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Abstract: The reaction mechanism of ZrB2-ZrC formation in a 30% Ni-Zr-B4C system under argon
was revealed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning
electron microscopy (SEM). The results indicated that the reaction mechanism in the Ni-Zr-B4C
system was complex. Initially, NixZry and NixBy intermetallics were formed via solid-state diffusion
reactions between Ni, B4C and Zr. Then, the eutectic reaction between Ni2B and Ni4B3 lead to the
formation of Ni-B liquid. The free C atoms dissolved into the Ni-B liquid to form a Ni-B-C ternary
liquid, and then part of the Zr powder dissolved into the surrounding Ni-B-C ternary liquid to form
Ni-Zr-B-C quaternary liquid. Finally, ZrB2 and ZrC formed and precipitated out of the saturated
liquid. The eutectic liquid plays an important role during the formation of ZrB2-ZrC.

Keywords: reaction mechanism; ZrB2-ZrC; combustion synthesis; self-propagation high-temperature
synthesis; differential scanning calorimetry

1. Introduction

Boride and carbide of zirconium (ZrB2 and ZrC) exhibit outstanding properties such
as high hardness and melting points, low density as well as high resistance to corrosion
and wear, which makes them attractive candidates for high-temperature ceramics, cutting
tools, corrosion-resistant parts, reinforcing particles in the composites and wear resistant
coatings [1–6]. It is believed that double or multiple phase ceramics have better properties
than single-phase ceramics [7–9]. Hence, more attention has been paid to develop materials
combining ZrB2 and ZrC ceramics [1–5].

Multiphase ceramics can be synthesized by a variety of methods including hot isostatic
pressing, spark plasma sintering, pressureless sintering, combustion synthesis, etc. [10–13].
Among them, combustion synthesis (CS) has attracted much attention for preparation of
intermetallics, borides, carbides, nitrides and silicides due to the advantages of simple
devices, low processing cost, high reaction purity and fast reaction rates [14–18]. CS is
generally divided into two types. The first is self-propagating high-temperature synthe-
sis (SHS) by ignition and spread at one end of the sample, and the second is thermal
explosion (TE) by heating the whole sample uniformly [19,20]. Up to now, ZrB2-ZrC/Al,
ZrB2-ZrC/Cu and ZrB2-ZrC/Co composites have been successfully prepared by the SHS
method [1–5].

In a previous paper [21], we successfully synthesized ZrC-ZrB2/Ni cermet powders
using a Ni-Zr-B4C system by the SHS method. The SHS-derived feedstock powders were
deposited on a magnesium alloy, and atmospheric plasma spraying was used to obtain
ZrC-ZrB2/Ni cermet coatings. However, the reaction mechanism of ZrB2-ZrC formation in
the Ni-Zr-B4C system needs to be further studied.

In the present work, differential scanning calorimetry (DSC), X-ray diffraction (XRD)
and scanning electron microscopy (SEM) were used to reveal the formation mechanism
of ZrB2-ZrC in the Ni-Zr-B4C system during combustion synthesis. It is expected that
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these preliminary results will be valuable for promoting the understanding of the reaction
mechanism of ZrB2-ZrC formation in the Ni-Zr-B4C system.

2. Materials and Methods

The ZrB2–ZrC/Ni composites were produced according to the following reaction equation:

xNi + 3Zr + B4C→ xNi+2ZrB2+ZrC (1)

Commercial powders Ni (~99% in purity, ≤48 µm, ST-nano science and technology
Ltd. Co., Shanghai, China), Zr (~99% in purity, ≤38 µm, ST-nano science and technology
Ltd. Co., Shanghai, China) and B4C (~95% in purity, ≤3.5 µm, Abrasive Ltd. Co., Dunhua,
China) were selected as the starting materials. In order to investigate the complex combus-
tion reactions in the Ni-Zr-B4C system, DSC experiments were performed on the mixtures
of Zr-B4C, Ni-B4C, Ni-Zr and 30 wt.% Ni-Zr-B4C. In 30 wt.% Ni-Zr-B4C mixture, Zr and
B4C powders with a molar ratio of 3:1 were mixed with 30 wt.% Ni. The compositional
proportions in the Zr-B4C, Ni-B4C and Ni-Zr mixtures were in accordance with those in
the 30 wt.% Ni-Zr-B4C mixture. The weight of powder mixtures subjected to DSC analysis
was 15 mg. The reactant mixtures were dry-mixed sufficiently in a container using zirconia
balls at a low speed (~50 rpm) for 6 h.

