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Abstract: Interaction of a single dislocation line and a misfit spherical precipitate has been simulated
by the Parametric Dislocation Dynamics (PDD) method in this research. The internal stress inside
the precipitate is deduced from Eshelby’s inclusion theory, the stress of the dislocation line and
outside the precipitate is calculated by Green’s function. The influence of different relative heights
of the primary slip plane on dislocation evolution is investigated, while the cross-slip mechanism
and annihilation reaction are considered. The simulation results show three kinds of dislocation
topological evolution: loop-forming (Orowan loop or prismatic loop), helix-forming, and gradual
unpinning. The dislocation nodal force and the velocity vectors are visualized to study dislocation
motion tendency. According to the stress–strain curve and the energy curves associated with the
dislocation motion, the pinning stress level is strongly influenced by the topological change of
dislocation as well as the relative heights of the primary slip plane.

Keywords: simulation; the parametric dislocation dynamics; aluminum

1. Introduction

Interaction between the internal stress caused by the misfit precipitate and the disloca-
tion plays an important role in metal solids’ strengthening. The advent of the Dislocation
Dynamics (DD) allows researchers to simulate the precipitate-dislocation interaction in
mesoscale and filling the gap between the atomistic simulation and the crystal plasticity
theory [1].

In the 1960s, Brown [2], Bacon [3], and Foreman [4] proposed the methodology of the
Discrete Dislocation Dynamics (DDD) simulation. They managed to get the curvature of
the dislocation segments under the applied stress. In 1992, Kubin et al. [5] developed the
first 3D discrete dislocation simulation tool, they assumed that the discrete edge-screw
dislocation segments move on a discrete lattice superimposed to the crystallographic
lattice. Zbib et al. [6] discretized dislocation segments as the linear splines to make the
dislocation line smooth and flexible. Rhee et al. [7] managed to simulate the dislocation
stress field in the anisotropy media. In 1998, they built a 3D dislocation dynamics model of
the dislocation interactions including annihilation and the cross-slip based on a ‘critical-
force’ criterion [8]. Zbib et al. [9] investigated the size-dependent small-scale plasticity
phenomena in a multiscale framework, in nano-microscale the plasticity is determined
by the explicit 3D dislocation dynamics, while in continuum scale the energy transport is
based on the continuum mechanics laws. In 2008, Takahashi et al. [10] proposed a method
combining the Parametric Dislocation Dynamics (PDD) and the Boundary Element Method
(BEM) with the volume integrals. This method can be used to calculate the stress field both
inside and outside the precipitate which has the different elastic modulus with the matrix.
In 2018, Keyhani et al. [11] firstly attempted to systematically quantify the dislocation-
precipitate interaction in terms of the applied shear stress, the precipitate resistance, and
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the required time to reach the critical state when a dislocation line is about to pass through
the precipitate.

The present study is based on our former works done by Muraishi and Liu, who
developed the PDD codes through Green’s function method. Before this, Muraishi and
Liu have researched the dislocation interacts with an ellipsoidal precipitate in Al-Cu al-
loys [12], and the influence of the key parameters (existence of the cross-slip, the radius of
precipitate and the dislocation source length) on the precipitate-dislocation hardening [13].
In this study, we mainly investigated the dislocation topological evolution, not only on the
z/R ≥ 0 planes but also the z/R < 0 planes, which were considered in our previous study.
The stress and energy curves are also plotted to explain the strengthening mechanism. The
stress field inside the misfit precipitate with eigenstrain is computed through Eshelby’s
inclusion theory [14,15]. The internal stress outside the precipitate, as well as the stress of
the dislocation, is obtained from the integral form of elastic Green’s function. The dislo-
cation structure information is stored in the linked list. The linked list data structure has
advantages in representing the addition, deletion, break, and connection of the dislocation
nodes by simply updating the pointers [16] . Therefore, it is convenient to simulate the
dislocation reactions including the emission and annihilation through a linked list. The
cross-slip which has a great impact on the dislocation bypassing mechanism, is also consid-
ered in this model . The dislocation nodal force and the velocity vectors are visualized for
a deeper understanding of the dislocation motion tendency. Basically, after the dislocation
line evenly swept the area of the positive and negative misfit stress, the interaction energy
between the dislocation and the precipitate vanishes as a result. However, the dislocation
line with two pinned endpoints cannot sweep such an area. Therefore, the hardening
caused by the misfit stress is expected to be the pinning stress. Since the misfit stress is
geometrical dependent, the cutting and bypassing behaviors are also shape-dependent [17].
Strengthening behavior caused by the misfit precipitate can be reflected by the dislocation
slip geometry.

