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Abstract: This note deals with the heat conduction issue in biperiodic composites made of two
different materials. To consider such a nonuniform structure, the equations describing the behavior
of the composite under thermal (Robin) boundary conditions were averaged by using tolerance
modelling. In this note, the process of creating an algorithm that uses the finite difference method to
deal with averaged model equations is shown. This algorithm can be used to solve these equations
and find out the temperature field distribution of a biperiodic composite.

Keywords: composite; heat conduction; finite difference method; biperiodic structures

1. Introduction

The primary purpose of this research was to create a computational algorithm that can
be used in the analysis of the heat conduction issue with regard to biperiodic composites.
Periodic or functionally graded structures made of two or more materials can exhibit
advantageous mechanical or strength properties (in view of the adopted criterion). For this
reason, it is important to be able to consider and model these structures. There are many
methods which can be used in the analysis of heterogeneous structures such as compos-
ites. Among them are asymptotic homogenization [1,2], homogenization with microlocal
parameters [3,4], the finite element method [5,6], the boundary element method [7], the
meshless methods [8], the higher order theory [9,10], and the methods using the Green–
Lindsay model [11]. In the analyzed biperiodic structures, the so-called periodicity cells
can be mentally separated. In turn, these cells are characterized by a certain dimension,
called the microstructure size or microstructure parameter. Unfortunately, most known
methods do not allow including this parameter in the considerations. Therefore, to obtain
the equations describing the considered issue, tolerance modelling [12–14] was used. Then,
a computational algorithm was created to analyze the heat conduction phenomenon in
biperiodic composites, using the finite difference method on the derived equations. By us-
ing this algorithm, it is possible to obtain the temperature field distribution in the analyzed
composite. On selected edges of this structure, the third kind boundary conditions were
imposed (the Robin boundary conditions) [15].

The theoretical structure we analyze herein is a composite made of two materials with
different properties; confer Figure 1. These material properties are changing in a periodic
way along both perpendicular directions (x1 and x2). The dimension along x1 is denoted by
L1, and that in direction x2—analogously—by L2. The mentioned microstructure parameters
along directions x1 and x2, are denoted by l1 and l2, respectively. The microstructure size is
directly related to the number of composite layers (cells).
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Figure 1. Biperiodic composite. 

The volume share of each material in every cell is determined and constant. The prod-
uct of the share of the first material in a cell along x1 and along x2 is a volume share of the 
first material in a cell and is denoted by ν1 = ν1(x1, x2). The volume share of the second 
material in a cell ν2 = ν2(x1, x2) can be calculated in an analogous way. 

2. Averaged Equations 
Equation (1) describing the heat conduction phenomenon with reference to biperi-

odic composite is an equation with noncontinuous coefficients: 

( )θ ρθ 0i ij jk c∂ ∂ − = , (1)

where θ is an unknown temperature field; c and ρ specify the material properties such as 
a specific heat and a mass density, respectively; and kij defines the components of the con-
ductivity tensor. To average this equation, tolerance modelling was used [16–22]. 

Tolerance modelling, also called the tolerance averaging technique, introduces in a 
process of modelling a new concepts, definitions, and assumptions. The new concepts pri-
marily relate to functions that comply with certain conditions. Among them we can dis-
tinguish the tolerance-periodic function, the highly-oscillating function, and the slowly-
varying function. Among the assumptions of this method, the most important, from the 
point of view of the present considerations, is the micro-macro decomposition assump-
tion. In conformity with this assumption, the unknown temperature field can be taken 
according to the following formula: 
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where θ is an averaged part of the temperature field Θ, called the macrotemperature. The 
remainder of the equation is the sum of the products of the fluctuation shape functions g1 
and g2; and fluctuation amplitudes ψ1 and ψ2. The mentioned sum is called the fluctuating 
part of the temperature field Θ. The fluctuation amplitudes are the new unknowns, and 
the fluctuation shape functions are assumed a priori. These functions should be assumed 
individually, taking into account the specifics of the issues under consideration. In this 

Figure 1. Biperiodic composite.

The volume share of each material in every cell is determined and constant. The
product of the share of the first material in a cell along x1 and along x2 is a volume share of
the first material in a cell and is denoted by ν1 = ν1(x1, x2). The volume share of the second
material in a cell ν2 = ν2(x1, x2) can be calculated in an analogous way.

2. Averaged Equations

Equation (1) describing the heat conduction phenomenon with reference to biperiodic
composite is an equation with noncontinuous coefficients:

∂i
(
kij∂jθ

)
− cρ

.
θ = 0, (1)

where θ is an unknown temperature field; c and ρ specify the material properties such
as a specific heat and a mass density, respectively; and kij defines the components of the
conductivity tensor. To average this equation, tolerance modelling was used [16–22].

