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Abstract: Determination of the fracture angle and maximum exposure value of extended Puck’s
3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of
unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA)
is presented for searching fracture angle and corresponding exposure value for the extended Puck’s
failure criterion. One hundred million cases are tested for verifying the accuracy of the present and
other algorithms on Python using the strength-value-stress-state combinations more universal than
those in previous literatures. The reliability of previous algorithms is discussed and counterexamples
are provided for illustration. The statistical results show RSAA is adequate for implementation in
extended Puck’s criterion and much more reliable than previous algorithms. RSAA can correctly
predict the results with a probability of over 99.999%.

Keywords: extended Puck’s criterion; UD composites; fracture angle; stress exposure; algorithm

1. Introduction

Plenty of failure criteria for fiber-reinforced unidirectional (UD) composites have been
proposed during the past decades. Among all the failure criteria, the 3D inter-fiber failure
(IFF) criterion developed by Puck and Schürmann [1] was ranked high in the “World Wide
Failure Exercise I” (WWFE-I) [2] and “World Wide Failure Exercise II” (WWFE-II) [3] due
to its good predictions compared with the provided experimental data. Recently, Gu and
Chen [4] extended the Puck’s failure criterion, which was expected to be applicable for
different types of UD composites. Puck’s failure criterion is developed based on a physical
hypothesis that the fracture plane is determined by the shear stresses and normal stress
acting on this plane [5]. However, the shear and normal stresses vary on different potential
fracture planes and the plane with the highest exposure value is the actual fracture plane.
Hence the criterion can not only predict the onset of failure but also can determine the
orientation of fracture plane.

For a UD composites with an arbitrary 3D stress state and uncertain material proper-
ties, it is more important to know its potential fracture angle before predicting the onset
of failure. Due to this reason, Puck [1] and VDI [6] proposed a stepwise search algorithm
(SSA) to locate the fracture angle which relied on the degree-to-degree scanning of the
potential fracture plane. Within an accuracy of 1◦, it will lead to 180 points to be calculated.
Higher accuracy leads to more computational effort. Apparently, an efficient and reliable
algorithm is required to implement the Puck’s criterion.

Later, Wiegand et al. [7] proposed an accurate and numerically efficient fracture angle
search algorithm called Extended Golden Section Search (EGSS) for Puck’s IFF criterion.
EGSS first uses the Golden Section Search (GSS) [8] algorithm to quickly bracket the maxi-
mum and then apply a curve interpolation technique called Inverse Parabolic Interpolation
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(IPI) to locate the maximum. According to Wiegand et al., as few as 6 evaluated points
need to be calculated to determine the fracture angle.

However, Schirmaier et al. [9] have proved that EGSS is only valid for a certain part
of the occurring stress states and corresponding stress exposure curves. On certain cases,
EGSS will put away the global maximum in the first optimization step and locate the local
maximum. Subsequently they proposed a Selective Range Golden Section Search (SRGSS)
algorithm. At first, they examined the possible stress exposure curves with different
strength-value-stress-state combinations which are performed on MATLAB. The basic
idea of SRGSS is to isolate all the maximum-containing ranges and then to localize the
maximum using GSS algorithm. According to Schirmaier et al., at most 36 supporting
points are required in case of a curve with three maxima. SRGSS is less efficient than EGSS,
however, reliability is increased.

Thomson et al. [10] recently proposed a semi-analytical algorithm (SAA) to determine
the fracture angle using a new efficient implementation of Puck’s criterion. One of the
main focuses of the literature is to eliminate the additional computational cost of the
fracture angle search. Wang et al. [11] proposed Improved Analytical Approximation
Golden Section Search (IAAGSS) algorithm, an extension of the algorithm proposed by
Thomson et al., which can significantly increase the computation accuracy. However, the
present paper works out that the algorithms proposed by Thomson et al. and Wang et al.
are not sufficient for predicting the fracture angle and stress exposure value.

