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Abstract: The catalytic activity and stability of an iron-nickel based oxygen-deficient perovskite for
the oxygen evolution reaction (OER) are drastically improved with the ppm additive of Fe ions to
the alkaline electrolyte. The enhancement is attributed to a 1–2 nm restructured Ni0.5Fe0.5Ox(OH)2-x

(oxy)hydroxide layer, as demonstrated with scanning transmission electron microscopy.
La0.6Ca0.4Fe0.7Ni0.3O2.9 shows almost a four-fold increase in OER activity after Fe addition relative
to the as-prepared pristine electrolyte, which demonstrates the low Tafel slope of 44 ± 2.4 mV dec−1

and the superior intrinsic activity of 706 ± 71 A g−1
oxide at 1.61 V vs. RHE.

Keywords: oxygen evolution reaction; water splitting; perovskite; lattice oxygen mechanism

Efficient water electrolysis is highly desirable for economic branches where pure
hydrogen and/or oxygen are used, for instance, in the transport sector with fuel cell
electric vehicles, metallurgy (metal processing), and medicine. In the near future, stable
constant growth in the consumption of pure hydrogen and oxygen as environmentally
friendly sustainable resources is expected [1,2]. To meet the demand for economically viable
clean production with renewable energy sources, it is necessary to increase the energy
efficiency of water electrolysis by reducing the anodic overvoltage of the oxygen evolution
reaction (OER), which is the rate-determining reaction in electrochemical water splitting.

Layered double hydroxide and perovskite materials have long been regarded as
efficient OER electrocatalysts under alkaline conditions [3–8]. In particular, Ni-Fe-based
oxide catalysts are well-studied and recognized materials for water electrolysis in alkaline
media (for OER), which at certain conditions even outperform the electrocatalysts based
on noble Ir, Ru elements [9,10]. The mechanism beneath high catalytic performance is
related to lattice oxygen evolution reaction (LOER), which is characteristic of complex
metal oxides (including perovskites). In light of recent studies [11,12], LOER is now seen as
a fundamental process resulting in surface reconstruction towards highly active transition
metal (oxy)hydroxides due to shallow perovskite A-site dissolution and B-site cation
dissolution/re-deposition [13–16].

The fact that a small amount of Fe adsorbed from the electrolyte strongly affects OER
activity and the stability of catalysts has already been reported for (Ni,Fe,Co)OxHy materi-
als [17,18]. Rationalizing this observation is of extreme importance for the further design
of efficient OER catalysts, as commercial electrolytes used for alkaline water electrolysis
always contain Fe traces (typically around 1 ppm) [19,20], with the Fe content in most cases
being poorly controlled under conventional experimental conditions. Recently, it has been
shown that the surface of perovskite-type oxides can be deliberately modified with active
(oxy)hydroxide layers by the addition of a small amount of Fe3+ ions to the electrolyte
solution. When (oxy)hydroxide layers are deposited on the surface of oxides such as
Ba0.5Sr0.5Co0.8Fe0.2O3−δ, SrTi0.1Fe0.85Ni0.05O3−δ [16,21,22], and LaNiO3 [9,23], OER activ-
ity and stability demonstrates synergistic enhancement. This indicates that for perovskite
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catalysts capable of undergoing LOER-induced surface reconstruction, the Fe species in
the electrolyte are an essential component, as these species ensure the dynamically stable
active sites in the surface (oxy)hydroxide layers [11,12]. Currently, further studies with the
controlled addition of Fe species are needed for correct interpretation of electrochemical
behavior of perovskite-based material in terms of activity–stability relationships.

In this work, we report on the enhanced OER catalytic activity of Ca-doped Ni/Fe-
mixed perovskite with the additional presence of Fe ions in the electrolyte. This material
has been demonstrated to possess promising OER activity due to the beneficial effect of
Ca doping, which decreases the formation energy of the oxygen vacancies [24]. In this
work, we search for strategies to further increase the activity and long-term stability of
this material under the OER conditions. The La0.6Ca0.4Fe0.7Ni0.3O2.9 (LCFN43) perovskite
was prepared with a modified spray pyrolysis approach, as reported previously by our
group [24]. Powder X-ray diffraction demonstrates a well-crystallized material with the
perovskite-like R-3c structure with the unit cell parameters a = 5.4797(9) Å, c = 13.338(4) Å,
V = 346.8(1) Å3 (See Supplementary Figure S1).

Morphologically, the sample consists of porous hollow spherical particles with di-
ameters ranging between 200 and 1200 (Figure 1) and with a BET specific surface area of
15 m2g−1. The spheres demonstrate mostly homogeneous cation distribution (Figure 1).
The cation atomic ratio measured with energy-dispersive X-ray (EDX) analysis amounts to
La:Ca:Fe:Ni = 0.58(1):0.41(1):0.70(1):0.31(1), which is in good agreement with the nominal
composition. The oxygen content was determined using iodometric titration. Small parti-
cles with apparent Ca excess were also observed with EDX compositional mapping and
attributed to the CaO impurity phase. This impurity, however, is washed out when soaking
the sample in alkaline electrolyte [24], which allowed us to conduct the electrochemical
measurements solely on the perovskite phase.
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RHE. The IR-corrected CVs in Figure 2a,b compare the current densities normalized to the 

Figure 1. HAADF-STEM image of spherical hollow particles in the LCFN43 sample along with the
La, Ca, Fe, Ni STEM-EDX maps and a mixed color-coded compositional map.

