
materials

Article

Time-History Analysis of Composite Materials with
Rectangular Microstructure under Shear Actions

Marco Colatosti 1 , Nicholas Fantuzzi 2 and Patrizia Trovalusci 1,*

����������
�������

Citation: Colatosti, M.; Fantuzzi, N.;

Trovalusci, P. Time-History Analysis

of Composite Materials with

Rectangular Microstructure under

Shear Actions. Materials 2021, 14,

6439. https://doi.org/10.3390/

ma14216439

Academic Editors: Tomasz Sadowski

and Holm Altenbach

Received: 2 September 2021

Accepted: 20 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 DISG Department, Sapienza University of Rome, Via A. Gramsci 53, 00197 Rome, Italy;
marco.colatosti@uniroma1.it

2 DICAM Department, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy;
nicholas.fantuzzi@unibo.it

* Correspondence: patrizia.trovalusci@uniroma1.it

Abstract: It has been demonstrated that materials with microstructure, such as particle composites,
show a peculiar mechanical behavior when discontinuities and heterogeneities are present. The
use of non-local theories to solve this challenge, while preserving memory of the microstructure,
particularly of internal length, is a challenging option. In the present work, composite materials
made of rectangular rigid blocks and elastic interfaces are studied using a Cosserat formulation. Such
materials are subjected to dynamic shear loads. For anisotropic media, the relative rotation between
the local rigid rotation and the microrotation, which corresponds to the skewsymmetric part of strain,
is crucial. The benefits of micropolar modeling are demonstrated, particularly for two orthotropic
textures of different sizes.

Keywords: composite materials; multiscale procedures; micropolar continua; time-history analysis

1. Introduction

The most promising types of materials employed in numerous fields of inventive industry
are modern composites. Materials such as ceramic [1–4] and metal composites, poly-crystals
(e.g., alumina, zirconia) [5–8], masonry [9], porous rocks are examples of particle composites:
their macroscopic behavior is strongly dependent on the internal microstructure, therefore,
discontinuities and heterogeneities cannot be neglected. Detailed modeling is required for
an appropriate mechanical description: a discrete model of the microstructure gives a high
level of representation, but the drawback is the expensive computational cost [10–15] which
increases with the scale reduction of the material [16], multiscale approaches are a viable
option to derive equivalent homogenized continua [17–20], however, it has been shown
that the classic Cauchy continuum is not reliable for those types of materials when the
heterogeneities size has a prominent role, as in the presence of geometric discontinuities or
high stress gradients [21–28]. For these reasons, a non-local description is necessary to take
into account the microscopic effect on the macroscopic mechanical response. Continuum
theories have a non-local character in the presence of internal length parameters (distance
between particle in discrete structure, grain or cell size, correlation radius of at-a-distance
force, etc.) and spatial dispersion properties (wave velocities depending on wavelength
or frequency) [29–32]. It is worth mentioning that continua with additional degrees of
freedom can be considered “implicitly” non-local [29,33].

Thanks to advances in nanostructures and nanotechnologies fields, nanomaterials are
progressively commercialized. Materials with structure at the nanoscale generally have
peculiar thermophysical and mechanical properties, and non-local theories, of an “explicit”
or “implicit” kind, are usually applied to tackle the dynamical behavior of composites such
as nanowires [34], nanobeams [35,36], nanorods [37], nanotubes [38–41], nanoplates [42]
and composite beams [43] and plates [44,45].
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Nonlocal theories have been used since 19th century (Voigt and Poincaré [29,46]) and
applied in the “implicit” and “explicit” from the 1960s and 1970s . A comparison between
the two non local approaches, the latter adopted in this paper, have been proposed for
instance in [30,31].

The micropolar continuum can be considered as a micromorphic model, where the
microdeformation is constrained to be a rotation (microrotation). The Cosserat model is a
collection of rigid particles that undergo homogeneous displacements and rotations and
interact via forces and couples. Instead, by way of example, for the second gradient and
the Cauchy models, the particles are locally constrained to have the same rotation and to
interact via forces and moments of forces; in particular, the continuum is a second gradient
model if the displacements field is of the second order; while the continuum is a classical
model if the field is homogeneous [28].

