, micro-area 5
in Figure 2d). It is a characteristic component of the microstructure of the AZ91 (MgAl9Zn1)
alloy casting, and its morphology depends on both the alloy composition (including Al
concentration) and the solidification rate. The lamellar morphology of the Mg17Al12 phase
precipitates with a clear growth anisotropy may be caused by the directional correlation of
crystallographic orientations with the α phase [62–64].
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Table 2. Microanalysis of the chemical composition.

EDS Spot No.
Element (wt.%)

Mg Al Zn

1 58.53 36.37 5.10
2 91.50 8.50 -
3 58.25 35.50 6.24
4 90.93 9.07 -
5 80.66 16.32 -
6 83.51 13.50 -

Figure 3 shows the characteristic distinct fibrous in the direction of extrusion the
microstructure of the sand casting of AZ91 (MgAl9Zn1) alloy conventionally extruded with
a processing degree of λ = 45. At higher magnifications (Figure 3b) the presence of regular
and equiaxed grains between the strongly elongated strands was observed. This effect is the
result of dynamic recrystallization occurring during deformation at elevated temperature.
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Figure 3. Microstructure of sand casting AZ91 (MgAl9Zn1) magnesium alloy after extrusion with the conventional method
with the degree of processing λ = 45, longitudinal section observed with different magnification, (a,b) respectively.

Figure 4 shows a representative microstructure of microstructure of sand casting
extruded by the KOBO method with a processing degree of λ = 44.4.

Similarly to the extrusion process with the conventional method, as a result of plastic
deformation carried out under the conditions of the KOBO extrusion process, the primary
microstructure has changed into a band, one closely related to the extrusion direction (ED).
The anisotropy of the microstructure applies to both the solid solution, the biphasic eutectic
and the pre-eutectic phase (Figure 4). The matrix of the microstructure is constituted by the
α-Mg solution, while the phase of the Mg17Al12 type, as a result of plastic deformation, is
fragmented and globularized and is situated in bands. On the other hand, the swirls of
flow characteristic only for the KOBO method are observed for the cross-section of the flow
turbulence (Figure 4d).

The average grain size of the conventionally extruded sand casting microstructure and
the KOBO method, measured by the secant method, while maintaining a similar degree of
λ processing, is 13.46 and 2.08 µm, respectively. On the basis of the obtained results, it can
be unequivocally stated that the KOBO method affects the grain refinement more than six
times more intensively than the conventional method of extrusion.
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Table 3 presents a summary of the strength and plastic properties of the sand casting
from AZ91 (MgAl9Zn1) magnesium alloy and after it was subjected to the extrusion process
using the conventional and KOBO methods.

Table 3. Tensile strength (Rm), yield point (Rp0.2) and elongation (A) of the sand casting made of AZ91 (MgAl9Zn1)
magnesium alloy and after the extrusion process by the conventional method (λ = 45) and the KOBO method (die rotation
frequency f = 3 and 6 Hz, λ = 44.4). Measurements performed at ambient temperature. The measurement uncertainty did
not exceed 10%.

Sampling Area
Sand Cast KOBO Extrusion,

3 Hz
KOBO Extrusion,

6 Hz
Conventional

Extrusion

Rm
(MPa)

A
(%)

Rm
(MPa)

Rp0,2
(MPa) A (%) Rm

(MPa)
Rp0,2
(MPa) A (%) Rm

(MPa) A (%)