The OER activity of LCFN43 was evaluated in Ar-saturated 1M NaOH solution.
Cyclic voltammograms (CVs) were registered within the potential limits of 0.93–1.66 V
vs. RHE. The IR-corrected CVs in Figure 2a,b compare the current densities normalized
to the geometric surface area of the rotating disk electrode (RDE). A much higher current
density (12.9 mA cm−2 at 1.61 V RHE) was observed by adding Fe ions to the electrolyte in
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1 ppm concentration, compared to the as-prepared pristine electrolyte (3.0 mA cm−2

at 1.61 V RHE). The Tafel slope in the Fe-modified electrolyte is significantly lower
(44.0 ± 2.4 mV dec−1), indicating faster reaction kinetics compared to 52.0 ± 2.6 mV dec−1

in the pristine electrolyte (Figure 2c).
The LCFN43 perovskite demonstrates a superior OER catalytic activity of 706± 71 A g−1

oxide
at 1.61 V vs. RHE, which is comparable to that (assuming 10% uncertainty) for LaNiO3
covered with amorphous Ni-Fe (oxy)hydroxide, occurred after post-treatment by FeCl3
(755 ± 76 A g−1

oxide) [9] and pristine (Ni-Fe) hydroxides (600 ± 60 A g−1
oxide) [25], and it

outperforms other top perovskite catalysts, such as Pr0.5Ba0.3Ca0.2CoO3-δ (85± 9 A g−1
oxide) [26]

and La0.4Sr0.6Ni0.5Fe0.5O3-δ (375 ± 38 A g−1
oxide) [27] (Figure 2d).
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Figure 2. (a) CVs of the LCFN43 perovskite in the as-prepared pristine electrolyte and with the addition of 1 ppm Feaq,
normalized to the geometric area of the electrode. (b) Enlarged regions of the CVs. (c) Mass activities at 1.61 V vs. RHE
of LCFN43 + Feaq and comparison with other OER catalysts [9,23,26–28]. (d) Tafel plots for LCFN43 in the as-prepared
pristine electrolyte and with the addition of 1 ppm Feaq. Measurement conditions: Ar-saturated 1M NaOH solution at
10 mV s−1 and 1600 rpm, total mass loading, 35.7 µg cm−2, 50 wt.% Vulcan carbon XC72R.

We also measured the initial amount of Fe ions in aqueous 50 wt.% solution of NaOH
(Sigma-Aldrich, Saint-Louis, MO, USA) by ICP-AES and observed 1200 µg L−1 concentra-
tion that corresponds to 63.4 µg L−1 (~0.063 ppm) in the as-prepared pristine 1M NaOH
electrolyte. Therefore, 1 ppm of Fe is a significant addition that substantially improves
the OER activity. Moreover, the potentials of the Ni4+/3+ redox peaks were slightly shifted
after immersion in 1 ppm Feaq electrolyte (Figure 2b) [18,29,30], evidencing that Fe incorpo-
rates/adsorbs on the surface, increasing the capacity of the cathodic peak, which is related
to the formation of a thicker or more redox active Ni-Fe (oxy)hydroxide layer [8,30]. The
LCFN43 sample demonstrates an activity improvement factor (ratio of current values in the
1 ppm Feaq electrolyte and in the pristine electrolyte) equal to 3.9. Such improvement, how-
ever, was not achieved immediately, but after 20 h of soaking the LCFN43 electrode in the
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pristine electrolyte. If the measurements were performed without preliminary soaking or
additional cycling, the improvement factor was 2.5 for the very first CV cycles, suggesting
that the enhancement depends on pretreatment history, which in turn affects the surface
composition [8,25]. For instance, improvement of OER activity in the La1-xSrxCoO3 (x = 0,
0.3) system steadily rises with cycling in KOH-based electrolyte deliberately containing
0.1 ppm of Feaq compared to the Fe-free solution, reaching after 1000 cycles the improve-
ment factor of ~4 [12], similar to 3.9 in our case. Additionally, the NiO catalyst has also
been tested in similar conditions with added Fe(NO3)3, demonstrating a 2.3-fold increase
in OER activity [31].