Tolerance modelling, also called the tolerance averaging technique, introduces in a
process of modelling a new concepts, definitions, and assumptions. The new concepts
primarily relate to functions that comply with certain conditions. Among them we can
distinguish the tolerance-periodic function, the highly-oscillating function, and the slowly-
varying function. Among the assumptions of this method, the most important, from the
point of view of the present considerations, is the micro-macro decomposition assumption.
In conformity with this assumption, the unknown temperature field can be taken according
to the following formula:

Θ(x1, x2) = θ(x1, x2) + g1(x1, x2)·ψ1(x1, x2) + g2(x1, x2)·ψ2(x1, x2), (2)

where θ is an averaged part of the temperature field Θ, called the macrotemperature. The
remainder of the equation is the sum of the products of the fluctuation shape functions g1
and g2; and fluctuation amplitudes ψ1 and ψ2. The mentioned sum is called the fluctuating
part of the temperature field Θ. The fluctuation amplitudes are the new unknowns, and
the fluctuation shape functions are assumed a priori. These functions should be assumed
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individually, taking into account the specifics of the issues under consideration. In this note,
it is important to adopt functions that guarantee the continuity of the total temperature, both
between the layers (cells), and inside the cells on interfaces between materials. Therefore,
some combination of the basic functions (saw-type and piecewise parabolic functions)
shown in Figure 2 are assumed.
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where K stands for the thermal conductivity tensor whose components are kij, ∇ is a gra-
dient operator defined as (∂1, ∂2, ∂3), overlined ∇ is a gradient in x3 direction (0, 0, ∂3), and 
∂ is a gradient operator defined as (∂1, ∂2, 0). 

Equations (5)–(7) can be obtained by using the orthogonalization method [26] or by 
the extended stationary action principle [27,28]. 

The averaging operator, denoted in Equations (5)–(7) by triangular brackets, is de-
fined according to the following equation: 
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Figure 2. Fluctuation shape functions.

By γ1 and γ2, the shares of the first material in a cell in direction x1 and in direction
x2, respectively, are denoted. The fluctuation shape functions g1(x1, x2) and g2(x1, x2) are
assumed according to the following formulas:

g1(x1, x2) = f1(x1)· f2(x2), (3)

g2(x1, x2) = h1(x1)·h2(x2), (4)

f 1, f 2, h1, and h2 are depicted in Figure 2.
By considering the micro-macro decomposition assumption, and the other assump-

tions and definitions of the tolerance modelling discussed in [23–25], Equation (1) describ-
ing the heat conduction issue was averaged, leading to the tolerance model equations:

〈cρ〉
.

Θ−∇
(
〈K〉∇θ+ 〈K∂g1〉ψ1 + 〈Kg1〉∇ψ1 + 〈K∂g2〉ψ2 + 〈Kg2〉∇ψ2

)
= 0, (5)

〈cρg1〉
.

Θ + 〈K∂g1〉∇θ+ 〈K∂g1∂g1〉ψ1 + 〈K∂g1g1〉∇ψ1 + 〈K∂g1∂g2〉ψ2+

+〈K∂g1g2〉∇ψ2 −∇
(
〈Kg1〉∇θ+ 〈K∂g1g1〉ψ1 + 〈Kg1g1〉∇ψ1
+〈K∂g2g1〉ψ2 + 〈Kg1g2〉∇ψ2

)
= 0

, (6)

〈cρg2〉
.

Θ + 〈K∂g2〉∇θ+ 〈K∂g1∂g2〉ψ1 + 〈K∂g2g1〉∇ψ1 + 〈K∂g2∂g2〉ψ2+

+〈K∂g2g2〉∇ψ2 −∇
(
〈Kg2〉∇θ+ 〈K∂g1g2〉ψ1 + 〈Kg1g2〉∇ψ1
+〈K∂g2g2〉ψ2 + 〈Kg2g2〉∇ψ2

)
= 0

. (7)

where K stands for the thermal conductivity tensor whose components are kij, ∇ is a
gradient operator defined as (∂1, ∂2, ∂3), overlined ∇ is a gradient in x3 direction (0, 0, ∂3),
and ∂ is a gradient operator defined as (∂1, ∂2, 0).

Equations (5)–(7) can be obtained by using the orthogonalization method [26] or by
the extended stationary action principle [27,28].
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The averaging operator, denoted in Equations (5)–(7) by triangular brackets, is defined
according to the following equation:

〈
∂iF
〉
(x) ≡ 1

|λ|

∫
λ(x)

F̃i(x, z)dz, (8)

where an approximation of the function F(x) is denoted by symbol tilde ~; points x = (x1, x2)
and z = (z1, z2) are, respectively, coordinates in the global and local systems; λ = (−l1/2,l1/2)
× (−l2/2,l2/2) stands for the unit cell; and λ(x) = λ + x.