DSC was carried out on a STA 449C Jupiter (Netzsch, Weimar, Germany) apparatus to
reveal the reaction mechanism of the Ni-Zr-B4C system. The heating process was set to a
rate of 10 ◦C/min in flowing argon gas (99.9% in purity, flow rate: 40 mL/min). Following
DSC analysis, the sintered powders were crushed, and the phase composition was analyzed
by XRD (D8 Advance, Bruker, Ettlingen, Germany, Cu-Kα radiation, λ = 0.15406 nm) at a
scanning speed of 6◦/min and a scanning range of 20–80◦. Microstructures of the reacted
samples were characterized by SEM (S-4800, Hitachi, Tokyo, Japan) equipped with an
energy-dispersive spectrometer (EDS).

3. Results and Discussion

Figure 1 displays the DSC curves of the Zr-B4C, Ni-B4C, Ni-Zr and 30 wt.% Ni-Zr-B4C
mixtures heated to 1200 ◦C with a heating rate of 10 ◦C/min. Moreover, interrupted
experiments were performed in order to elucidate the reaction mechanism during the
heating process.

The DSC curve of the Zr-B4C mixture is shown in Figure 1a. A broad exothermic peak
appears near 1008 ◦C. The XRD result of DSC product heated to 1200 ◦C shows that the
product mainly consists of a large amount of ZrB2, ZrC and a small amount of Zr (see
Figure 2). The presence of Zr may have been caused by the incomplete reaction of reactants.
Hu et al. [1] studied the mechanism of ZrB2 and ZrC generation in the Zr-B4C system
and proposed that the solid-phase synthesis reaction was the main formation mechanism.
Zhang et al. [2–4] investigated the reaction behavior and formation mechanism in the
Cu-Zr-B4C system. Effects of heating rate and B4C particle size on the reaction process
in the Zr-B4C system were also explored. Either increasing the particle size of B4C or
increasing the heating rate may result in a sluggish solid-state reaction between Zr and
B4C, which leads to the residual of Zr and B4C in the DSC products. The diffraction peaks
of Zr were also found in the XRD patterns of the above research, but the diffraction peaks
of B4C were very weak or absent due to the atomic characteristics and crystalline lattice of
B4C [1–4].
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Figure 1. The DSC curves of the mixtures heated to 1200 °C with a heating rate of 10 °C/min: (a) Zr-
B4C; (b) Ni-B4C; (c) Ni-Zr and (d) 30 wt.% Ni-Zr-B4C. 
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Following the Ni-B binary phase diagram [22], a Ni-B melt could be formed due to the 
eutectic reaction between Ni2B and o-Ni4B3 at 1018 °C, which corresponded to the large 
endothermic peak at 1026 °C on the DSC curve. At the same time, the Ni-B liquid phase 
could promote the dissolution of C atoms and form the Ni-B-C melt. The NiC3B15 phase 
was possibly formed and precipitated from it during the cooling process. 
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Figure 1b shows the DSC curve of the Ni-B4C mixture heated to 1200 ◦C. A small
exothermic peak was present at 576 ◦C, and a large endothermic peak was present at
1026 ◦C. To better interpret the two peaks, the Ni-B4C mixtures were heated to 900 ◦C
and 1030 ◦C, respectively, before being cooled down. Figure 3 shows the XRD patterns
obtained for DSC products when quenched from 900 ◦C, 1030 ◦C and 1200 ◦C, respectively.
When the DSC heating was quenched from 900 ◦C, the product was mainly composed of
Ni2B, Ni3B and C, indicating that the solid reaction between Ni and B4C occurred at this
time, corresponding to the exothermic peak appearing at 576 ◦C on the DSC curve. As
shown in Figure 3, the DSC product quenched from 1030 ◦C was mainly composed of Ni2B,
o-Ni4B3 and a small amount of NiC3B15. When the Ni-B4C mixture was heated to 1200 ◦C,
o-Ni4B3, m-Ni4B3 and a small amount of Ni2B and NiC3B15 were formed in the product.
Following the Ni-B binary phase diagram [22], a Ni-B melt could be formed due to the
eutectic reaction between Ni2B and o-Ni4B3 at 1018 ◦C, which corresponded to the large
endothermic peak at 1026 ◦C on the DSC curve. At the same time, the Ni-B liquid phase
could promote the dissolution of C atoms and form the Ni-B-C melt. The NiC3B15 phase
was possibly formed and precipitated from it during the cooling process.
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Figure 1c shows the DSC curve of the Ni-Zr mixture heated to 1200 ◦C. As indicated,
three exothermic peaks appear at 878 ◦C, 1030 ◦C and 1074 ◦C, respectively. Two endother-
mic peaks appear at 1146 ◦C and 1181 ◦C. In order to determine the reactions occurring near
these peaks, the Ni-Zr mixtures were heated to 600 ◦C, 950 ◦C, 1030 ◦C, 1080 ◦C, 1160 ◦C
and 1200 ◦C, respectively, and then cooled down. XRD patterns for the DSC products
of Ni-Zr mixtures quenched at different temperatures are shown in Figure 4. When the
Ni-Zr mixture was heated to 600 ◦C, only the original reactants Ni and Zr were found in
the quenched product, and no obvious reaction occurred (see Figure 4). When the Ni-Zr
mixture was heated to 950 ◦C, the diffraction peak intensity of Ni and Zr in the quenched
product was obviously weakened. At this time, NiZr, Ni10Zr7 and Ni5Zr were generated,
which indicated that there was a solid-state reaction between Ni and Zr, resulting in a wide
exothermic peak at 878 ◦C. When the Ni-Zr mixture was heated to 1030 ◦C, the content
of Ni10Zr7 increased significantly, which corresponded to the exothermic peak at 1030 ◦C
(see Figure 4). As the temperature was raised to 1080 ◦C, the Ni11Zr9 phase appeared, and
the content of unreacted Ni and Zr decreased significantly. The production of Ni11Zr9
led to the presence of an exothermic peak at 1074 ◦C. As the temperature was raised to
1160 ◦C, Ni10Zr7 disappeared, and there was a large amount of NiZr and a small amount
of Ni11Zr9 in the product. Following the Ni-Zr binary phase diagram [23], Ni10Zr7 and Ni
will form a eutectic liquid at 1150 ◦C, which exactly corresponds to the endothermic peak
at 1146 ◦C in the DSC curve. When the Ni-Zr mixture was heated to 1200 ◦C, the product
mainly consisted of NiZr, Ni11Zr9 and a small amount of NiZr2, in which the content of
Ni11Zr9 phase increased obviously. According to the Ni-Zr binary phase diagram [23],
NiZr and Ni will form eutectic liquid phase at 1170 ◦C. Therefore, it can be deduced that
the Ni-Zr eutectic liquid will form after the temperature is gradually raised to 1170 ◦C,
which leads to the endothermic peak at 1181 ◦C. Subsequently, when the mixture was
heated to 1200 ◦C and then cooled down, Ni11Zr9 and NiZr2 eventually crystallized from
the Ni-Zr eutectic liquid.