So far, several algorithms are available for implementing the Puck’s 3D IFF criterion,
however, the accuracy comparison between these algorithms has not been seen yet. The
work presented in this paper aims to determine the actual fracture plane in extended
Puck’s 3D IFF criterion. The basic principle is to ensure the reliability of the results.
On this basis, less computational effort is satisfied compared with SSA. The rest of this
paper is organized as follows: Section 2 introduces the extended Puck’s failure criterion.
Sections 3 and 4 discuss the existing methods and the present method for searching the
potential fracture plane. Section 5 gives the reliability discussion of the existing algorithms
and the comparison results between the algorithms above and the present algorithms.
Furthermore, present algorithm is implemented in ABAQUS 2020 and biaxial strength
properties are calculated. Concluding remarks are given in Section 6.

2. Extension of Puck’s IFF Criterion
2.1. Puck’s 3D Inter-Fiber Failure Criterion

The Puck’s IFF criterion is based on the Mohr-Coulomb theory and assumes transverse
isotropy of the UD composites. Failure will occur on the fracture plane where only shear
stresses, τnt and τnl , and normal stress σn exist, which is illustrated in Figure 1. These three
stresses can be calculated from σ2, σ3, τ12, τ13, τ23 using Equations (1)–(3):

σn(θ) =σ2 cos2 θ + σ3 sin2 θ + 2τ23 sin θ cos θ (1)

τnt(θ) = (σ3 − σ2) sin θ cos θ + τ23(cos2 θ − sin2 θ) (2)

τnl(θ) = τ12 cos θ + τ13 sin θ (3)
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Here, cY  means the transverse compressive strength and 21S  denotes the longi-
tudinal shear strength of UD composite. 
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Puck’s IFF criterion for unidirectional composites distinguishes the failure mechanisms
between σn ≥ 0 and σn < 0. For each condition, Puck introduces the stress exposure value
f IFF, given below, to measure the fracture risk and the fracture occurs when f IFF reaches
one. For a given strength-value-stress-state combination, the angle θ is a variable. The
problem is thus converted to finding the fracture angle which makes exposure value
f IFF maximum.
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(7)

RA
⊥‖ = S21 (8)

Here, Yc means the transverse compressive strength and S21 denotes the longitudinal
shear strength of UD composite.

2.2. Determination of the Parameters

Puck et al. have already provided inclination parameters [12] for typical GFRP/epoxy
(glass fiber reinforced plastic) and CFRP/epoxy (carbon fiber reinforced plastic) UD com-
posites. These materials are regarded as intrinsically brittle materials. However, Gu and
Chen [4] recently extended the Puck’s failure criterion and found that the parameters are
not adequate for materials with low transverse compression/tension ratios. UD compos-
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ites are divided into three categories according to the researchers: semi-brittle materials,
brittle materials, and intrinsically brittle materials. Some of the parameters used in Puck’s
criterion may be different for different types of composite materials.

There are three strength parameters, RA
⊥⊥, RA

⊥‖, RA+
⊥ , and four inclination param-

eters, p(+)
⊥‖ , p(−)⊥‖ , p(+)

⊥⊥, p(−)⊥⊥, in Puck’s IFF criterion. RA
⊥⊥, RA

⊥‖ can be calculated using

Equations (7) and (8). Inclination parameters p(+)
⊥‖ , p(−)⊥‖ should be obtained from experi-

ments. In this paper, recommended values are utilized for the two parameters.
According to Puck et al., p(+)

⊥⊥ = p(−)⊥⊥ = p⊥⊥ is suggested due to that these two pa-
rameters should be approximately of the same magnitude [5]. Up to now, there are two un-
known parameters left, RA+

⊥ , p⊥⊥, which can be determined using the following equations:
Semi-brittle materials: 

(a+YT)
2

4(1−b) =
(

RA
⊥⊥
)2

S2
23 +

a2

4(1−b) =
(

RA
⊥⊥
)2 (9)