The beginning of the
extruded wire

125 1.6
437 371 1.8 300 227 6.3 316 22

The middle part of
the extruded wire 317 248 5.8 291 203 7 316 22

End of extruded wire 330 237 8.8 300 204 7.4 316 22

Based on the data contained in Table 2, it was found that the AZ91 (MgAl9Zn1)
magnesium alloy cast, made in a disposable sand mold, was characterized by a strength
Rm of 125 MPa and an elongation of 1.6%. The use of the conventional extrusion process
carried out at the temperature of 370 ◦C allowed for more than a two and a half times
increase in strength properties and more than thirteen times increase in plastic properties
(elongation) of AZ91 (MgAl9Zn1) magnesium alloy. In the case of sand casting extruded
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using the KOBO method with the processing degree of λ = 44.4, the measurements were
carried out for two die rotation frequencies, f = 3 Hz and f = 6 Hz. Additionally, test samples
were taken from the initial, middle and final sections of the press. The study of strength
properties of conventionally extruded bars was not carried out for samples taken from
different sections of the press, because the conventional process does not generate dynamic
changes in the structure of the material as a function of the deformation path. A significant
dependence on changes in strength and plastic properties was observed depending on
the section of the AZ91 (MgAl9Zn1) magnesium alloy sample subjected to the analysis.
The samples analyzed from the initial section of the press showed the highest strength
properties and the lowest plastic ones. Along with the material extrusion process using
the KOBO method, its strength properties decreased (from 437 to 330 MPa) and plastic
properties increased (from 1.8% to 8.8%). The observed effect is typical for the extrusion
process using the KOBO method with a constant frequency of the die rotation, during which
two opposing mechanisms occur [65]. In the initial stage of the process, there is a relatively
low supersaturation of the alloy with point defects, which takes place to an increasing
extent during the process. This process leads to an increase in the strength properties of
the extruded material. However, with the duration of the process, the temperature of the
extruded alloy increases as a result of internal friction and friction in the tool-material
system. This leads to the phenomenon of dynamic recrystallization opposing the material
strengthening process. As a result, it increases the plasticity of the extruded alloy, and the
appearance of new recrystallized grains in the microstructure can be observed. Therefore,
regardless of the applied die rotation frequency (f = 3 and 6 Hz), the highest strength and
the lowest plastic properties were recorded for samples taken from the initial section of the
sample. On the other hand, the use of a lower die rotation frequency, f = 3 Hz, allowed
strengthening of the strength properties of the alloy, while the die rotation frequency of
6 Hz significantly increased the plasticity properties of the alloy. The change in the direction
of the die rotation, leading to a change in the deformation path, is accompanied by an
intensive process of dislocation intersection and the generation of point defects (vacancies
and interstitial atoms), which is a consequence of dragging dislocation thresholds and the
formation of dipoles. As in the case of intersecting dislocations, their greatest concentration
occurs in the outer layer of the twisted metal. Excessive concentration of point defects in
relation to the equilibrium concentration and their gradient on the radius of the cyclically
twisted material are the dominant elements of the plastic flow mechanism activated in
the KOBO extrusion process [66]. The increase in the die rotation frequency influences
the intensification of the processes generating shear stress, the increase of the process
temperature and, consequently, the grain refinement. The conventionally and KOBO
extruded samples were deformed in a static tensile test at 300 ◦C and 350 ◦C (Figure 5).

On the basis of the obtained results, it was found that the stretching of the convention-
ally extruded magnesium alloy at the temperature of 300 ◦C with the speed of ε = 10−4 s−1

allowed the sample deformation to increase up to 61%. This is an over 250 times better
result compared to the same material obtained but deformed at ambient temperature.
An increase of 50 ◦C in the temperature at which the tensile test was carried out, from
300 ◦C to 350 ◦C, resulted in an almost twofold increase in the material deformation to the
value of 114%.

Regardless of the stretching temperature used, much higher strain values were
recorded for the samples extruded using the KOBO method compared to the conven-
tional method. When the process was carried out at the temperature of 300 ◦C with the
speed ε = 10−4 s−1, the processing degree λ = 44.4 and the die rotation frequency f = 6 Hz,
the greatest elongation of the alloy was noted, amounting to 577%. An increase in the test
temperature by 50 ◦C decreased the plastic properties of the sample and its maximum
deformation before breaking was 406%.
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(a) the conventional method with the processing degree λ = 45 and ε = 10−4 s−1 (b) the KOBO method with the processing
degree λ = 44.4 and the die rotation frequency f = 6 Hz. A photo after a static tensile test of representative samples extruded
using the method (c) conventional, (d) KOBO.

The presented results prove that under the extrusion conditions using the KOBO
method, the AZ91 (MgAl9Zn1) foundry alloy obtained superplastic properties in the high-
temperature tensile test. In addition, it is also evidenced by the macroscopic effect of the
so-called “multi-neck” (Figure 6), the appearance of which is usually a manifestation of
the resistance to the flow of the alloy to neck formation. It consists of a temporary increase
in the deformation resistance of the neck in response to the increase in the deformation
velocity caused by the location of the deformation under the conditions of simultaneous
reduction of the deformation zone. During hot deformation, the processes of deformation
hardening and softening of the material related to the processes of structure renewal
work simultaneously. If the strengthening process in the formed neck is so large that
plastic deformation cannot be realized, the neck will be created in another place not yet
strengthened to such an extent.
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the KOBO method with the processing degree of λ = 44.4 and the die rotation frequency f = 6 Hz stretched at 300 ◦C with
the speed ε = 10−4 s−1.