2. Materials and Methods

We simulate the interaction of a single dislocation line and one misfit spherical pre-
cipitate in this study. As shown in Figure 1, we assume the crystal face (111) and the
crystal orientation [-110] as the primary slip system. Therefore we set the Cartesian axis
as x = [1-10], y = [11-2], z = [111]. The origin of coordinates is located at the center of the
spherical precipitate. An edge dislocation line (black line) with the Burgers vector b = [-110]
and the initial tangent vector [0-10], lies along the y-axis at x = 500|b| on the primary slip
plane. The magnitude of the Burgers vector |b| = 0.286 nm. With two pinned endpoints,
the initial length of the dislocation line is 1200|b|. The precipitate (red sphere) with the
radius R = 50|b| is subjected to the dilatational eigenstrain (ε∗ij = δijε0, ε0 = 0.1). The
crystal properties of the matrix are the same as the aluminum, with the Young’s modulus
E = 70 GPa, the shear modulus µ = 27 GPa, the Poisson’s ratio ν = 0.3 and the lattice
constant a = 0.404 nm. The elastic modulus of the misfit precipitate is assumed to be
the same as the matrix. Note that the dissimilar stiffness effect can also be analyzed by
Eshelby’s inhomogeneity problem. However, when the equivalent inclusion with the
fictitious eigenstrain is applied, there would be the same effect.

In our simulation model, the dislocation glide which is driven by the external stress has
a constant strain rate ε̇13 = ε13/∆t = 104s−1 (∆t is the time step). Here is the relationship
between the rate of external stress and the strain rate:

σ̇13 = µ(ε̇13 − ε̇
p
13) (1)

where µ is the shear modulus . Note that the dislocation velocity is proportionally changed
with the force acting on the dislocation, the external stress level will be increased under a
higher strain rate. The plastic strain rate ε̇

p
13 is obtained from the motion of dislocation:
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ε̇
p
13 =

b∆A
V∆t

(2)

where ∆A is the swept area of the dislocation line, V is the volume of the matrix
(1.87× 10−19 m3, ∆x = 2000|b|, ∆y = 2000|b|, ∆z = 2000|b|). After obtaining the plas-
tic strain through Equation (2), we could calculate the average value of the external stress
by Equation (1).

Figure 1. Schematics of the simulation model. The precipitate is represented by the red sphere, the
dislocation line is represented by the black line. The light grey volume is the simulation volume, the
dark grey plane is the (111) primary slip plane with z/R = 0.

We employ the parametric dislocation dynamics (PDD) to discretize the dislocation
line into a series of curved segments. These segments are represented by the Burgers vector,
the tangent vector, and the position vector at their endpoints. The length of the dislocation
segments are ranged from 10|b| to 20|b|.

During the slip process, the dislocation segments experience the external stress σ0
ij, the

stress caused by the precipitate σ
int_par
ij , the stress caused by itself and other dislocation

segments σint_dis
ij , as well as the friction shear stress caused by the crystal σ

f r
ij . For aluminum,

σ
f r
ij = 3× 10−5µ, which can be neglected. So the total stress σT

ij can be written as:

σT
ij = σ0

ij + σ
int_par
ij + σint_dis

ij (3)

It is noted that to avoid the singularity, the stress caused by the adjoining segments is
approximated by the line tension FT ,

| FT |=| τijbi |=
αµb2

r
(4)

where α = 0.5, r is the local curvature of the dislocation segment. Meanwhile, the stress
caused by the far-field finite segment can be expressed as follows:

σij =
µbn

4π

∮
c
[
1
2

R,mpp(∈jmn dli+ ∈imn dlj) +
1

1− ν
∈kmn (R,ijm − δijR,ppm)dlk] (5)

where R = x− x′, x is the field point, x’ is the source point, R,ijk is the derivative of R, ∈ijk
is the permutation tensor, δij is the Kronecker delta.

The stress caused by the precipitate will be introduced in the next section. With the
stress tensor, we could calculate the Peach-Koehler force fm on the nodal points,

fm =∈jmn σijbiξn (6)
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where ξn is the tangent vector of the dislocation nodes. Once we obtain the Peach–Koehler
force, the nodal velocity vi can be calculated by the following equation,

vi = f g ·M (7)

fg is the shear component of Peach–Koehler force, M is the reciprocal of the dislocation
drag coefficient, we assumed that M = 1.75× 104 (Pa· s)−1 in this model [18].