Figure 1d shows the DSC curve of the 30 wt.% Ni-Zr-B4C mixture heated to 1200 ◦C. As
shown, two exothermic peaks were observed at 851 ◦C and 1088 ◦C, and two endothermic
peaks were observed at 1025 ◦C and 1159 ◦C, respectively. In order to make clear the
reactions occurring during the heating process, DSC interrupted experiments were carried
out for the Ni-Zr-B4C mixtures at 900 ◦C, 1030 ◦C, 1060 ◦C, 1100 ◦C, 1130 ◦C, 1170 ◦C and
1200 ◦C, respectively, and then cooled down. The XRD patterns for the DSC products
quenched at different temperatures are shown in Figure 5. When the Ni-Zr-B4C mixture
was heated to 900 ◦C, a large amount of Ni2B and a small quantity of Ni4B3, NiZr and
Ni5Zr were generated in the product, indicating that the wide exothermic peak near 851 ◦C
corresponded to the formation of these NixZry and NixBy phases. This is also consistent
with the previous analysis of Ni-Zr and Ni-B mixtures. When the Ni-Zr-B4C mixture was
heated to 1030 ◦C, a very small amount of ZrB2 and ZrC appeared in the product, indicating
that a small amount of Zr reacted with B4C at this time. As the temperature was raised
to 1060 ◦C, the diffraction peak intensity of Ni2B and Ni4B3 decreased. According to the
analysis of the Ni-B4C mixture, Ni2B and Ni4B3 can form the Ni-B eutectic liquid at 1018 ◦C,
which corresponds to the endothermic peak at 1025 ◦C in the DSC curve of Ni-Zr-B4C. At
the same time, the formation of the Ni-B liquid phase also promotes the contact and reaction
between the reactants in the mixture, and the free C atomic can dissolve into the Ni-B liquid
phase to form the Ni-B-C ternary liquid phase, which fully contacts with the surrounding
Zr powder and B4C powder. As the temperature was raised to 1100 ◦C, a large amount
of Ni, ZrB2 and ZrC were formed in the product, and a large exothermic peak appeared
at 1088 ◦C in the DSC curve. It is speculated that part of the Zr powder directly reacted
with B4C to form ZrB2 and ZrC, and part of the Zr powder dissolved into the surrounding
Ni-B-C ternary liquid to form Ni-Zr-B-C quaternary liquid. When the concentration of
[Zr], [B] and [C] atoms in the Ni-Zr-B-C liquid achieved the thermodynamic condition for
the formation of ZrB2 and ZrC, ZrB2 and ZrC particles precipitated out of the saturated
liquid. It is worth mentioning that a large amount of Ni10Zr7 also appeared in the product
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at 1100 ◦C, which was slightly different from the temperature at which Ni10Zr7 appeared
in large quantities in the Ni-Zr mixture (1030 ◦C), which may be due to the influence of
the addition of B4C in the Ni-Zr-B4C mixture. When the Ni-Zr-B4C mixture was heated to
1130 ◦C, the product was mainly composed of a large amount of ZrB2, ZrC and a small
amount of Ni10Zr7 and Ni2B. When the Ni-Zr-B4C mixture was heated to 1170 ◦C, the
product consisted of ZrB2, ZrC, Ni and a small amount of Ni2B. As the temperature was
raised to 1200 ◦C, the product consisted of ZrB2, ZrC and Ni, indicating that the reaction
of the system had tended to be complete. When the temperature rose from 1130 ◦C to
1170 ◦C, the content of Ni10Zr7 decreased rapidly, which was consistent with the results in
the previously studied Ni-Zr mixture. When the temperature reached 1150 ◦C, Ni10Zr7 and
Ni could form a Ni-Zr eutectic liquid phase, corresponding to the thermal absorption peak
at 1159 ◦C in the DSC curve of the Ni-Zr-B4C mixture. The formation of Ni-Zr liquid phase
promotes the contact and reaction between each component, which makes the reaction of
the whole system fast and complete.
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temperatures.