On the basis of the recorded data, the value of the sensitivity coefficient for the
deformation velocity “m” was determined. It has been experimentally confirmed that if the
value of “m” increases, the elongation before failure also increases. When the relationship
between σ and

.
ε is linear (“m” = 1), the material can be classified as perfectly superplastic,

with extreme elongation. In the case of superplastic metals, the “m” values usually do not
exceed 0.8. Most elemental metals and metal alloys have an “m” factor well below 0.1–0.2.
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On the other hand, alloys strengthened by dispersion, e.g., with oxides, are characterized
by the coefficient “m” of about 0.02.

The value of the strain rate sensitivity coefficient, m, determined for the AZ91
(MgAl9Zn1) alloy extruded by the KOBO method at the temperature of 300 ◦C with
the speed ε = 10−4 s−1, with the processing degree of λ = 44.4 and the die rotation fre-
quency f = 6 Hz is 0.38. It is within the range typical for magnesium alloys with superplastic
properties (0.3–0.6), which additionally allows to strengthen the thesis about superplasticity
of the alloy thus produced, which by nature is not intended for plastic working.

4. Discussion

The article compares the structural and mechanical properties of a gravity casting
to a disposable sand mold of AZ91 (MgAl9Zn1) alloy and after it has been subjected to
two deformation methods: conventional extrusion at 370 ◦C and extrusion through a die
rotating on both sides (KOBO method) at ambient temperature.

The influence of the applied deformation method on the evolution of the primary,
highly segregated and therefore heterogeneous casting structure into a homogeneous,
fragmented sample structure was observed. In the case of castings extruded using the
conventional method, the presence of regular and equiaxed grains was observed between
the highly elongated bands of the second phase. The shape and size of the grains was
related to the effects of the phenomenon of dynamic recrystallization occurring during
deformation at an elevated temperature. On the other hand, in the case of sand castings
extruded using the KOBO method, the banding structure was revealed, correlated with
the direction of extrusion. It comprised both a solid solution and a biphasic eutectic, and a
pre-eutectic phase, which was also elongated in bands. A phase of the type γ-Mg17Al12
visible in the form of massive particles as a result of plastic deformation was fragmented
and globularized, while locating itself in bands. The likely cause of this transformation is
the cyclical change in the deformation path caused by the additional rotational movement
of the tool. The shear bands running across the sample and, additionally, the local thermal
factor disturbed the banding of the phase, leading to a change in its shape. A similar
change of shape also concerned the discontinuous γ-phase separations, having the form
of rods, bars or plates in the primary microstructure. On the other hand, a feature of
castings extruded using the KOBO method were turbulences of plastic flow resulting from
additional torsional movement of the die visible in the cross-sections of the sample.

On the basis of the obtained results of mechanical properties (Rm, Rp0.2, A) ana-
lyzed at ambient temperature, it was found that both the conventional extruded and the
KOBO deformed AZ91 (MgAl9Zn1) alloy has higher strength and plasticity compared to
gravity casting.

The conventionally extruded samples showed greater plasticity compared to the
KOBO extruded samples. The low plasticity effect of the alloy after the KOBO process
is due to the high-volume fraction of the γ phase of the Mg17Al12 type, the presence of
which, from one side contributed to the increase in hardening, and on the other hand,
weakens coherence of the boundaries between the solid solution. This phase could be
the cause of cracks and the source of an early decohesion process during tensile testing.
However, it should be emphasized that in the KOBO extrusion process, the alloy cast into a
disposable sand mold had a tensile strength Rm of 437 MPa, i.e., 38% to 50% higher than
conventionally extruded samples. Additionally, the change of the die rotation frequency
from 3 to 6 Hz resulted in a decrease in the Rm value and an increase in the maximum
deformation ε of the alloy.

An interesting feature of the sand casting extruded by the KOBO method with the
processing degree of λ = 44.4 and the die rotation frequency f = 6 Hz was the elongation
of 577% recorded in the static tensile test carried out at the temperature of 300 ◦C. Similar
elongations were not recorded for the conventionally pressed sand sample. Considering
the high hardening of the alloy (maximum value Rm = 437 MPa) and the presence of a
finely fragmented structure with visible streaks (the average grain size in the structure of
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the sand casting conventionally extruded and by the KOBO method with the processing
degree of λ = 44.4 measured in cross sections was, respectively, 13.46 and 2.08 µm), the
superplastic behavior of foundry alloy AZ91 (MgAl9Zn1) under high temperature defor-
mation conditions is an anomaly. It means that in the conditions of a dynamic change of
the deformation path, a mechanism worked effectively to rebuild the original foundry
structure with low plasticity into a structure capable of very large deformations. This is an
interesting aspect in light of the subsequent forming of products of any shape and stable
structure from apparently hard-deforming AZ91 (MgAl9Zn1) foundry magnesium alloys.