2.1. Stress Field of Spherical Precipitate

We assumed that the elastic modulus of the matrix and the misfit precipitate are the
same, the material is elastically isotropic. According to Eshelby’s inclusion theory, the
shear stress inside the precipitate is calculated to be 0. However, due to the dilatational
eigenstrain, the stress exists outside around the precipitate. The internal stress outside the
misfit spherical precipitate is calculated based on Green’s function proposed by Mura as
Equation (8) [19],

CjlmnGij,l(x̄) =
−1

8π(1− ν)
[(1− 2ν)

δmi x̄n + δni x̄m − δmn x̄i
x̄3 + 3

x̄m x̄n x̄i
x̄5 ] (8)

where Cjlmn is the shear modulus, Gij,l is the derivative of Green’s function, x̄ = |x− x′|,
x̄i = xi − x′i , ν is the Poisson’s ratio. The stress field can be calculated as follows,

σij =
E

1 + ν
[(εij − ε∗ij) + δij

ν

1− 2ν
(εkk − ε∗kk)] (9)

where ε∗ij is the eigenstrain, εij is the strain field caused by the precipitate,

εij = −
1
2

∫
|Ω|

Cklmnε∗mn(x′)[Gik,l(x− x′)nj + Gjk,l(x− x′)ni]dS (10)

where n is the normal vector of the integral surface S.
The computation results of the stress field caused by the spherical precipitate are

shown in Figure 2, where the stress on the cross-section of the precipitate (at z/R = ±0.2
and z/R = ±1.0) is plotted as the contour plots. The magnitude range of the stress is from
−2000 Pa to 2000 Pa. The shear stress inside the spherical precipitate is zero. For the edge
dislocation segments, σ12 and σ23 have no contribution to the motion, σ13 contributes to
the glide motion. For the screw segments, σ13 has no contribution to the motion, while σ12
contributes to the cross-slip, σ23 contributes to the glide and the double cross-slip motion.

As shown in the contour plots, when the sign of z/R inverses, the stress component
σ12 does not change, while the sign of σ13 and σ23 turn opposite. For cases z/R > 0, the
dislocation line with the tangent vector [0-10] expands along the -x direction on its slip
plane, the precipitate stress component σ13 is negative at the x > 0 side and positive at the
x < 0 side. When the dislocation gets closer to the precipitate, the dislocation line suffers
a repulsive force repelling it to approach the precipitate. After the dislocation bypassing
the precipitate, it suffers a repulsive force to push it away from the precipitate. However,
for the cases z/R < 0, the situation turns opposite. In these cases, the dislocation line
experiences an attractive force to approach the precipitate easier, and moves away from
the precipitate harder. It is noted that the σ13 on z/R = ±1.0 planes is much larger than
that on z/R = ±0.2 planes, which means the dislocation line suffers a larger repulsive or
attractive force on z/R = ±1.0 planes than on z/R = ±0.2 planes.

For the other stress components, the σ12 on z/R = ±0.2 planes is larger than that on
z/R = ±1.0 planes, which means the screw dislocation segments on z/R = ±0.2 planes
are easier to cross slip than on z/R = ±1.0 planes. However, the σ23 on z/R = ±1.0 planes
is larger than that on z/R = ±0.2 planes, which means the screw segments on z/R = ±1.0
planes are easier to double cross slip than on z/R = ±0.2 planes.
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Figure 2. Contour plots of stress on the cross-section of the spherical precipitate (a) z/R = ±0.2;
(b) z/R = ±1.0.

2.2. The Cross-Slip Model and Annihilation Reaction

The cross-slip mechanism has a great influence on the dislocation bypassing process.
While the dislocation topological change on the primary slip plane is independent of crystal
structure (e.g., fcc and bcc), the cross-slip event would be influenced by the primary and
secondary slip planes. In this model, we set the plane (11-1) as the secondary slip plane.
Then define the direction of cross-slip as the cross product of the screw segment’s tangent
direction and the secondary slip plane’s normal direction. Assume that the component of
the Peach-Koehler force on the primary slip plane is FG, while the component along the
cross-slip direction is FCS. The cross-slip happens whenever FCS > FG. If FCS ≤ FG, the
glide motion continues on the primary slip plane.

According to the definition of the screw dislocation, segment with the tangent direction
ξ parallels to the Burgers vector b (|ξ × b| = 0) is the pure screw segment. However, in our
algorithm, the segment can be seen as a pure screw segment when |ξ × b| < 0.1.