Brittle materials: 
RAt
⊥ = YT

S2
23 +

a2

4(1−b) =
(

RA
⊥⊥
)2 (10)

Intrinsically brittle materials:  RA+
⊥ = YT

a
2(1−b) = S23

(11)

with 
a = 2p⊥⊥RA

⊥⊥

b =
(RA
⊥⊥)

2−2p⊥⊥RA
⊥⊥RA+

⊥

(RA+
⊥ )

2

(12)

YT means the transverse tensile strength of UD composite. The shear strength S23 is
difficult to obtain experimentally because it is hard to induce a state of uniform shear and
eliminate the geometry effect of specimens [13,14]. Thus, a simple formula provided by
Christenson [15] is used to determine S23 as follows:

S23 = min

(√
1 + YT/YC

3 + 5YT/YC
YTYC, YT

)
(13)

3. Existing Algorithms for Searching the Fracture Angle

The search of fracture angle represents an optimization problem. What we should
do is to find the angle which makes the stress exposure in Equation (4) greatest in given
strength-value-stress-state case. However, purely analytical solutions are not available due
to the complexity of the formulas, and therefore, semi-analytical and numerical approaches
are applied.

3.1. SRGSS Algorithm Proposed by Schirmaier et al.

Schirmaier et al. proposed a fast and reliable fracture angle search algorithm called
Selective Range Golden Section Search. Before SRGSS, the authors have conducted a
research to examine possible stress exposure curves using MATLAB. At first, strength
values are permuted between the ranges (YT : 25~65, YC: 120~220, S12: 70~90). Then the
stress values are permuted between the relating strength values. Therefore, the stress
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exposure curves can be obtained. According to Schirmaier et al. all the curves have the
following characteristics in common:

1. The curves are smooth;
2. The curves have at most three local maxima;
3. The distance between two adjacent local maxima is larger than 25◦.

Based on the above three characteristics, SRGSS is developed, the main idea of which is
to isolate all the local maxima and then localize the maximum in the maximum-containing
range using GSS algorithm. At first, the whole range (−90◦~90◦) is evenly divided into
18 parts. Owing to that the minimum distance is larger than 25◦, two adjacent maxima
cannot be distributed at the neighboring parts. Thus, the maximum-containing range can
be found when a supporting point has two smaller neighbors. Then the global maximum
can be determined by comparing the previous two or three local maxima.

3.2. Semi-Analytical Algorithm Proposed by Thomson et al.

Thomson et al. proposed a semi-analytical solution to the puck’s IFF criteria by using
an approximation of the potential fracture plane, and in this way, the computational effort
of the search is greatly reduced.

First, the expressions of three tractions in Equations (1)–(3) are simplified into a single
cosine function using basic trigonometric relations. In this way, the location, namely
potential angle listed in Table 1, of its maximum for each traction can be easily determined.
The Puck’s IFF criterion is a combination of these tractions and the authors believe these
angles can be used to approximate the global maximum due to that the fracture angle
will tend to the maximum location associated with one of the three tractions when the
traction is dominant with respect to the other two tractions. In practice, the simplest
approach described in [10] is to consider the potential angles as initial candidates for the
resulting global maximum and take the plane with the highest exposure as starting point
for a numerical search of EGSS proposed by Wiegand et al. [7]. According to Thomson,
this search algorithm can significantly reduce the computational effort and the result can
converge on the global maximum instead of the local ones.

3.3. IAAGSS Algorithm Proposed by Wang and Zhao

The search algorithm proposed by Wang and Zhao is an extension of the algorithm
proposed by Thomson et al. [10]. They take six angles, listed in Table 1, as initial candidates
based on the hypothesis that when one of |σn|max, |τnt|max, |τnl |max takes the dominant
position with respect to the others, the resulting fracture plane will tend to the angles
mentioned above. The difference between the two algorithms is that Wang takes both
maximum and minimum values of the three tractions into consideration. The next step is to
search the global maximum based on the six angles. In Wang’s previous literature [16], an
Analytical Approximation Golden Section Search (AAGSS) algorithm is proposed. AAGSS
takes the highest two exposures (from the six initial candidates) as starting points for GSS
algorithm. While IAAGSS improves the AAGSS algorithm and it takes the two planes
neighboring to the plane with the highest exposure as starting points for GSS algorithm.
The authors also conclude that IAAGSS can converge on the exact global maximum. In this
paper, only IAAGSS is utilized for comparison with the present algorithm.