3. Algorithm of Finite Difference Method

First, the equations of the tolerance model were reformulated and written in index
notation. The indices take the following values: the superscripts a, b = 1, 2, the subscripts
a, b = 1, 2, 3; and the subscripts α, β = 3:

〈cρ〉
( .
θ+ 〈g1〉

.
ψ1 + 〈g2〉

.
ψ2

)
− ∂b

(
〈kab〉∂aθ+ 〈kab∂ag1〉ψ1 + 〈kαbg1〉∂αψ1
+〈kab∂ag2〉ψ2 + 〈kαbg2〉∂αψ2

)
= 0, (9)

〈cρg1〉
( .
θ+ 〈g1〉

.
ψ1 + 〈g2〉

.
ψ2

)
+
〈
kab∂ag1

〉
∂bθ+

〈
kab∂ag1∂bg1

〉
ψ1 + 〈kaα∂ag1g1〉∂αψ1+

+
〈

kab∂ag1∂bg2

〉
ψ2 + 〈kaα∂ag1g2〉∂αψ2 − ∂α(〈kaαg1〉∂aθ)+

−∂α(〈kaα∂ag1g1〉ψ1 + 〈kαβg1g1〉∂βψ1 + 〈kaα∂ag2g1〉ψ2 + 〈kαβg1g2〉∂βψ2) = 0

, (10)

〈cρg2〉
( .
θ+ 〈g1〉

.
ψ1 + 〈g2〉

.
ψ2

)
+ 〈kab∂ag2〉∂bθ+

〈
kab∂ag1∂jg2

〉
ψ1 + 〈kaα∂ag2g1〉∂αψ1+

+
〈

kab∂ag2∂bg2

〉
ψ2 + 〈kaα∂ag2g2〉∂αψ2 − ∂α(〈kaαg2〉∂aθ+ 〈kaα∂ag1g2〉ψ1)+

−∂α(〈kαβg1g2〉∂βψ1 + 〈kaα∂ag2g2〉ψ2 + 〈kαβg2g2〉∂βψ2) = 0

. (11)

To prepare an algorithm of the finite difference method solving equations of the
tolerance model, some assumptions had to be made at this stage. It was assumed that
a non-stationary, two-dimensional problem would be considered. The character of the
fluctuation shape functions, adopted and shown in the Figure 2, was also considered,
which led to modified equations:

〈cρ〉
.
θ− ∂1

(
〈k11〉∂1θ+

〈
k11∂1g1

〉
ψ1

)
− ∂2

(
〈k22〉∂2θ+

〈
k22∂2g2

〉
ψ2

)
= 0, (12)

〈cρg1g1〉
.
ψ1 +

〈
k11∂1g1

〉
∂1θ+

〈
k11∂1g1∂1g1

〉
ψ1 +

〈
k22∂2g1∂2g1

〉
ψ1 = 0, (13)

〈cρg2g2〉
.
ψ2 +

〈
k22∂2g2

〉
∂2θ+

〈
k11∂1g2∂1g2

〉
ψ2 +

〈
k22∂2g2∂2g2

〉
ψ2 = 0. (14)

In the next step, Equations (12)–(14) was reformulated using the differential quotient
formulas and written for the node (i,j):

∂1〈k11〉
θ

i+1,j
(m)
−θi−1,j

(m)

2∆x1
+ 〈k11〉

θ
i+1,j
(m)
−2θi,j

(m)
+θ

i−1,j
(m)

(∆x1)
2 + ∂1

〈
k11∂1g1

〉
ψ

i,j
1(m)

+

+
〈
k11∂1g1

〉ψi+1,j
1(m)
−ψi−1,j

1(m)

2∆x1
+ ∂2〈k22〉

θ
i,j+1
(m)
−θi,j−1

(m)

2∆x2
+ 〈k22〉

θ
i,j+1
(m)
−2θi,j

(m)
+θ

i,j−1
(m)

(∆x1)
2 +

+∂2
〈
k22∂2g2

〉
ψ

i,j
2(m)

+
〈
k22∂2g2

〉ψi,j+1
2(m)
−ψi,j−1

2(m)

2∆x2
= 〈cρ〉

θ
i,j
(m+1)−θ

i,j
(m)

∆t

, (15)

〈
k11∂1g1

〉θi+1,j
(m)
− θi−1,j

(m)

2∆x1
+
〈
k11∂1g1∂1g1

〉
ψ

i,j
1(m)

+
〈
k22∂2g1∂2g1

〉
ψ

i,j
1(m)

= −〈cρg1g1〉
ψ

i,j
1(m+1) −ψ

i,j
1(m)

∆t
, (16)

〈
k22∂2g2

〉θi,j+1
(m)
− θi,j−1

(m)

2∆x2
+
〈
k11∂1g2∂1g2

〉
ψ

i,j
2(m)

+
〈
k22∂2g2∂2g2

〉
ψ

i,j
2(m)

= −〈cρg2g2〉
ψ

i,j
2(m+1) −ψ

i,j
2(m)

∆t
. (17)
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where ∆x1 and ∆x2 define the distances between nodes in directions x1 (i) and x2 (j); confer
Figure 3. By t the time coordinate is denoted, and by m, the time steps.
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Figure 3. Discretization of the composite.