As for the annihilation reaction, it happens under the following two conditions: 1. The
distance between two nodes is smaller than 20|b|. It is noted that we also insert a node at
every dislocation segment’s midpoint; 2. The relationship between the tangent vector ξ
and the Burgers vector b of nodes satisfies the following formulas,

ξm · ξn ≈ 1, bm + bn = 0 or ξm · ξn ≈ −1, bm − bn = 0

3. Results and Discussion
3.1. The Topological Evolution of the Dislocation around a Misfit Precipitate

In this section, we show the topological evolution of the dislocation line in z/R ≥ 0
cases, then compared with z/R < 0 cases. With different relative heights of the primary
slip planes, the dislocation topological evolution varies.
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The initial slip plane lies on the mid-plane of the precipitate (z/R = 0). From Figure 3
we can see the process that the dislocation line gradually bows and passes the precipitate
under the external stress without experiencing a repulsive force. The space between the
dislocation line of different steps is the area in which the dislocation line swept during its
glide motion. Because of the same shear modulus as the matrix and the symmetry of misfit
spherical precipitate, the shear stress caused by the precipitate is zero on the z/R = 0 slip
plane. In view of the internal stress, z/R = 0 case can be regarded as the condition without
the precipitate.

Figure 3. Process of the dislocation line with pinned endpoints passing a misfit spherical precipitate
on the slip plane z/R = 0. The plastic strain of different steps ε1 = 2.13× 10−5, ε2 = 5.56× 10−5,
ε3 = 1.07× 10−4.

Figure 4 shows the primary slip plane z/R = 0.2 case. As the dislocation line gets
closer to the precipitate, the repulsive shear stress from the precipitate increases. The
dislocation line bows around the precipitate to form the screw segments. The cross-slip
happens on both sides of the precipitate and the screw segments cross slip up from the
primary slip plane. In the stress field above the precipitate, the screw segments whose
y > 0 double cross slip along -y direction and approach the screw segments whose y < 0.
An annihilation reaction then occurs when the two parts of the screw segments are close
enough to each other. Other parts of the dislocation reconnect then keep expanding. Finally,
a prismatic loop (black arrow) is left after the dislocation line bypassing the precipitate.
The video of z/R = 0.2 case can be seen in the supplementary materials [S1]. Hatano [17]
and Erel et al. [20] also reported a prismatic loop formed after the double cross-slip and
the annihilation.

Figure 4. The dislocation line in z/R = 0.2 case bypassing the precipitate with a prismatic loop (black
arrow) left. The plastic strain ε = 1.69× 10−4.

When the primary slip plane lies on z/R = 0.6, the dislocation is pinned and bows
around the precipitate firstly. Then the screw segments start to cross slip. For the screw
segments whose x > 0, they cross slip down from the original slip plane and double-cross
slip to approach each other. Note that the annihilation of the dislocation in this model
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takes place whenever the dislocation segments are approached within the distance of 20|b|.
The minimum distance between the dislocation segments observed in Figure 5 is 57.8|b|,
therefore the annihilation does not happen in this case. For the screw segments with x < 0,
they cross slip up from the primary slip plane and double-cross slip along the y axis to
the other side of the precipitate. However, the annihilation reaction does not occur either.
After these two parts of the screw segments entering another side of the precipitate stress
field, they start to cross slip down from the double-cross slip plane. Finally, the dislocation
line bypasses the precipitate by creating a helix around it. The video of z/R = 0.6 case can
be seen in the supplementary materials [S3].

Figure 5. The dislocation line with the primary slip plane z/R = 0.6 leaving a helix around the
precipitate. The plastic strain ε = 6.19× 10−4.

For the primary slip plane z/R = 1.0, Figure 6 shows the nodal velocity vectors of the
dislocation line. We can see that the dislocation also creates a helix around the precipitate.
The dislocation segments far from the precipitate still have the trend to expand, while
the segments near the precipitate are almost pinned and can hardly move. For the left
side of the bowing dislocation, we can see that it connects a long straight dislocation
segment without velocity. According to σ23 as shown in Figure 2, the force balance is
satisfied by the screw segments along the x-axis, which leads to the formation of the
straight dislocation line. The video of z/R = 1.0 case can be seen in the supplementary
materials [S5].

Figure 6. The dislocation topology and nodal velocity vectors of the dislocation line with the primary
slip plane z/R = 1.0. The plastic strain ε = 2.69× 10−4.

The dislocation evolution in z/R = 1.4 case is shown in Figure 7. The stress from
the precipitate is large enough to pin the dislocation segments above the precipitate, but
not enough to trigger a large-scale cross-slip, only slight cross-slip happens. Finally, an
Orowan loop (black arrow) is left above the precipitate after the dislocation line bypassing
the precipitate stress field. The video of z/R = 1.4 case can be seen in the supplementary
materials [S7].