Materials 2021, 14, 6325 6 of 14

Table 1. I itial search angles for SAA, IAAGSS.

Maxima Candidates Location

IAAGSS SAA

σn

θ1 = 1
2 arctan

(
2τ23

σ22−σ33

)
for (σ22 + σ33) > 0

or θ1 = 1
2 arctan

(
2τ23

σ22−σ33

)
+ 90◦ for τ23

σ22−σ33
< 0

θ1 = 1
2 arctan

(
2τ23

σ22−σ33

)
− 90◦ for τ23

σ22−σ33
≥ 0

θ1 = 1
2 arctan

(
2τ23

σ22−σ33

)

τnt

θ3 = 1
2 arctan

(
σ22−σ33

2τ23

)
θ4 = − 1

2 arctan
(

σ22−σ33
2τ23

)
θ5 = 90◦ + 1

2 arctan
(

σ22−σ33
2τ23

)
for σ22−σ33

2τ23
< 0

or θ5 = −90◦ + 1
2 arctan

(
σ22−σ33

2τ23

)
θ6 = 90◦ − 1

2 arctan
(

σ22−σ33
2τ23

)
for σ22−σ33

2τ23
< 0

or θ6 = −90◦ − 1
2 arctan

(
σ22−σ33

2τ23

)

θ2 = θ1 + 45◦
θ3 = θ1 − 45◦

τnl θ2 = −arctan
(

τ13
τ12

)
θ4 = −arctan

(
τ13
τ12

)

4. Proposed Changes for Searching the Fracture Angle

As mentioned in the introduction, the main purpose of this paper is to improve
reliability of the algorithm for determining the fracture angle and exposure value of
extended Puck’s 3D IFF criterion. The algorithm proposed in this paper is based on that
proposed by Thomson et al. [10]. The basic idea of this algorithm is using a semi-analytical
approximation to localize all the local maxima near the global maximum and then using
the GSS to determine the exact global maximum.

As discussed in Section 3.2, the three tractions in Equations (1)–(3) have to be simplified
into single cosines using the trigonometric relations listed below:

sin θ cos θ =
1
2

sin 2θ (14)

cos2 θ =
1 + cos 2θ

2
, sin2 θ =

1− cos 2θ

2
(15)

a cos θ + b sin θ =
√

a2 + b2 cos
(

θ − arctan
(

b
a

))
(16)

In this way, the expressions of the three tractions are given below:

σn = 1
2 (σ22 + σ33) +

√
1
4 (σ22 − σ33)

2 + τ2
23 cos

(
2θ − arctan

(
2τ23

σ22−σ33

))
τnt =

√
1
4 (σ22 − σ33)

2 + τ2
23 cos

(
2θ + arctan

(
σ22−σ33

2τ23

))
τnl =

√
τ2

12 + τ2
13 cos

(
θ − arctan

(
τ13
τ12

))
(17)

It should be noted that the expressions of τnt, τnl are not the same with those provided
in Thomson et al. [10] and Wang et al. [11,16]. Most probably, the trigonometric formulas are
used by the authors and there are misprints in their papers. After obtaining the simplified
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expressions of tractions, the locations of maximum and minimum can easily be defined,
listed as θ1 ∼ θ5 in Table 2. Some explanations should be stated here that the frequency of
τnl is 180◦, which is half of that of σn and τnt. While the fracture plane is searched within
the interval (−90◦, 90◦). Hence, only one potential angle, θ5, for τnl is obtained. For σn and
τnt, both the maximum and minimum locations are calculated. In this way, the exposure
curves are split in order to prevent the simultaneous occurrence of local maximum and
minimum values in the same interval, which may affect the following GSS algorithm for
search local maximum. It should be noticed that all these potential angles should be in
the range of (−90◦, 90◦), so the angles are calculated using different formulas according to
different situations.