In order to better illustrate the above viewpoints, microstructure analysis of DSC
quenching products in the 30 wt.% Ni-Zr-B4C mixture at different temperatures was
carried out. The SEM images are shown in Figure 6. It can be seen from Figure 6a that,
at room temperature, the raw material mixed powder presented a loose and uniform
microstructure. When the temperature was 900 ◦C, the Ni powder no longer presented
a flower shape, but it became denser and bound more closely with the surrounding Zr
powder and B4C powder, as shown in Figure 6b. Some NixBy compounds formed around
it by energy spectrum analysis. When the temperature rose to 1060 ◦C, the formation of a
liquid phase was observed (see Figure 6c). Combining the EDS-point scanning spectrum
(see Figure 6g) with the SEM image, point 1 was rich in Ni and B and thus mainly contained
the Ni-B liquid phase. When the temperature rose to 1100 ◦C, the EDS-point scanning
spectrum (see Figure 6h) of point 2 in Figure 6d contained Zr, Ni, B and C and, thus,
possibly mainly contained the Ni-Zr-B-C liquid phases. When the temperature was further
increased to 1170 ◦C, a large amount of liquid phase was formed, and a small number
of ceramic particles were precipitated out of the liquid phase (see Figure 6e). When
the temperature was increased to 1200 ◦C, a large number of ceramic particles formed
in the product, as shown in Figure 6f. These results indicate that the microstructure
evolution of DSC-quenched products is consistent with the previously inferred reaction
mechanism analysis.
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Figure 6. SEM micrographs for the DSC products of 30 wt.% Ni-Zr-B4C mixtures at (a) room
temperature, quenched at (b) 900 ◦C; (c) 1060 ◦C; (d) 1100 ◦C; (e) 1170 ◦C; (f) 1200 ◦C; (g,h) the
energy-dispersive spectrometry (EDS) spectra of (c,d).

4. Conclusions

Based on DSC and XRD analysis of Zr-B4C, Ni-B4C, Ni-Zr and 30 wt.% Ni-Zr-B4C
mixtures, the reaction mechanism in 30 wt.% Ni-Zr-B4C mixture under DSC conditions
is proposed as follows: (i) Firstly, some intermetallic NixBy (mainly Ni2B and Ni4B3) and
NixZry (mainly NiZr and Ni5Zr) formed via solid-state diffusion reactions of Ni, B4C and
Zr at about 851 ◦C. (ii) Then, Ni2B and Ni4B3 formed a Ni-B eutectic liquid at about 1025 ◦C,
and the free C atoms dissolved into the Ni-B liquid to form a Ni-B-C ternary liquid. When
the mixture was heated to about 1088 ◦C, part of the Zr powder directly reacted with
B4C through a solid-state diffusion reaction, and part of the Zr powder dissolved into the
surrounding Ni-B-C ternary liquid to form Ni-Zr-B-C quaternary liquid. (iii) Finally, when
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the concentration of [Zr], [B] and [C] in the liquid attained a certain value, ZrB2 and ZrC
formed and precipitated out of the saturated liquid.
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