The nodes were introduced to the center of each subcell and the interfaces between
the cells and between the subcells, so the number of the nodes m1 in direction x1 is equal to
4N1 + 1, where N1 is a number of the cells in direction x1, and analogously, the number
of the nodes m2 in direction x2 is equal to 4N2 + 1, where N2 is a number of the cells in
direction x2.

Next, the boundary conditions have to be specified, as they affect the process of the
algorithm (if we know the values of the desired unknown at the selected nodes, we do not
write the equation associated with that unknown at those nodes).

3.1. Matrix of Coefficients

The creation of the algorithm was started by building a matrix of coefficients found in
the equations.

3.1.1. Equation for Macrotemperature θ

Equation (15) is related to the macrotemperature θ. Considering this equation, the
composite nodes were grouped into areas; confer Figure 4.
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It was assumed that the total temperature will be known at the nodes of area 0 (for i
equals 1 and j from 1 to m1), which translates to the fact that the macrotemperature will
also be known, and we do not write Equation (15) for these nodes.

The nodes of area 1 (for i from 2 to m1 − 1 and for j from 2 to m2 − 1) are internal nodes
and are not affected by the boundary conditions, and it is necessary to write Equation (15)
for these nodes. By writing an equation for a given node, the coefficients for the unknown
at that node (i, j), but also at the node above it (i − 1, j), below it (i + 1, j), to the right
(i, j + 1), and to the left (i, j − 1), were grouped. For the purposes of this work, simplified
nomenclature was adopted for the coefficient groups. The coefficients for the unknown
(macrotemperature θ) in the node (i, j) in this area are written below:

coe f fi,jθ = − 2

(∆x1)
2 〈k11〉 −

2

(∆x2)
2 〈k22〉, (18)

the coefficients in the node (i − 1, j):

coe f fi−1,jθ =
1

(∆x1)
2 〈k11〉 −

1
2∆x1

∂1〈k11〉, (19)

the coefficients in the node (i + 1, j):

coe f fi+1,jθ =
1

(∆x1)
2 〈k11〉+

1
2∆x1

∂1〈k11〉, (20)

the coefficients in the node (i, j − 1):

coe f fi,j−1θ =
1

(∆x2)
2 〈k22〉 −

1
2∆x2

∂2〈k22〉, (21)

the coefficients in the node (i, j + 1):

coe f fi,j+1θ =
1

(∆x2)
2 〈k22〉+

1
2∆x2

∂2〈k22〉. (22)

The nodes of area 2 (for i equal to m1 and for j from 2 to m2 − 1) are the nodes on
the bottom surface of the composite. On this surface, the Robin boundary conditions are
assumed. These conditions are related to a heat exchange and are expressed according to
the formula:

〈k11〉∂1Θ = −U1(Θ−Θe), (23)

where U1 is a heat transfer coefficient and Θe is an external temperature. This condition
was written by using the micro-macro decomposition assumption and the differential
quotient formulas:

θi+1,j−θi−1,j

2∆x1

[
〈k11〉2 −

〈k11g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

]
+

+θi,j
[
〈U1〉2 −

〈U1g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

]
=

= 〈U1Θe〉2 −
〈U1Θeg1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

, (24)

where the averaging operation is valid only in direction x2. From the above equation, the
component θi+1,j was determined, which allowed the elimination of the unknown in the
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virtual node (i + 1, j) from Equation (15). The formulas describing the individual coefficients
are shown below:

coe f fi,jθ = −2
(
〈k11〉1
(∆x1)

2 +
〈k22〉1
(∆x2)

2

)
+

−
(

∂1〈k11〉2 +
2〈k11〉2

∆x1

) 〈U1〉2(〈k11g1∂1g1〉2+〈U1g1g1〉2)−〈U1g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11〉2(〈k11g1∂1g1〉2+〈U1g1g1〉2)−〈k11g1〉2(〈k11∂1g1〉2+〈U1g1〉2)

, (25)

coe f fi−1,jθ =
2

(∆x1)
2 〈k11〉2, (26)

coe f fi,j−1θ =
1

(∆x2)
2 〈k22〉2 −

1
2∆x2

∂2〈k22〉2, (27)

coe f fi,j+1θ =
1

(∆x2)
2 〈k22〉2 +

1
2∆x2

∂2〈k22〉2. (28)

The nodes of area 3 (for i from 2 to m1 − 1 and for j equals m2) represent the nodes on
the right surface of the composite. On this surface, the Robin boundary conditions are also
assumed. These conditions are expressed according to the formula:

〈k22〉∂2Θ = −U2(Θ−Θe), (29)

where U2 is a heat transfer coefficient. This condition was written by using the micro-macro
decomposition assumption and the differential quotient formulas:

θi,j+1−θi,j−1

2∆x2

[
〈k22〉1 −

〈k22g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

]
+

+θi,j
[
〈U2〉1 −

〈U2g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

]
=

= 〈U2Θe〉1 −
〈U2Θeg2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

, (30)

where the averaging operation is valid only in direction x1. From the above equation, the
component θi,j+1 was determined, which allowed the elimination of the unknown in the
virtual node (i, j + 1) from Equation (15). The formulas describing the individual coefficients
are shown below:

coe f fi,jθ = −2
(
〈k11〉1
(∆x1)

2 +
〈k22〉1
(∆x2)

2

)
+

−
(

∂2〈k22〉1 +
2〈k22〉1

∆x2

) 〈U2〉1(〈k22g2∂2g2〉1+〈U2g2g2〉1)−〈U2g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22〉1(〈k22g2∂2g2〉1+〈U2g2g2〉1)−〈k22g2〉1(〈k22∂2g2〉1+〈U2g2〉1)

, (31)

coe f fi+1,jθ =
1

(∆x1)
2 〈k11〉1 +

1
2∆x1

∂1〈k11〉1, (32)

coe f fi−1,jθ =
1

(∆x1)
2 〈k11〉1 −

1
2∆x1

∂1〈k11〉1, (33)

coe f fi,j−1θ =
2

(∆x2)
2 〈k22〉1. (34)

The node of area 4 (for i equals m1 and for j equal to m2) is the node in the bot-
tom right corner of the composite. In this area, the boundary conditions described by
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Equations (23) and (29) were considered. Therefore, the formulas describing the coeffi-
cients are as follows:

coe f fi,jθ = −2
(
〈k11〉1
(∆x1)

2 +
〈k22〉1
(∆x2)

2

)
+

−
(

∂1〈k11〉2 +
2〈k11〉2

∆x1

) 〈U1〉2(〈k11g1∂1g1〉2+〈U1g1g1〉2)−〈U1g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11〉2(〈k11g1∂1g1〉2+〈U1g1g1〉2)−〈k11g1〉2(〈k11∂1g1〉2+〈U1g1〉2)

+

−
(

∂2〈k22〉1 +
2〈k22〉1

∆x2

) 〈U2〉1(〈k22g2∂2g2〉1+〈U2g2g2〉1)−〈U2g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22〉1(〈k22g2∂2g2〉1+〈U2g2g2〉1)−〈k22g2〉1(〈k22∂2g2〉1+〈U2g2〉1)

, (35)

coe f fi−1,jθ =
2

(∆x1)
2 〈k11〉2, (36)

coe f fi,j−1θ =
2

(∆x2)
2 〈k22〉2. (37)

The nodes of area 5 (for i from 2 to m1 − 1 and for j equal to 1) represent the nodes on
the left surface of the composite. It was assumed that this edge is thermally insulated:

〈k22〉∂2Θ = 0, (38)

which leads to the condition:

∂2θ = 0→ θi,j+1 = θi,j−1, (39)

and allows to the elimination of the unknown in the virtual nodes (i, j − 1) from the
equation. The formulas describing the individual coefficients are shown below:

coe f fi,jθ = − 2

(∆x1)
2 〈k11〉1 −

2

(∆x2)
2 〈k22〉1, (40)

coe f fi+1,jθ =
1

(∆x1)
2 〈k11〉1 +

1
2∆x1

∂1〈k11〉1, (41)

coe f fi−1,jθ =
1

(∆x1)
2 〈k11〉1 −

1
2∆x1

∂1〈k11〉1, (42)

coe f fi,j+1θ =
2

(∆x2)
2 〈k22〉1. (43)

where the averaging operation is valid only along x1.
The node of area 6 (for i equals m1 and for j equal to 1) is the node in the bottom left

corner of the composite. In this area, the boundary conditions described by Equations (23)
and (21) are considered. Therefore, the formulas describing the coefficients are as follows:

coe f fi,jθ = −2
(
〈k11〉1
(∆x1)

2 +
〈k22〉1
(∆x2)

2

)
+

−
(

∂1〈k11〉2 +
2〈k11〉2

∆x1

) 〈U1〉2(〈k11g1∂1g1〉2+〈U1g1g1〉2)−〈U1g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11〉2(〈k11g1∂1g1〉2+〈U1g1g1〉2)−〈k11g1〉2(〈k11∂1g1〉2+〈U1g1〉2)

, (44)

coe f fi−1,jθ =
2

(∆x1)
2 〈k11〉2, (45)

coe f fi,j+1θ =
2

(∆x2)
2 〈k22〉2. (46)

where the averaging operation is valid only along x1.
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In each area, in the case of the macrotemperature θ, in the node (i, j), the coefficient
related to the time coordinate was added:

coe f fi,jθt = −
1

∆t
〈cρ〉, (47)

and it was assumed that in the initial time the values of all unknowns are known.
There are also the fluctuation amplitudes of the temperature ψ1 and ψ2 as unknowns

in Equation (15). The coefficients for the fluctuation amplitudes ψ1 are as follows:

• area 1,

coe f fi,jψ1 = ∂1
〈
k11∂1g1

〉
, (48)

coe f fi−1,jψ1 = − 1
2∆x1

〈
k11∂1g1

〉
, (49)

coe f fi+1,jψ1 =
1

2∆x1

〈
k11∂1g1

〉
, (50)

• areas 2, 4, 6,

coe f fi,jψ1 = ∂1
〈
k11∂1g1

〉
2 +

1
∆x1

〈
k11∂1g1

〉
2, (51)

coe f fi−1,jψ1 = − 1
∆x1

〈
k11∂1g1

〉
2, (52)

• area 3,

coe f fi,jψ1 = ∂1
〈
k11∂1g1

〉
1, (53)

coe f fi−1,jψ1 = − 1
2∆x1

〈
k11∂1g1

〉
1, (54)

coe f fi+1,jψ1 =
1

2∆x1

〈
k11∂1g1

〉
1, (55)

• area 5,

coe f fi,jψ1 = ∂1
〈
k11∂1g1

〉
1, (56)

coe f fi−1,jψ1 = − 1
2∆x1

〈
k11∂1g1

〉
1, (57)

coe f fi+1,jψ1 =
1

2∆x1

〈
k11∂1g1

〉
1. (58)

The coefficients for the fluctuation amplitudes ψ2 are as follows:

• area 1,

coe f fi,jψ2 = ∂2
〈
k22∂2g2

〉
, (59)

coe f fi,j−1ψ2 = − 1
2∆x2

〈
k22∂2g2

〉
, (60)

coe f fi,j+1ψ2 =
1

2∆x2

〈
k22∂2g2

〉
, (61)
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• areas 2,

coe f fi,jψ2 = ∂2
〈
k22∂2g2

〉
2, (62)

coe f fi,j−1ψ2 = − 1
2∆x2

〈
k22∂2g2

〉
2, (63)

coe f fi,j+1ψ2 =
1

2∆x2

〈
k22∂2g2

〉
2, (64)

• areas 3, 4

coe f fi,jψ2 = ∂2
〈
k22∂2g2

〉
1 +

1
∆x2

〈
k22∂2g2

〉
1, (65)

coe f fi,j−1ψ2 = − 1
∆x2

〈
k22∂2g2

〉
1, (66)

• areas 5, 6

coe f fi,jψ2 = ∂2
〈
k22∂2g2

〉
1, (67)

coe f fi,j+1ψ2 = ∂2
〈
k22∂2g2

〉
1 −

1
∆x2

〈
k22∂2g2

〉
1. (68)

3.1.2. Equation for Fluctuation Amplitude of the Temperature ψ1

Equation (16) is related to the fluctuation amplitudes of the temperature ψ1. Consider-
ing this equation, the composite nodes were grouped into areas; confer Figure 5.
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It is assumed that the fluctuation amplitudes of the temperature ψ1 will be known for
the nodes of area 4 (for i from 1 to m1 and j equal to m2) and area 5 (for i from 1 to m1 and j
equals 1), which translates to the fact that fluctuation amplitudes of the temperature ψ1 are
known, and we did not write Equation (16) for these nodes. Analogously, as in the case
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of Equation (15), the coefficients were grouped and written separately for each unknown.
First, the coefficients on the macrotemperature were written as:

• area 1,

coe f fi−1,jθ = − 1
2∆x1

〈
k11∂1g1

〉
, (69)

coe f fi+1,jθ =
1

2∆x1

〈
k11∂1g1

〉
, (70)

• area 2,

coe f fi,jθ =
1

∆x1

〈
k11∂1g1

〉
2, (71)

coe f fi−1,jθ = − 1
∆x1

〈
k11∂1g1

〉
2, (72)

• area 3,

coe f fi,jθ = − 1
∆x1

〈
k11∂1g1

〉
2, (73)

coe f fi+1,jθ =
1

∆x1

〈
k11∂1g1

〉
2. (74)

Then, the coefficients on the fluctuation amplitudes of the temperature were written:

• area 1,

coe f fi−1,jψ1 =
〈
k11∂1g1∂1g1

〉
+
〈
k22∂2g1∂2g1

〉
, (75)

• areas 2,

coe f fi,jψ1 =
〈
k11∂1g1∂1g1

〉
+
〈
k22∂2g1∂2g1

〉
, (76)

• area 3,

coe f fi,jψ1 =
〈
k11∂1g1∂1g1

〉
+
〈
k22∂2g1∂2g1

〉
. (77)

In each area, in the case of the fluctuation amplitudes of the temperature ψ1, in the
node (i, j), the coefficient related to the time coordinate was added:

coe f fi,jψ1t = −
1

∆t
〈
cρg1g1

〉
. (78)

3.1.3. Equation for Fluctuation Amplitude of the Temperature ψ2

Equation (17) is related to the fluctuation amplitudes of the temperature ψ2(x1, x2).
Considering this equation, the composite nodes were grouped into areas again; confer
Figure 6.