Table 2. Initial search angles for present algorithm.

Extreme Angles Location Newly Added Angles Location

θ1

1
2 arctan

(
2τ23

σ22−σ33

)
for (σ22 − σ33) > 0

or 1
2 arctan

(
2τ23

σ22−σ33

)
+ 90◦ for τ23 > 0

1
2 arctan

(
2τ23

σ22−σ33

)
− 90◦ for τ23 ≤ 0

θ6 {θ3, θ5}

θ2
θ1 + 90◦ for θ1 < 0◦

θ1 − 90◦ for θ1 ≥ 0◦
θ7

{θ4, θ5}

θ3

1
2 arctan

(
σ22−σ33

2τ23

)
for τ23 < 0

or 1
2 arctan

(
σ22−σ33

2τ23

)
+ 90◦ for (σ22 − σ33) < 0

1
2 arctan

(
σ22−σ33

2τ23

)
− 90◦ for (σ22 − σ33) ≥ 0

θ8
{θ1, θ3}

θ4
θ3 + 90◦ for θ3 < 0◦

θ3 − 90◦ for θ3 ≥ 0◦
θ9

{θ1, θ4}

θ5 arctan
(

τ13
τ12

)
θ10 {θ1, θ5}

However, in actual cases, the final results are related to the interaction of the three
tractions and the global maximum lies in between the angles for almost all the state cases.
Hence, several initial candidates, θ6 ∼ θ10, should be added in consideration of the stress
weights. An operator, {}, is defined here to calculate the new added angles. An illustrative
example for {θ1, θ3} is shown in Equation (18). After the operator calculation, the newly
added angle should be transferred to range (−90◦, 90◦) according to the frequency of 180◦

if it is out of range.

{θ1, θ3} =



(
θ1
∣∣σmax

n
(∣∣1/RAt

⊥ − p
∣∣+ p

)∣∣+ θ3τmax
nt /RA

⊥⊥
)
/
(∣∣σmax

n
(∣∣1/RAt

⊥ − p
∣∣+ p

)∣∣+ τmax
nt /RA

⊥⊥
)

for |θ1 − θ3| ≤ 90◦

(
(θ1 + 180◦)

∣∣σmax
n

(∣∣1/RAt
⊥ − p

∣∣+ p
)∣∣+ θ3τmax

nt /RA
⊥⊥
)
/
(∣∣σmax

n
(∣∣1/RAt

⊥ − p
∣∣+ p

)∣∣+ τmax
nt /RA

⊥⊥
)

for |θ1 − θ3| > 90◦ and θ1 < θ3

(
θ1
∣∣σmax

n
(∣∣1/RAt

⊥ − p
∣∣+ p

)∣∣+ (θ3 + 180◦)τmax
nt /RA

⊥⊥
)
/
(∣∣σmax

n
(∣∣1/RAt

⊥ − p
∣∣+ p

)∣∣+ τmax
nt /RA

⊥⊥
)

for |θ1 − θ3| > 90◦ and θ1 > θ3

(18)

Here:
p = max

(
p⊥⊥/RA

⊥⊥, p⊥‖/RA
⊥‖

)
(19)