In z/R = 1.8 and z/R = 2.2 cases, the internal stress from the precipitate is relatively
weak, therefore can neither pin the dislocation segments nor trigger the cross-slip. In
Figure 8, we can see the process that the dislocation line on the slip plane z/R = 1.8
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first being retarded by the precipitate stress field, then gradually unpins under the in-
creased external stress. The situation on the z/R = 2.2 plane is almost the same as on the
z/R = 1.8 plane.

Figure 7. The dislocation line in z/R = 1.4 case bypassing the precipitate with an Orowan loop
(black arrow) left. The plastic strain ε = 3.06× 10−4.

Figure 8. Process of the dislocation line gradually unpins from the precipitate stress field on the plane
z/R = 1.8. The plastic strain of different steps ε1 = 7.77× 10−5, ε2 = 7.85× 10−5, ε3 = 7.86× 10−5,
ε4 = 7.93× 10−5.

In z/R < 0 cases, as predicted in Section 2.1, the stress tensor σ13 reverses. So the
repulsive force between the precipitate and the dislocation turns to an attractive force.
For the primary slip plane z/R = −0.2, we visualized the nodal force vectors in the
following two figures. From Figure 9, we can see that under external stress and the
precipitate internal stress, the dislocation line is attracted to the precipitate. In Figure 10,
the dislocation line cuts into the precipitate and bows around it. The dislocation topological
evolution corresponds with the nodal force vectors.

Figure 9. The dislocation topology and nodal force vectors in z/R = −0.2 case. The plastic strain
ε = 2.23× 10−5.
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Figure 10. The dislocation topology and nodal force vectors in z/R = −0.2 case. The plastic strain
ε = 9.41× 10−5.

As shown in Figure 11, before leaving the precipitate, the cross-slip and an annihilation
reaction happen. A prismatic loop (black arrow) is left behind after the dislocation line
bypassing the precipitate. The video of z/R = −0.2 case can be seen in the supplementary
materials [S2].

Figure 11. The dislocation line in z/R = −0.2 case bypassing the precipitate with a prismatic loop
(black arrow) left. The plastic strain ε = 2.31× 10−4.

In z/R = −0.6 case, the dislocation line cuts into the precipitate and bows around it,
then the cross-slip happens. The dislocation line creates a helix around the precipitate to
bypass it. Figure 12 shows the nodal velocity vectors of the dislocation. We can see that the
dislocation nodes near the precipitate have no velocity. As shown in Figure 13, inside the
spherical precipitate, the magnitude of PK force is large due to the normal stress component.
The force vectors’ direction of the inside nodes point outward of the precipitate, which are
opposite to the nodes located outside the precipitate. The video of z/R = −0.6 case can be
seen in the supplementary materials [S4].

In z/R = −1.0 case as shown in Figure 14, after the dislocation line bowing around
the precipitate, both sides of the screw segments cross slip up from the primary slip plane.
Then the screw segments whose y > 0, z > 0 double cross slip along the -y direction and
come closer to the segments whose y < 0. However, the annihilation conditions are not
satisfied because the minimum distance of the dislocation segments observed in this figure
is 61.6|b|. Finally, a partial prismatic loop formed around the precipitate. The video of
z/R = −1.0 case can be seen in the supplementary materials [S6].
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Figure 12. The dislocation topology and nodal velocity vectors in z/R = −0.6 case. The plastic strain
ε = 4.68× 10−4.

Figure 13. The dislocation nodal PK force vectors around the precipitate in z/R = −0.6 case.

Figure 14. The dislocation topology and nodal velocity vectors in z/R = −1.0 case. The plastic strain
ε = 9.64× 10−4.

The similar topological evolution as z/R = −1.0 case happens in z/R = −1.4 case.
After the double cross-slip, the screw segments whose y > 0, z > 0 slightly cross slip
down from the double cross-slip plane, but the annihilation conditions are still not satisfied,
because the minimum distance between two screw segments is 31.8|b|. Finally, a partial
prismatic loop formed again.

In z/R = −1.8 case, the cross-slip does not happen. As shown in Figure 15, both sides
of the screw segments get closer to each other on the primary slip plane, then annihilate to
form an Orowan loop (black arrow). The other parts of the dislocation line keep expanding.
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For the middle part of the dislocation line, the nodes have the larger velocity vectors due
to the larger line tension acting on these nodes.

According to Figure 16, in z/R = −2.2 case, the dislocation line being retarded by
the precipitate stress field and bows on the primary slip plane. As the internal stress from
the precipitate is relatively weak on this plane, the cross-slip does not happen and the
dislocation line gradually unpins under the increased external stress.

Figure 15. The dislocation nodal velocity vectors and an Orowan loop (black arrow) is left in
z/R = −1.8 case. The plastic strain ε = 6.34× 10−4.