At different scale levels, micropolar models have already been adopted to describe
materials made as an assembly of rigid particles which interacts through elastic interfaces.
A typical example are masonry structures where the blocks have rectangular geometry and
the mortar joints are modelled as linear elastic springs [23–26]. The micropolar theory takes
into account extra degrees of freedom, which is referred to as microrotation (rotation of a
point) to be distinguished from the macrorotation (local rigid rotation). It is worth noting
that these rotations coincide in both the couple-stress and classical theories [24]. Micropolar
effects become prominent in the presence of load or geometrical singularities, such as
concentrated loads, voids or material inclusions. For anisotropic media, the additional
strain measure of the so-called relative rotation, defined as the difference between microro-
tation and macrorotation, corresponding to the skew-symmetric part of the displacement
gradient, makes an important contribution to the mechanical behavior [27,28].

In this work, two types of rectangular block textures at three different level scales are
considered: the goal is to emphasize the advantages and the necessity of a description
of these materials as micropolar continua compared to the classical continua even for
dynamic conditions [47] not yet fully examined by the authors. For this purpose, a time-
history analysis is used to determine the response of a structure under dynamic load. A
homogenization technique, based on an energy equivalence criterion [23,24] between the
discrete model, assumed as the benchmark, and the continuum model, is adopted to detect
the anisotropic constitutive characteristics [48].

The paper is organized as follows: in Section 2, theoretical background on micropolar
continua is presented for the two-dimensional case, in Section 3, the rectangular geometries,
the reference volume elements and their relative constitutive properties of materials are
reported; in Section 4, the numerical implementation of the structural problem is discussed,
in Section 5, a brief review of time transient analysis is reported and the results are discussed
and finally the conclusions are summarized in Section 6.

2. Micropolar Continuum

Let us consider a linearized kinematical framework. The displacement field for a
two-dimensional micropolar continuum is made up of three degrees of freedom, two
displacements u1, u2 and a microrotation ω. In order to use the matrix notation, the
displacement vector is defined as u> =

[
u1 u2 ω

]
. The strain and stress vectors are

respectively ε> =
[
ε11 ε22 ε12 ε21 κ1 κ2

]
, where the terms εij are the normal and

tangential strain components, with ε12 and ε21 not equal, and κ1 and κ2 are the microcurva-
tures, and σ> =

[
σ11 σ22 σ12 σ21 µ1 µ2

]
where the terms σ12, σ21 are not equal and

the terms µ1, µ2 represent the microcouples.
Defining the operator D:
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D> =


∂

∂x1
0

∂

∂x2
0 0 0

0
∂

∂x2
0

∂

∂x1
0 0

0 0 1 −1
∂

∂x1

∂

∂x2

 (1)

is possible to write the kinematic compatibility between the vectors u and ε:

ε = D u (2)

The equilibrium of the body can be expressed using Hamilton’s principle:

δ
∫ t2

t1

(K−Π) dt = 0 (3)

where K is the kinetic energy and Π is the total potential energy given by the sum of the
strain energy U and the potential of external loads V:

Π = U + V (4)

The variation of the kinetic energy is:

δK =
∫

V
ρδu̇>u̇ dV = h

∫
A

δu̇>mu̇ dA = −h
∫

A
δu>mü dA (5)

where h is the thickness of the body which can be assumed unitary and m is the equivalent
mass matrix defined as:

m =

ρh 0 0
0 ρh 0
0 0 ρJc

 (6)

where ρ is the material density and Jc represents the rotary inertia of the material point.
The variation of the strain energy is written in the form:

δU =
∫

A
δε>σ dA (7)

and using the Equation (1):

δU =
∫

A
δu>D> σ dA (8)

Finally, the variation of the potential of external loads is:

δV = −
∫

A
δu>b dA−

∫
γt

δu>t dγ (9)

where the vectors b and t indicate the body and surface forces, respectively.
The micropolar anisotropic constitutive equation takes the form:

σ = C ε (10)

where

C =



A1111 A1122 A1112 A1121 B111 B112
A2222 A2212 A2221 B221 B222

A1212 A1221 B121 B122
A2121 B211 B212

D11 D12
sym D22

 =

[
A B

B> D

]
(11)
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The constitutive matrix is symmetric (C ∈ Sym) when hyperelastic materials are considered:
in particular Aijhk = Ahkij; Bijh = Bhij; Dij = Dji [25]. From these assumptions, Hamilton’s
principle can be written as∫ t2

t1

(∫
A

δu>
(

mü + D> CDu
)

dA +
∫

A
δu>b dA +

∫
γt

δu>t dγ

)
dt = 0 (12)