Materials 2021, 14, 6329 12 of 18
Materials 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. Areas of the composite—fluctuation amplitudes of the temperature ψ2. 

It is assumed that the fluctuation amplitudes of the temperature ψ2 will be known for 
the nodes of area 3 (for i equal to 1 and j from 2 to m2), area 4 (for i equals m1 and j from 2 
to m2), and area 5 (for i from 1 to m1 and j equals 1), which translates to the fact that fluc-
tuation amplitudes of the temperature ψ2 are known, and we did not write Equation (17) 
for these nodes. First, the coefficients of the macrotemperature were written: 
• area 1, 

+ = ∂
Δ

2
1 22 2

2

1θ
2i ,jcoeff k g

x
, (79) 

− = − ∂
Δ

2
1 22 2

2

1θ
2i ,jcoeff k g

x
, (80) 

• area 2, 

= ∂
Δ

2
22 2 1

2

1θi ,jcoeff k g
x

, (81) 

− = − ∂
Δ

2
1 22 2 1

2

1θi ,jcoeff k g
x

. (82) 

Then, the coefficients on the fluctuation amplitudes of the temperature were written: 
• area 1, 

= ∂ ∂ + ∂ ∂1 1 2 2
2 22 2 2 22 2 2ψi ,jcoeff k g g k g g , (83) 

• area 2, 

= ∂ ∂ + ∂ ∂1 1 2 2
2 22 2 2 22 2 21 1

ψi ,jcoeff k g g k g g . (84) 

In each area, in the case of the fluctuation amplitude of the temperature ψ2, in the 
node (i, j), the coefficient related to the time coordinate was added: 

= −
Δ2 2 2
1ψ ρi ,j tcoeff c g g
t

. (85) 

3.2. Vector of Free Terms 

Figure 6. Areas of the composite—fluctuation amplitudes of the temperature ψ2.

It is assumed that the fluctuation amplitudes of the temperature ψ2 will be known for
the nodes of area 3 (for i equal to 1 and j from 2 to m2), area 4 (for i equals m1 and j from 2 to
m2), and area 5 (for i from 1 to m1 and j equals 1), which translates to the fact that fluctuation
amplitudes of the temperature ψ2 are known, and we did not write Equation (17) for these
nodes. First, the coefficients of the macrotemperature were written:

• area 1,

coe f fi,j+1θ =
1

2∆x2

〈
k22∂2g2

〉
, (79)

coe f fi,j−1θ = − 1
2∆x2

〈
k22∂2g2

〉
, (80)

• area 2,

coe f fi,jθ =
1

∆x2

〈
k22∂2g2

〉
1, (81)

coe f fi−1,jθ = − 1
∆x2

〈
k22∂2g2

〉
1. (82)

Then, the coefficients on the fluctuation amplitudes of the temperature were written:

• area 1,

coe f fi,jψ2 =
〈
k22∂1g2∂1g2

〉
+
〈
k22∂2g2∂2g2

〉
, (83)

• area 2,

coe f fi,jψ2 =
〈
k22∂1g2∂1g2

〉
1 +

〈
k22∂2g2∂2g2

〉
1. (84)

In each area, in the case of the fluctuation amplitude of the temperature ψ2, in the
node (i, j), the coefficient related to the time coordinate was added:

coe f fi,jψ2t = −
1

∆t
〈
cρg2g2

〉
. (85)

3.2. Vector of Free Terms

In the case of the free terms vector, the procedure is analogous to the matrix of
coefficients. The composite nodes were grouped into areas; confer Figure 7.
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The vector of free terms is connected with the boundary conditions; therefore, free
terms do not appear in equations written for area 0. The free terms do not concern the
nodes in areas 23 and 24, because at these nodes the equations are not used. According
to the boundary conditions, described above, the values of the macrotemperature θ, are
known for the top surface of the composite, so these values occurred as free terms in the
individual equations written for the nodes of areas 1–4 and 16 (i − 1, j) and areas 20–22
(i, j; i, j − 1; i, j + 1).

The values of the fluctuation amplitudes of the temperature ψ1 are known for the left
and right surfaces of the composite, so these values occurred as free terms in the individual
equations written for the nodes of areas 4, 7, 11, and 16–18 (i, j; i−1, j; i + 1, j), for the nodes
of areas 15 and 19 (i, j; i − 1, j), for the nodes of areas 1, 5, 8, and 12 (i, j − 1), and for the
nodes of areas 3, 6, 10, and 14 (i, j + 1).

In turn, the values of the fluctuation amplitudes of the temperature ψ2 are known on
the left, top, and bottom surfaces of the composite, so these values occur as free terms in the
individual equations written for the nodes of areas 12–14, and 20–22 (i, j; i, j − 1; i, j + 1),
for the nodes of areas 16–18 (i, j; i + 1, j; i − 1; j), for the node of area 19 (i, j; i − 1, j; i, j + 1),
for the node of area 15 (i, j; i, j − 1), for the node of area 1 (i − 1, j; i, j − 1), for the nodes of
area 5 (i, j − 1), for the node of area 8 (i, j − 1; i + 1, j), for the nodes of areas 2–4 (i − 1, j),
and for the nodes of areas 9–11 (i + 1, j).