Figure 16. The gradual unpinning process of the dislocation line on the z/R = −2.2 plane. The
plastic strain of different steps ε1 = 9.30× 10−5, ε2 = 1.28× 10−4, ε3 = 1.43× 10−4, ε4 = 2.24× 10−4.

After comparing the dislocation topological evolution of z/R > 0 cases to z/R < 0
cases, we could point out two main differences. First is that due to the inverse sign of σ13,
the internal shear stress acting on the edge dislocation segments is a repulsive force in
z/R > 0 cases, while it is an attractive force in z/R < 0 cases. The dislocation line glides
fast on its primary slip plane towards the precipitate in z/R < 0 cases. While in z/R > 0
cases, the repulsive shear stress from the precipitate makes the dislocation line glide much
slower than on z/R < 0 planes. The second is that in 0 < z/R < 1.0 cases, the repulsive
shear force makes the dislocation line bow around the precipitate, while in−1.0 < z/R < 0
cases, the attractive shear force attracts the dislocation line to cut into the precipitate.

3.2. The Stress and Energy Analysis of Different Slip Planes
3.2.1. Energies Associated with the Dislocation Motion

In this model, the Gibbs free energy EG consists of the elastic strain energy Eel and the
potential energy P. While the elastic energy Eel contains the matrix intrinsic elastic energy
E0

el , the precipitate self-energy Epar
el , the dislocation self-energy Edis

el and the interaction

energy between the precipitate and the dislocation Epar_dis
el . It is noted that Edis

el contains
the dislocation self-energy and the interaction energy between the dislocation segments.
We assume that D as the matrix and Ω as the precipitate.

EG = Eel + P = E0
el + Epar

el + Edis
el + Epar_dis

el + P (11)
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the elastic strain energy Eel can be written as

Eel =
1
2

∫
D

σ0
ije

0
ijdV +

1
2

∫
D

σ
par
ij epar

ij dV +
1
2

∫
D

σdis
ij edis

ij dV+∫
D

σ
par
ij edis

ij dV
(12)

where σ
par
ij is the stress tensor of the precipitate, σdis

ij is the stress tensor of the dislocation,

e0
ij is the elastic strain of the matrix, epar

ij is the elastic strain of the precipitate, edis
ij is the

elastic strain of the dislocation.
Note that the fourth term of Equation (12) is the interaction energy between the

precipitate and the dislocation line. The positive interaction energy indicates the precipitate
retards the dislocation motion, while the negative interaction energy indicates that the
precipitate promotes the dislocation motion or makes the dislocation segments cross slip.
So the interaction energy can be used to measure the level of precipitate strengthening.
Since eij = εij − ε∗ij , εij is the total strain, ε∗ij is the eigenstrain. Equation (12) can be
rewritten as:

Eel =
1
2

∫
D

σ0
ije

0
ijdV +

1
2

∫
D

σ
par
ij (ε

par
ij − ε

∗par
ij )dV +

1
2

∫
D

σdis
ij (εdis

ij − ε∗dis
ij )dV+∫

D
σ

par
ij (εdis

ij − ε∗dis
ij )dV

(13)

where ε
∗par
ij is the eigenstrain of precipitate, ε∗dis

ij is the eigenstrain in the matrix D caused
by the dislocation. The free surface condition is maintained by the internal stress (σijnj = 0)
and the equilibrium condition (σij,j = 0) inside the matrix D. Equation (13) can be reduced
as follows,

Eel =
1
2

∫
D

σ0
ije

0
ijdV − 1

2
(
∫

Ω
σ

par
ij ε

∗par
ij dV +

∫
D

σdis
ij ε∗dis

ij dV + 2
∫

D
σ

par
ij ε∗dis

ij dV) (14)

The potential energy P , which is obtained from the following Equation (15), equals
the total work done by the external stress,

P = −W = −
∫

S
Fi(u0

i + upar
i + udis

i )dS (15)

where the surface traction Fi = σ0
ijnj, the displacement of surface S consists of u0

i , upar
i and

udis
i , which are the displacement caused by the surface traction, the precipitate and the

dislocation respectively.
The dissipated energy ED is calculated by the following Equation (16), equals the

plastic work done by the external stress,

ED = −
∫

S
Fi · udis

i dS (16)

As the dislocation motion during a time step is realized under a constant applied
stress in this model, the stored energy ES can be assumed as follows,

ES = ∆Edis
el + ∆Epar_dis

el (17)

where ∆Edis
el is the increasing magnitude of the dislocation self-energy and ∆Epar_dis

el is the
change of the precipitate-dislocation interaction energy.
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3.2.2. Analysis of the Stress and Energy Curves

In this part, we plotted and analyzed the stress–strain curve as well as the energy-
strain curves on different heights of the primary slip plane. To find out the influence of
dislocation evolution on stress, energies, and the strengthening mechanism.