3. Rectangular Microstructure

Materials particle composites with rectangular microstructure are explored in this
paper: masonry structures can be assumed as materials of this type. The masonry system
is modeled as a discrete system in which the blocks can be considered as rigid bodies and
the mortar joints can be assumed as elastic interfaces. Two different types of orthotropic
textures that belong to the centrosymmetric class of material have been examined: texture
1 and texture 2 at three different scales (Figure 1). The reference block is 80 cm width and
20 cm high for the scale 1, for texture 2 the smaller block has a half width of the reference
block. For the scale s = 0.5 and s = 0.25, all the geometries’ lengths are obtained by
multiplying the dimensions of the scale 1 for the considered scale factor. The aim is to
study the dynamic response of the system in a 2D state plane of tension under a shear
load modeled as a discrete system, considered as the benchmark, as a micropolar and a
classical continuum. Because masonry is a system of rigid elements arranged according to
a periodical texture, it possible to define a reference volume element (RVE) from which the
constitutive properties of the equivalent continuum can be derived.

(a) (b) (c)

(d) (e) (f)

Figure 1. Rectangular microstructures. Texture 1: (a) s = 1 (b) s = 0.5 (c) s = 0.25. Texture 2: (d) s = 1 (e) s = 0.5 (f) s = 0.25.

Reference Volume Element

Based on a generalization of the Cauchy–Born rule, starting from a kinematic corre-
spondence map between discrete and continuous fields, an energy equivalence criterion is
assumed. To apply the homogenization method to periodic assemblies, the Representative
Volume Element (RVE) must first be identified [24].

The RVEs considered for the two textures are depicted in Figure 2: the RVE of texture
1 is made of four blocks and five elastic links which express the elasticity of bed and head
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joints; whereas the RVE of texture 2 is made of a central block and four smaller blocks with
four elastic links. The material symmetries have to be preserved in the homogenization
process [25,49] and as a consequence of the homogenization procedure adopted, it is
possible to obtain the constitutive matrices of the materials. The procedure for the springs
stiffness calculus of the RVE and the relative constitutive parameters is reported in detail
in [28]. In short, homogenization is carried out by considering a RVE with a central block or
interface and all the other links in the neighbourhood of such central entity. Elastic springs
with normal, shear and rotational components are considered and included.

(a) (b)

Figure 2. RVEs for the two microstures at scale s = 1: (a) texture 1 (b) texture 2.

The constitutive matrices for texture 1 are:

Atext1 = 1011


9.00 0.0 0 0
0.0 2.00 0 0
0 0 0.80 0.0
0 0 0.0 3.60

 Ds=1
text1

= 1011
[

0.2340 0.0
0.0 0.0400

]

Ds=0.5
text1

= 1011
[

0.0585 0
0 0.0100

]
Ds=0.25

text1
= 1011

[
0.0146 0

0 0.0025

] (13)

The constitutive matrices for texture 2 are:

Atext2 = 1012


1.92 0.17 0 0
0.17 0.20 0 0

0 0 0.08 0.0
0 0 0.0 1.44

 Ds=1
text2

= 1012
[

0.0610 0.0015
0.0015 0.0112

]

Ds=0.5
text2

= 1012
[

0.0153 0.0004
0.0004 0.0028

]
Ds=0.25

text2
= 1012

[
0.0038 0.0001
0.0001 0.0007

] (14)

and, both textures being centrosymmetric, B = 0 for both textures. The internal length
of the material is taken into account by the sub matrix D where, approximately, Ds=1 ≈
4Ds=0.5 ≈ 16Ds=0.25. Note that the elements’ size affects only the matrix D.

The constitutive models for the Cauchy continuum are obtained from the previous
constitutive matrices [27] as:

C =

A1111 A1122 0
A2211 A2222 0

0 0
1
2
[A1212 + A2121] + A1221


The classical model does not preserve a memory of the internal length of the microstructure.

4. Numerical Implementation

The differential equation problem for the classical and micropolar models are both
solved through a MATLAB finite element method (FEM) code [50]. Newmark’s method [51]
is also implemented to investigate the dynamic response of a wall subjected to a dynamic
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shear load and the results are compared with a discrete model prepared with the FEM
software ABAQUS (Dassault Systèmes, Johnston, RI, USA).