Due to the fact that the conditions of deformation by the KOBO method were the
same as those adopted in the processes of extrusion of aluminum, zinc, titanium, and
the 7075 alloy [36], the factor determining the superplastic flowability was the excess
concentration of interstitial atoms generated in the conditions of cyclic change of the
deformation path responsible for the visoplastic nature of the material flow.

In the literature, you can find theories about other possible causes of superplasticity
in magnesium alloys deformed by SPD methods. Among them, the hypothesis related to
the softening of the Mg17Al12 phase under certain thermal conditions (processes carried
out at elevated temperatures) allowing for a large change in its morphology, supported
by metallographic analysis, deserves attention. A special feature of this structure is the
presence of fibers consisting mainly of the Mg17Al12 phase. Presumably, taking on the
features of the liquid phase, it could act as a lubricating layer for the deformed matrix,
contributing to the strong superplasticity of the alloy.

In another case, the main mechanisms inducing superplasticity of AZ91 (MgAl9Zn1)
alloys subjected to high plastic deformation were considered to be the slip along the grain
boundaries, adapted by the Coble and Nabarro–Herring creep diffusion phenomena, pre-
venting the occurrence of structural discontinuities in the form of voids and cracks at the
boundaries of the moving grains. The result of the experimental research presented in this
paper were the increase in strength and plasticity of a typical foundry AZ91 (MgAl9Zn1) al-
loy as a result of plastic deformation by KOBO extrusion (using a die rotated on both sides).

Deformation by the KOBO method contributes to an increase in the mechanical param-
eters of AZ91 (MgAl9Zn1) alloy ingots obtained in the process of casting into disposable
sand molds. The mechanism generating superplastic flow caused by the dynamic change
of the load pattern makes the typically foundry AZ91 (MgAl9Zn1) alloy a material sus-
ceptible to further plastic forming processes. According to the literature data presented
in [16–22,37,38], AZ91 (MgAl9Zn1) magnesium alloys are not only foundry materials.
They were used during the implementation of conventional plastic working processes
and severe plastic deformation (SPD) processes [6–10,16–25]. However, in the case of the
Equal-Channel Angular Pressing (ECAP), or High-Pressure Torsion (HPT) methods, the
obtained samples were small, which meant that they could be used only for basic laboratory
tests. In contrast, the use of the KOBO method gives the possibility of obtaining full-size
semi-finished products in the form of, among others, pipes, profiles, gears and flat bars.
The course of many studies carried out so far on the KOBO process has made it possible to
distinguish it from others as a low-temperature, effective method of deformation, requiring
neither homogenization nor pre-heating of the ingots (carried out at room temperature)
under the influence of much lower pressures than previously used deformation processes.

5. Conclusions

The application of the KOBO method enables plastic deformation of products made of
foundry alloy AZ91 (MgAl9Zn1) without homogenization and initial heating of the charge,
i.e., at room temperature. The KOBO method, based on extrusion through a die rotated
on both sides, allows us to drastically increase the mechanical properties (Rm, Rp0.2, A)
of the AZ91 (MgAl9Zn1) alloy in relation to the properties of sand casting. The results
of the static tensile test carried out at the temperature of 300 ◦C and 350 ◦C proved that
the sand casting samples squeezed under the conditions of deformation path change
(KOBO method) acquired the features of superplastic materials with elongation reaching
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even 577%. The evolution of the structure of the cast ingots, which were extruded by the
KOBO method, included grain refinement, the banding effect consisting of the elongation of
individual structural elements such as a solid solution, the γ phase of the Mg17Al12, eutectic
and pre-eutectic, correlated with the extrusion direction, and included characteristic flow
swirls resulting from cyclic twisting extruded alloy.

KOBO extrusion induced significant changes in the morphology of the γ phase
Mg17Al12 in the AZ91 (MgAl9Zn1) alloy in the form of its fragmentation, location in
bands and globularization.
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