Figure 17 is the stress–strain curve, relative heights between the primary slip plane
and the mid-plane (z/R = 0) vary from z/R = −2.2 to z/R = 2.2. The dislocation
interacting with a single precipitate is considered, the stress level is much increased by
the existing precipitate as compared with the stress–strain curve without the precipitate
(as indicated by np). We can see that the stress curve of z/R = 0 case is coincident with
that no precipitate (np) case. Which means the internal stress from the precipitate does not
influence the dislocation motion on the z/R = 0 plane. When the dislocation slip plane
is above the mid-plane (z/R > 0), the hardening behavior is obvious on the stress–strain
curve, which implies the dislocation is retarded by the precipitate. When the dislocation
slip plane is below the mid-plane (z/R < 0), we can see that the stress is released when the
strain is around 0.00003− 0.00004 because while the precipitate attracts the dislocation line
to approach it, the external stress decreases to maintain the constant strain rate. Due to the
opposite sign of σ13, the maximum stress values on z/R > 0 planes are greater than that
on z/R < 0 planes, which indicates the stronger strengthening effect on the z/R > 0 slip
planes. The strengthening effect exists in each case except on the mid-plane (z/R = 0) of
the spherical misfit precipitate. Theoretically, the dislocation pinning stress level can be
derived directly from the Orowan stress, which is determined by the initial structure of the
present model. However, the stress–strain curve indicates that the obstacle with the misfit
eigenstrain can influence the pinning stress level, depending on the relative heights of the
primary slip plane.

Figure 17. The stress–strain curve.

The interaction energy curve between the dislocation and the precipitate shown in
Figure 18 reflects the details of the dislocation motion. On the z/R = 0 mid-plane, the
internal stress due to the precipitate does not influence the dislocation motion, so the
interaction energy remains zero, the dislocation gradually passes the precipitate under
the external stress without retard. On the planes above the mid-plane (z/R > 0), as the
dislocation glide motion being retarded by the precipitate, the interaction energy gradually
increases until the εp = 0.0001. In z/R = 0.2, z/R = 0.6, and z/R = 1.0 cases, the
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stress field of the precipitate makes the dislocation segments cross slip (black arrows
in Figure 19) to bypass the precipitate, which largely decreases the interaction energy.
There is a second step on these three interaction energy curves respectively because more
dislocation segments cross slip at that stage. On the z/R = 1.4 slip plane, the dislocation
avoids sweeping the whole retarding area by forming an Orowan loop, which leads to the
reduction of the interaction energy. The cross-slip slightly happens on the z/R = 1.4 plane,
results in more reduction of the interaction energy than in z/R = 1.8 case.

Figure 18. The interaction energy curve between the dislocation and precipitate.

Figure 19. Snapshot of the dislocation cross-slip (black arrows) on z/R = 0.2 plane. The plastic strain
ε = 1.46× 10−4.

In z/R < 0 cases, the stress field of the precipitate attracts the dislocation approaching
it, the interaction energy goes down at first. During the pinning process, the interaction en-
ergy increases. For z/R = −0.2 case, the cross-slip happens (black arrow in Figure 20) and
the interaction energy suddenly drops when the strain is around 0.00023. For z/R = −1.8
and −2.2 cases, there is no cross-slip happens, the precipitate keeps doing positive work to
the dislocation line, which results in the increase of the interaction energy. It is interesting to
see that the interaction energy is eventually zero in z/R = 2.2 and −2.2 cases, their curves
show an increase and decrease of the interaction energy at first, but the energy is conserved
after the dislocation bypassing the precipitate, this is due to the dislocation motion on
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the slip plane without the cross-slip. In z/R = −1.8 case, the energy conservation is not
satisfied, the value of the interaction energy is lower than zero because of the Orowan loop
formation. This fact also reflects the relaxation of the internal stress around the precipitate
by the dislocation loop formation.

Figure 21 is the dislocation self-energy curve. When the cross-slip happens, the density
of the dislocation increases, which results in the increase of the dislocation self-energy. On
the contrary, after the annihilation reaction, some dislocation segments would return from
the cross-slip plane to the primary slip plane, which leads to a slightly decrease of the
dislocation self-energy. For z/R = 0.6 and 1.0 cases, a large-scale cross-slip happens and
there is no annihilation reaction, we can see huge increase steps (black arrows) on their
curves. In z/R = −0.2 case, the cross-slip and the annihilation reaction result in the small
zig-zag steps on its curve.