Continuum Model

To solve the continuum numerical problem, a mesh of 32 × 32 elements Q4 finite
element with reduced integration is employed. The numerical problem is solved in terms
of displacements and in order to apply reduced integration, the strain vector has to be
rearranged by separating strain terms which are fully integrated and the ones for which
reduced integration is applied [49,52].

The finite element method is based on the approximation of nodal displacements:

u = N de (15)

The kinematic displacement vector is arranged as follows:

deT =
[
u1

1 . . . u4
1 u1

2 . . . u4
2 ω1 . . . ω4] (16)

with 12 degrees of freedom overall (3 per node). The matrix of the shape functions is
composed by the vector N that collects the Lagrangian shape functions:

N =

N 0 0
0 N 0
0 0 N

 (17)

Including the above expression in the Hamilton principle, the kinetic energy becomes:

δK = −δdeT
∫

A
N>mN dA d̈

e
(18)

The mass matrix reads:
Me =

∫
A

N>mN dA (19)

The internal work takes the form:

δU = δdeTh
∫

A
(DN )>C(DN ) dA de = δdeTh

∫
A

B>C B dA de (20)

where B = DN , thus, the element stiffness matrix is:

Ke =
∫

A
B>C B dA (21)

which has to be integrated according to a 2× 2 Gauss integration for the normal components
as well as microcouples, whereas reduced integration is applied on shear components.
Finally, the potential of external forces is:

δV = −δdeT
∫

A
N>b dA− δdeT

∫
γt

N>t dγ = −δdeT F (22)

where F is the global vector of volume and surface forces.

5. Simulations

The results reported below investigate the behavior of a wall, clamped at the base
and subjected to a distributed dynamic shear load applied at the top (Figure 3), in order
to extend the numerical results already obtained for the static case [48] and to enrich the
aspects related to the dynamic conditions [47]. Furthermore, a numerical evaluation, for
the case in which blocks of different sizes are present in the masonry texture, wants to be
performed, because in previous works, this aspect has been evaluated only in qualitative
terms [25]. The footprint of the load is equal to a = Ly/8, where Ly is the height of the
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panel and Lx is the width. The data results are reported in terms of displacements; in
particular, the displacements of the control point as a function of time are plotted for three
different mechanical models: discrete, micropolar and classical. For texture 1, the panel
has dimensions Lx = 3.2 m and Ly = 4 m, whereas for texture 2 the dimensions are Lx = 3
m and Ly = 3.2 m. The expression of the horizontal dynamic load is:

P(t) = q0(1− cos( f t)); (23)

where q0 = 100 kN, the time domain is equal to 1000 s, the time step is equal to 5 s and the
angular frequency f = 0.02 Hz (load case 1). Finally, further numerical simulations were
carried out considering the same load type but with a frequency value equal to the frequency
of the first free vibration mode of the structure in a time period of 0.01 (load case 2).

P(t)
a

x

y

a

Lx

Ly

Control point

Figure 3. Schematic of the panel analyzed.

5.1. Time Transient Analysis

The Newmark method is briefly reported in [50]. The equation that must be solved is:

Md̈ + Kd = F (24)

where M is the mass matrix, K is the stiffness matrix, d is the displacement vector and
F is the vector of the external loads, with the initial conditions d = 0 and ḋ = 0 at time
t = 0. The time functions are approximated by Taylor’s series arrested at the second-
order derivative. The time increment is indicated as dt = ts+1 − ts. The velocity and the
acceleration vector can be written as

ḋs+1 = ḋs + a1d̈s + a2ḋs+1 (25)

d̈s+1 = a3(ds+1 − ds)− a4ḋs − a5d̈s (26)

The coefficients are

a1 = (1− α) dt, a2 = α dt, a3 = 2/γ dt2, a4 = a3 dt, a5 = (1− γ)/γ (27)
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The parameters α and γ depend on the time integration scheme. For this study case, the
constant average acceleration method has been used, thus, α = 1/2, γ = 1/2. The algebraic
system of equations at the generic time ts+1 becomes:

K̂ds+1 = F̂, ds+1 = K̂−1 F̂ (28)

where:
K̂ = Ks+1 + a3Ms+1 (29)