In order to test the reliability of the fracture angle search algorithm, Python scripts
are used to implement all the algorithms due to its outstanding performance in numerical
calculation. The process of RSAA for extended Puck’s IFF criterion is shown in Figure 2.
Inputs should be generated randomly in stage-1 for the material properties and stress
states, ranges of which are shown in Table 3. The types of composites include the semi-
brittle materials with YC/YT ∈ (1, 2.5), brittle materials with YC/YT ∈ (2.5, 3.45) and
intrinsically brittle materials with YC/YT > 3.45 according to Gu and Chen [4]. Each of
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stress components are set to be in the range of [−100, 100] MPa which can represent all the
possible stress state combinations. All the strength and stress parameters are randomly
selected from the given ranges. It should be mentioned that the value of stress component
may be greater than the corresponding strength and thus may lead to the stress exposure
f IFF greater than one. However, f IFF and the stress component combination are linearly
positively correlated, thus the location with the highest exposure, namely the fracture
plane, remains the same. In step 3, the related parameters required in extended Puck’s
IFF criterion are determined based on the material types using equations in Section 2.2.
In stage 2, RSAA is implemented to find the angle that makes the exposure value f IFF
highest in the range between−90 and 90 degrees. In the first two steps, the exposure values
of the ten initial supporting points, θ1 ∼ θ10, are calculated, and then select the highest
exposure, the value of which is assumed to be f0. In step 3, to localize the potential angle
ranges that contain the global maximum, the supporting points whose exposures greater
than 0.96 f0 are recorded. In step 4, each supporting point, recorded in step 3, together
with the two neighboring points form two search ranges. Then, all local maxima can be
found using GSS algorithm. At last, global maximum and corresponding fracture angle are
determined by comparing the aforementioned local maxima. An illustration example for
present algorithm is shown in Figure 3. Exposure value greater than 0.96 f0 is depicted in
the gray area. Ranges selected for GSS algorithm are depicted in light blue area.

Table 3. Strength ranges and stress ranges for random strength-value-stress-state combinations.

Material Properties Range Stress Components Range
YT 10 σ22 [−100, 100]
YC [YT, 5YT] σ33 [−100, 100]
S12 [0.5YT, 4YT] τ12 [−100, 100]
p⊥‖ [0.15, 0.35] τ23 [−100, 100]

τ13 [−100, 100]

Monte Carlo simulations were implemented in Python to obtain the characteristics
due to the complexity of the Puck’s criterion and stress state. To verify the accuracy of
the present algorithm, outcomes obtained from SRGSS, SAA, and IAAGSS are compared
with the outcomes obtained from Puck’s original algorithm (SSA) with an accuracy of 0.01◦

regardless of the search efficiency under the same strength-stress combinations. A total of
100,000,000 combinations were tested.
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5. Results and Discussions
5.1. Reliability of the Existing Algorithms
5.1.1. SRGSS Algorithm

For SRGSS algorithm, its main prerequisites are those that the stress exposure curves
have at most three local maxima and the minimum distance between two adjacent maxima
is no less than 25◦. Besides, the method of localizing the local maxima is to compare the
supporting points and obtain the points with two smaller neighbors. However, after thirty
million random tests, the results show that the curves may have up to four local maxima
and the minimum distance can be lower than 25◦ (minimum distance is about 3◦ based on
our results). Details of the numbers of local maxima are listed in Table 4.

Table 4. Number of the local maxima and their number of occurrences after twenty-seven
million tests.

Number of Tests
Number (n) of Local Maxima

n = 1 n = 2 n = 3 n = 4

30,000,000 12,395,304 17,180,133 420,194 4369

Figure 4 provides an illustration example that the SRGSS finally locates the local
maximum instead of the global maximum. The stress exposure values f at supporting
points A, B, C, D, and E are 5.3519, 5.3918, 5.3778, 5.3727, and 5.1053 respectively. It is
obvious that fC > fD > fE. Hence, no local maximum exists in range (C, E) according to
SRGSS. Therefore, the search range is (A, C) and it results in the local maximum using
GSS algorithm. Actually, exposure values obtained from SSA and SRGSS algorithms are
5.4027 and 5.3941 respectively. Besides, there is another aspect which may also not be able
to determine the global maximum. Since the minimum distance between two adjacent
supporting points could be smaller than the conclusion from Schirmaier et al. [9], two local
maxima may exist in one search range and the same problem may arise using GSS as is
discussed by Schirmaier et al.
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5.1.2. Semi-Analytical Algorithm Proposed by Thomson et al.