To test the effect of Fe addition on the long-term stability of LCFN43 performance,
the electrode consisting of perovskite catalyst mixed with 50 wt.% Vulcan carbon XC72R
(VC) was polarized galvanostatically in a stepwise mode with the 32.6, 56, 78, 56, and
32.6 A g−1

oxide current densities for at least 14 h (Figure 3a,b). The lower mass loading
compared to the CV tests was used to maximize the homogeneity of catalyst coating, i.e.,
particle wetting and connectivity in the working environment. The relatively low current
densities for the stability test were chosen to avoid high overvoltages, causing VC corrosion
and oxygen bubble formation during OER.
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Figure 3. (a) Constant current test on LCFN43 in 1 ppm Feaq electrolyte at stepwise changes of the current density from 32.6
to 56, 78, and back to 56 and 32.6 A g−1

oxide. (b) Enlarged regions of the first 3900 s of the test. Measurement conditions:
Ar-saturated 1M NaOH solution, 1600 rpm, mass loading 18 µg cm−2, 50 wt.% VC.

The potential slope slightly increases during the constant current test in a stepwise
mode at short experimental times (up to 3900 s, Figure 3b). Further, the slope continues
increasing and finally stabilizes at ~15,500 s, which suggests the shallow A-cation leaching
and restructuring of the surface at the initial stage [24] and then the formation of dy-
namic equilibrium between Fe dissolution from perovskite during OER and redeposition
promoted by Feaq in the electrolyte. This dynamic stability of active sites (Fe exchange)
prevents deep structural changes of the perovskite particles [11,12]. After 21,000 s, the
overpotential starts decreasing continuously, and this suggests an increase in the number
of active surface centers that enhance the OER activity. A completely different behavior
with a sharp increase in overpotential during galvanostatic polarization was observed for
LCFN43 without the addition of Fe to the electrolyte (Figure S2).

In order to obtain deeper insight into the changes of the perovskite surface, the
LCFN43 sample was collected directly from the electrode after the constant current test.
The electrode was rinsed with deionized water, then with isopropanol, and then the thin
catalyst film was scraped off with a micropipette and further transferred onto the TEM grid.

On the very surface of the perovskite particles after the constant current test, a thin
restructured layer is observed (Figure 4a). The layer is 1–2 nm thick; it is not entirely amor-
phous and contains ordered nanoparticles. One of the nanoparticles (outlined in Figure 4a
and enlarged in Figure 4b) demonstrates a hexagonal arrangement of cationic columns
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with variable intercolumn distance with an average value of 2.9(3) Å. This corresponds
well to the 001 projection of the P-3m1 crystal structure of Ni(OH)2 layered hydroxide [32].
In fact, the measured projected distance between the cationic columns is in between those
in Ni(OH)2 (3.13 Å) and in NiOOH (2.81 Å), which reflects that the actual structure is in
between of hydroxide and oxyhydroxide. EDX-STEM compositional maps and intensity
profiles demonstrate that the surface layer contains both Ni and Fe (Figure 4c,d) with the
Ni:Fe ratio of 54(3):46(3). Thus, the restructured surface layer can be classified as a mixed
Ni0.5Fe0.5Ox(OH)2-x (oxy)hydroxide with variable O/OH ratio.
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Figure 4. (a) HAADF-STEM image of the near-surface area in the LCFN43 sample after 14 h constant
current test. The LCFN43 particle is visible by traces of the {110} crystal planes of the perovskite sub-
cell with d ≈ 2.73 Å. A restructured surface layer with a thickness of 1–2 nm is visible. (b) Enlargement
of the 001-oriented (Ni,Fe) (oxy)hydroxide nanoparticle in the restructured layer. (c,d) EDX-STEM
compositional map and intensity profiles demonstrate that the surface layer (marked with the arrow)
is Ni, Fe—enriched and La, Ca—depleted.

The CV and galvanostatic tests, along with the TEM data, allow us to conclude that
the (oxy)hydroxide layer formed on the host (perovskite) surface under the OER conditions
is responsible for the enhanced OER activity. The presence of Fe in the electrolyte stabilizes
the dynamic active OER sites and prevents deep structural changes of the perovskite
particles. In summary, the addition of 1 ppm of Fe into alkaline electrolyte creates a stable
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dynamic (oxy)hydroxide interface with the host perovskite catalyst, thus increasing both
the catalytic activity and the stability of the catalyst in oxygen evolution reaction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14216403/s1, Figure S1. PXRD profiles after Rietveld refinement of the pristine
La0.6Ca0.4Fe0.7Ni0.3O2.9 perovskite. The ticks indicate the Bragg reflection positions for the main
perovskite phase (bottom row) and the CaO admixture (4.4(5) wt.%, top row). Figure S2. Constant
current tests on LCFN43 in the electrolyte containing ppm amounts of Feaq (dark line) and in the
as-prepared electrolyte (bright line). Experimental conditions: Ar-saturated 1M NaOH solution,
1600 rpm, mass loading 35.7 µg cm−2, 50 wt.% VC. Materials and method: Synthesis, Powder X-ray
diffraction, Transmission electron microscopy, Surface area analysis, Electrochemical measurements,
Inductively coupled plasma atomic emission spectroscopy.
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