Figure 20. Snapshot of the dislocation cross-slip (black arrow) on the z/R = −0.2 plane. The plastic
strain ε = 2.28× 10−4.

Figure 21. The dislocation self-energy curve. The increase steps in z/R = 0.6 and z/R = 1.0 cases
due to a large-scale cross-slip are pointed by black arrows.

The potential energy contains the dissipated energy and the stored energy. According
to Equation (15), the potential energy has the same tendency as the external stress. As
shown by dotted lines in Figure 22, the potential energy is larger in z/R > 0 cases than
that in z/R < 0 cases due to the larger external stress.

The stored energy which includes the dislocation self-energy and the interaction
energy, can reflect the strong or weak hardening behavior. The decrease steps can be seen
in z/R = 0.2 and −0.2 cases when the cross-slip happens, this fact also indicates that
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the cross-slip event driven by the internal stress of the precipitate is a stress relaxation
process. After the annihilation reaction in z/R = 0.2R and −0.2R cases, some of screw
segments cross slip back to the primary slip plane makes the dislocation density decrease,
therefore we could also see a slight decrease in their stored energy curves. Note that the
first decrease (orange arrow) in z/R = −0.2 and −2.2 cases at ε = 0.00003 is caused by the
decrease of the interaction energy since the precipitate attracts the dislocation line at that
time. In z/R = 2.2 and −2.2 cases, the cross-slip does not happen and we can see a gentle
decrease (black arrows) on their stored energy curves, which is caused by the decrease of
the dislocation self-energy during the gradual unpinning process. The general trend of the
stored energy curve is increasing, because the bowing out of the dislocation line leads to
the increase of the dislocation density and the self-energy.

Figure 22. The potential and stored energy curve. The decrease steps in z/R = −0.2 and z/R = −2.2
cases due to an attractive interaction force are pointed by the orange arrow, the gentle decrease
in z/R = 2.2 and z/R = −2.2 cases due to the gradual unpinning process are pointed by the
black arrows.

The present model analyzed the influence of spherical misfit precipitate on the pinning
stress level of the dislocation. The strengthening level of the pinning stress is quite increased
by the misfit stress of the precipitate when the dislocation bypassing. The strong or weak
hardening behavior can be reflected through the stored energy curve. When the cross-slip
happens, the decrease of the interaction energy is larger than the increase of the dislocation
self-energy, which leads to the decrease in the stored energy and the strengthening level.
While during other times, the increasing trend of the stored energy corresponds with the
dislocation self-energy, which indicates the increasing strengthening level during times
without the cross-slip.

4. Conclusions

In this study, we simulated a single dislocation line interacting with one misfit spheri-
cal precipitate on different heights of the primary slip plane. The simulation is conducted
with the parametric dislocation dynamics (PDD) method based on Green’s function. The
cross-slip mechanism and the annihilation reaction are considered, the dislocation topo-
logical evolution differs on the different relative heights (z/R) of the primary slip plane,
the simulation results show that three kinds of dislocation topological evolution occur:
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loop-forming (Orowan loop or prismatic loop),helix-forming , and gradual unpinning. The
internal stress is deduced from Eshelby’s inclusion theory and Green’s function. When
the sign of relative height z/R inverses, the stress components σ13 and σ23 also inverse.
In z/R > 0 cases, the interaction force between the precipitate and the dislocation is a
repulsive one, while in z/R < 0 cases it is an attractive one. The present model analyzed
the influence of the spherical misfit precipitate on the dislocation pinning stress level.
Theoretically, the dislocation pinning stress level can be derived directly from the Orowan
stress, which is determined by the initial structure of the present model. However, our
research results indicate that the obstacle with misfit eigenstrain can influence the pinning
stress level, depending on the relative heights of the primary slip plane. The strengthening
level of the pinning stress is much increased by the misfit stress of the precipitate when the
dislocation bypassing. The strong or weak hardening behavior can be reflected through the
stored energy curve. When the cross-slip happens, the decrease of the interaction energy is
larger than the increase of the dislocation self-energy, which leads to the decrease in the
stored energy and the strengthening level. During other times, the increasing trend of the
stored energy corresponds with the dislocation self-energy, which indicates the increasing
strengthening level during times without the cross-slip.

Supplementary Materials: The following are available at www.mdpi.com/xxx/s1, animation files of
the dislocation topological evolution in video S1: z/R = 0.2 case, video S2: z/R = −0.2 case, video
S3: z/R = 0.6 case, video S4: z/R = −0.6 case, video S5: z/R = 1.0 case, video S6: z/R = −1.0 case,
video S7: z/R = 1.4 case.
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