The SAA may locate the incorrect global maximum, even the stress exposure curve
has only one local maximum and an illustration example is shown in Figure 5. It should
be stated that in the definition the θ1 may locate the minimum of σn in certain cases
and we have used the form of θ1 proposed in this paper, hence it can exactly locate the
maximum of σn in all stress states. Other initial candidates such as θ4 are also modified
based on our results. Another point that should also be mentioned here is that according
to Thomson et al., the four initial candidates are calculated and take the plane with the
highest exposure as the starting point for a numerical search of EGSS described in [7].
However, an ending point is also required to implement the EGSS algorithm. Hence, we
take the planes with the highest two exposures as starting and ending intervals for EGSS,
the method of which is also conducted in literature [17], which has used the algorithm
proposed by Thomson et al. [10].

As is observed from the figure, the real global maximum is not in the range (A, B), the
highest two exposures. The EGSS algorithm is then implemented and after several times
GSS, the three points are determined for IPI, which results in the incorrect global maximum.
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5.1.3. IAAGSS Algorithm

The IAAGSS algorithm is an extension of SAA and used the initial candidates related
to the three tractions. Similarly, the initial angles may not be capable to locate the max-
imum or minimum of the tractions or may be outside the range of (−90◦, 90◦). So, the
modifications have been made so as to achieve what the authors expect. An illustration
example is depicted in Figure 6. The stress exposure values at point A and B are 3.3958
and 3.3756 respectively. According to IAAGSS, candidate at point A is with the highest
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exposure and the range used for GSS is depicted in blue region in Figure 6. Obviously, a
local maximum is obtained rather than a global one.
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5.2. Comparison between the Present and Existing Algorithms

In this part, the final results, including the fracture angle and stress exposure value,
are compared using present and the existing algorithms. The referenced results, namely
the real fracture angle and exposure value, are determined using SSA. Thus, the distance
(θd) between real fracture angle (θr) and the angles obtained from different algorithms (θa)
and the relative error (r f ) between the real exposure value ( fr) and exposures obtained
using different algorithms ( fa) are defined as:

θd =

{
|θa − θr| if |θa − θr| ≤ 90

◦

180
◦ − |θa − θr| if |θa − θr| > 90

◦ (20)

r f =
| fa − fr|

fr
(21)

The angle distance and the relative error of exposure value obtained from the SSA
and other algorithms were compared. Considering that the results from the SSA may not
be the exact global maximum due to the incremental step of 0.01◦, angle distances larger
than 1◦ and relative errors of exposure value larger than 0.01% are shown in Tables 5 and 6.
The angle distance and relative error are classified into four separate groups. It should be
highlighted that the RSAA has obvious advantages over other algorithms in predicting
both the fracture angle and related exposure value. The incorrect rates of the RSAA for
angle distance and exposure relative error are only 5.7% and 1.74%, respectively, of those
of SRGSS. Both the RSAA and IAAGSS are extended from the SAA, but the RSAA can
correctly predict the results with a probability of over 99.999%.

Table 5. Frequency of occurrence: angle distance θd (◦).

Angle Distance (◦) 1–5 5–10 10–20 >20

RSAA 1346 568 207 1742
SRGSS 8584 16,339 29,301 13,609
SAA 5,481,459 541,710 486,182 8,409,864

IAAGSS 9025 19,874 106,336 7,002,295
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Table 6. Frequency of occurrence: relative error of exposure value r f (%).

Relative Error (%) 0.01–0.1 0.1–1 1–10 >10

RSAA 471 132 0 0
SRGSS 29,884 5884 251 21
SAA 7,286,700 6,945,001 3,743,293 496,285

IAAGSS 1,105,654 3,671,127 2,100,743 571

It can be seen from Table 5 that there is still a small probability that the RSAA will miss
the accurate fracture angle with angle distances greater than 1◦. Nonetheless, the relative
error of stress exposure value shows no case greater than 1% for the RSAA (actually, the
maximum is 0.27%). This phenomenon is attributed to the fact that the stress exposure
curve may have two or more very close local maxima in certain cases even though the
corresponding angles may vary obviously (e.g., in the uniaxial compression stress state,
the exposure curve has two identical local maxima, but the corresponding fracture angles
are 53◦ and −53◦).