F̂ = Fs+1 + Ms+1(a3ds + a4ḋs + a5d̈s) (30)

All d quantities are known at the time ts. The mass matrix, M, and stiffness, K, matrix
remain constant. By using starting values for displacement and velocities at time t = 0, the
initial acceleration can be carried out as:

d̈ = M−1
0 (F0 −K0d0) (31)

5.2. Texture 1

In Figure 4a–c, the control point displacements along the x direction are reported
for the load case of Equation (23). The graphs depict three scales and three models:
Figure 4a shows that both continuum models catch the same trend of the discrete model
due the elasticity hypothesis, however, the Cauchy model underestimates the maximum
displacement magnitude—in fact, the error is around 33%. In contrast, the Cosserat
model shows greater accuracy in evaluating the values (around 12.78% for the first scale,
until reaching approximately 3% for the smaller scale), therefore, the micropolar model
converges to a discrete model with the scale reduction, whereas the classical continuum
does not involve any improvement because it does not take into account the internal length
of the material microstructure. Figure 4d shows the displacement of the control point (for
the scale s = 0.5) at the resonance frequency and the differences between the continuum
models are more evident: only the Cosserat model reproduces the result of the discrete
system, whereas the Cauchy model presents a response with a phase shift and a gross
estimation of the maximum amplitude.

5.3. Texture 2

In Figure 5a–c, the horizontal displacements of the control point of the first load
case are reported. For texture 2, the Cosserat model provides results with a very good
approximation from the first scale s = 1, in fact, the error is around 4% for the larger
scale and goes below 3% for the smaller one; instead, for the Cauchy model the maximum
displacement evaluation gives an error around 30%. Once again, the difference between
the discrete and the micropolar model improves by reducing the scale and this is very
important since the smaller scale is the one that involves the highest computational burden
for discrete models. In Figure 5, the displacement at resonance for the scale s = 0.5 is
reported. The micropolar model matches with a good quality with the discrete system
trend, whereas the classical model is not able to reproduce the response, there is no growth
of the displacement values with the time increment.
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(a) (b)

(c) (d)

Figure 4. Time-history analysis for texture 1: horizontal displacements for the three texture scales (a) s = 1 (b) s = 0.5 (c)
s = 0.25 (load case 1) (d) mechanical resonance for the scale s = 0.5 (load case 2).

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Time-history analysis for texture 2: horizontal displacements for the three texture scales (a) s = 1; (b) s = 0.5; (c)
s = 0.25 (load case 1); (d) mechanical resonance for the scale s = 0.5 (load case 2).

6. Conclusions

This work investigates the dynamic response of particle composites with two different
rectangular textures of the microstructure at three different scales. The usefulness of using
continuous models for the representation of a complex material is well known, however, the
goodness of the results strongly depends on the continuum theory adopted: the numerical
analyses prove that the Cauchy continuum is not sufficient to describe the mechanical
behavior of microstructured materials, for both textures and for all scales. On the other
hand, the Cosserat model, which takes into account the scale effect, is accurate enough to
reproduce the response of the discrete system, assumed as the benchmark of the problem,
not only in static condition, but even under dynamic forced oscillations. Moreover, in
the case of mechanical resonance, the differences are more noticeable: the micropolar
continuum showed itself to be always reliable, whereas for the classical model a delay of
the response is shown for texture 1 and the tendency of a mechanical system to respond
at greater amplitude when the frequency of its oscillations matches the system natural
frequency of vibration is completely missed for texture 2. The significant mechanical
response discrepancy, between the classical and the micropolar model, may be related
to the fact that for this microstructure, two blocks of different sizes were considered and
the internal length plays an important role. Since the off-diagonal terms (D12 and D21)
are non-zero, the micropolar contribution is remarkable, as seen for anisotropic materials,
and this explains the major differences with the Cauchy model. Classical theory is not
accurate enough to properly describe materials where the internal length has a prominent
influence such as masonry, even if the simulations are limited to the elastic case only. In
view of all these further analyses, which have not yet been addressed by the authors, new
research will be conducted, considering nonlinear mechanical conditions such as crack and
damage, as well as structural damping, for a more complete and exhaustive analysis of
microstructured materials. Combining these last results with earlier analyses, it can be
acknowledged that the Cosserat continuum is able to properly describe the response of the
discrete system which is assumed as a micromodel for masonry-like systems.
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