Additionally, for Equation (15) and several areas, there are additional components
that need to be added to the free terms. These are associated with the equations expressing
the boundary conditions:

• areas 4, 7, and 11,

Qi,jθ = −
(

∂2〈k22〉1 +
2〈k22〉1

∆x2

) 〈U2Θe〉1 −
〈U2Θeg2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

〈k22〉1 −
〈k22g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

, (86)

• areas 12, 13, 14, and 19,

Qi,jθ = −
(

∂1〈k11〉2 +
2〈k11〉2

∆x1

) 〈U1Θe〉2 −
〈U1Θeg1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

〈k11〉2 −
〈k11g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

, (87)
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• area 15,

Qi,jθ = −
(

∂2〈k22〉1 +
2〈k22〉1

∆x2

) 〈U2Θe〉1−
〈U2Θe g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

〈k22〉1−
〈k22g2〉1(〈k22∂2g2〉1+〈U2g2〉1)
〈k22g2∂2g2〉1+〈U2g2g2〉1

+

−
(

∂1〈k11〉2 +
2〈k11〉2

∆x1

) 〈U1Θe〉2−
〈U1Θe g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

〈k11〉2−
〈k11g1〉2(〈k11∂1g1〉2+〈U1g1〉2)
〈k11g1∂1g1〉2+〈U1g1g1〉2

, (88)

3.3. Solution

The Crank–Nicolson method was used [29]. The equations, written for the nodes,
form a system of non-uniform linear equations that can be written as follows:

(1− α)Kqt+1 + αKqt + Ktqt+1 + Ktqt = (1− α)Qt+1 + αQt, (89)

where parameter α is equal to 0.5. The matrix of coefficients is divided into matrix of
coefficients dependent on time coordinate Kt and independent of time coordinate K. The
free terms vector is denoted by Q, and the unknowns’ vector is denoted by q. Each
equation in Equations (15)–(17) was written in turn for each node. Solving the above
system of equations allows us to know the distribution of the sought unknowns—the
macrotemperature θ and the fluctuation amplitudes of the temperatures ψ1 and ψ2. Then,
it is possible to know the distribution of the total temperature Θ by using the micro-
macrotemperature assumption as shown in Equation (2).

4. An Example of an Application

The problem analyzed using the algorithm described above was a non-stationary, two
dimensional problem of a heat conduction issue in a biperiodic composite with dimensions
L1 and L2 equal to 1 [m]. The following properties were assumed for the first material
in the cell: c1 = 500 [J kg−1 K−1], ρ1 = 7800 [kg m−3], kij

1 = 58 [W m−1 K−1], and for the
second material: c2 = 920 [J kg−1 K−1], ρ2 = 2720 [kg m−3], and kij

2 = 200 [W m−1 K−1].
The calculations were carried out for the number of the cells N1 = N2 = 10. In turn, the
share of the first material in the cell along both directions x1 and x2 was equal to 1/5.

By solving the system of non-uniform Equation (89), it was possible to obtain the plots
and the maps of the distributions of the sought unknowns. The plot of the distribution of
discretized macrotemperature θ = θ(x1, x2) is shown in Figure 8, and as a map in Figure 9.
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The plot of the distribution of discretized fluctuation amplitudes of temperature
ψ2 = ψ2(x1, x2) is shown in Figure 12, and the map in Figure 13.
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Figure 13. Map of the distribution of fluctuation amplitudes of temperature ψ2.

From the above figures, it can be observed that the values of the fluctuation amplitudes
effected the values of total temperature most significantly near the surface for x1 = 0. Close
by this surface, the fluctuation amplitudes represented almost 10% of the values of the
macrotemperature. In the remainder of the composite, the values of the fluctuation ampli-
tudes were close to zero and were directly related to the analyzed boundary conditions.

5. Conclusions

Considerations that were explored and the creation of the finite difference method
algorithm allowed us to formulate the following conclusions:

1. The heat conduction equation is an equation with noncontinuous coefficients with
reference to the analyzed biperiodic structure.

2. Tolerance modelling makes it possible to average the equations and consider the
impacts of the microstructure size on the issues analyzed.

3. The resulting equations are equations of many variables, and it was necessary to solve
them numerically.
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4. The Crank–Nicolson method was used to solve the obtained system of non-uniform
equations, which ensured convergence of the solutions.

5. The created algorithm is universal and may allow one to analyze a biperiodic structure
composing two materials with arbitrary material properties arranged as in Figure 1.

6. The created algorithm may allow one to analyze an arbitrary value of the external
temperature and the temperature of one on the surfaces of the composite.

7. Changing the boundary conditions involves modifying the algorithm, because in the
finite difference method, equations are written only for nodes, where the values of
the sought unknowns are not known.
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