The efficiency of all the algorithms including the Puck’s original algorithm (SSA)
under same strength-value-stress-state combinations with accuracy of 0.1◦ is compared.
The cost time for ten thousand random tests is listed in Table 7. It can be seen the cost time
of present algorithm is only about 11% of cost time of SSA. However, the calculation effort
is larger than those for SRGSS, SAA, and IAAGSS, but present algorithm has the essential
advantage of giving reliable outcomes. In general, RSAA is adequate for predicting the
fracture angles and exposures for the extended Puck’s 3D IFF criterion and it is a balance
of reliability and efficiency.

Table 7. The cost of calculation of different algorithms.

Algorithms SSA SRGSS SAA IAAGSS RSAA

Total time (s) 151.81 7.56 1.25 3.97 17.05
Relative time (%) 100 4.98 0.82 2.62 11.23

5.3. Application of Present Algorithm in FE Analysis

The present algorithm is implemented in the FE analysis using the material subroutine
UMAT in ABAQUS standard. Considering the predicted strengths of multidirectional
laminates depend much on the degradation model, UD composites are utilized in this
part. A cubic FE model is established to represent the representative volume model of
UD composites and x-dir denotes the longitudinal direction, which is shown in Figure 7d.
Different types of UD composite materials including semi-brittle [18], brittle [19], and
intrinsically brittle [20] materials are considered. Biaxial strength properties in σy − τxy
stress space are obtained by applying periodical boundary conditions to FE model. Details
for RVE model, periodical boundary conditions, and loadings can refer to our previous
literature [21]. Figure 7a–c indicates that the FE results using present algorithm correlate
well with the theoretical results using SSA algorithm with accuracy of 0.1◦.

It should be mentioned that the FE results using present algorithm and SRGSS al-
gorithm are the same for the above simulation. The reason of this phenomenon can be
attributed to that the stress states of the FE model are very simple, but the stress states can
be significantly complicated and differences may appear between different algorithms for
laminate and fabric composite material. If the damage location and the related criteria value
cannot be accurately determined, it will greatly affect the prediction of strength property
and the subsequent damage evolution process. However, as is discussed in Section 5.2,
these stress states exist and the present algorithm shows superiority than other algorithms.
It can be concluded that using the present algorithm can obtain the accurate results with
higher probability compared with others.
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6. Conclusions

In the present work, the extended Puck’s 3D IFF criterion is utilized for verifying the
reliability of the present algorithms for determining the fracture angle and maximum stress
exposure value. The algorithm in this paper is based on the SAA proposed by Thomson
et al. and the basic idea is to use semi-analytical approximation to localize the local maxima
near global maximum and then obtain the global maximum using GSS. Thus, ten initial
candidates are required for the present algorithm.

The reliability and shortcomings of the existing algorithms are discussed and coun-
terexamples of their algorithms are plotted for illustration. Present algorithm avoids these
shortcomings. One hundred million strength-stress combination cases were tested to verify
the reliability of the existing algorithms. Statistical results indicate that the RSAA is much
more reliable than SRGSS, the SAA, and IAAGSS, which make it a practical alternative for
the application of Puck’s 3D failure criterion in composite analysis. The computational
effort is larger than the other algorithms, however, it is only about one-tenth the time cost
of the SSA. Present algorithm is implemented in ABAQUS and biaxial strength properties
in σy − τxy stress space are calculated, which are in good agreement with theoretical re-
sults using SSA. In general, present algorithm is a balance of reliability and efficiency and
adequate for evaluating the Puck’s 3D IFF criterion.
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