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Abstract: Dielectric elastomers (DE) are novel composite architectures capable of large actuation
strains and the ability to be formed into a variety of actuator configurations. However, the high
voltage requirement of DE actuators limits their applications for a variety of applications. Fiber
actuators composed of DE fibers are particularly attractive as they can be formed into artificial muscle
architectures. The interest in manufacturing micro or nanoscale DE fibers is increasing due to the
possible applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles, and
sensors. Drawing, self-assembly, template-direct synthesis, and electrospinning processing have been
explored to manufacture these fibers. Electrospinning has been proposed because of its ability to
produce sub-mm diameter size fibers. In this paper, we investigate the impact of electrospinning
parameters on the production of composite dielectric elastomer fibers. In an electrospinning setup,
an electrostatic field is applied to a viscous polymer solution at an electrode’s tip. The polymer
composite with carbon black and carbon nanotubes is expelled and accelerated towards a collector.
Factors that are considered in this study include polymer concentration, solution viscosity, flow rate,
electric field intensity, and the distance to the collector.

Keywords: composites; electrospinning; dielectric elastomers; fibers; actuators

1. Introduction

Dielectric elastomers (DE) are novel composite architectures capable of large actuation
strains and the ability to be formed into a variety of actuator configurations. However,
the high voltage requirement of DE actuators limits their applications for a variety of
applications. Fiber actuators composed of DE fibers are particularly attractive as they
can be formed into artificial muscle architectures to realize high actuation forces and
potentially large displacements [1]. DE fibers have several important advantages with
respect to potential device concepts using artificial muscles. These include rapid response
time (on the scale of millisecond), the ability to hold strains under DC activation, can
induce relatively large actuation forces, have high mechanical energy densities, and that
they can be operated at room temperature for large numbers of cycles [2,3]. The interest
in manufacturing micro or nanoscale composite fibers is increasing due to the possible
applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles,
and sensors [4–13]. Drawing, self-assembly, template-direct synthesis, and electrospinning
processing have been explored to manufacture these fibers. Electrospinning has been
proposed because of its ability to produce sub-mm diameter size fibers [14–16]. The
electrospinning technique was previously used to produce nanofibers with a diameter less
than 40 nm [17], and uniaxially aligned nanofibers were fabricated with a variation of the
electrospinning process [18].
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Numerous studies have been made focusing on the mathematically modeling of
the electrospinning process with the goal of getting in-depth insights on the factors that
control the electrospinning process [19–22]. A boundary element approach for simulation
of thin, charged jets was proposed for computation of electrostatic interactions of the jet
and electrodes. The short-range and long-range electrostatic forces were evaluated and
compared with experimental results [23]. A discrete finite difference bead model has been
proposed to model the bending instability in a polymeric viscoelastic jet [24]. Previously
a mathematical approach was used to model the secondary electrostatic field created
by a finite length hollow cylinder in the electrospinning process [25]. Artificial neural
network and response surface methodology have also recently been proposed based on the
Box-Behnken design to produce the fiber with the minimum diameter. In this approach,
multilayer perceptron neural networks are trained to predict the polycaprolactone fiber
diameter [26]. Recent approaches have also looked to include the effect of air drag and
gravity forces [27], and solvent evaporation [28,29].

In this paper, we investigate using theoretical and experimental aspects the parameters
that can be modulated during the production of dielectric elastomer fibers using the
electrospinning process. In an electrospinning setup, an electrostatic field is applied to a
viscous polymer solution at an electrode’s tip. The polymer is expelled and accelerated
towards a collector. Figure 1 shows an illustration of a typical electrospinning jet trajectory.
Factors that are considered in this study include polymer concentration, solution viscosity,
flow rate, electric field intensity, and the distance to the collector.
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2. Materials and Methods

Three polymers, A85 (Huntsman, The Woodlands, TX, USA, Irogran A85-4350 Thermo-
plastic polyurethane), SBS (Sigma-Aldrich, St. Louis, MO, USA, Polystyrene/polybutadiene,
30% polystyrene), SIS-17 (Sigma-Aldrich, St. Louis, MO, USA, Polystyrene/polyisoprene,
17% polystyrene), in addition of two solvents, DMF (Alfa Aesar, Haverhill, MA, USA,
A13547 N, N-Dimethylformamide, 99%) and DCE (Alfa Aesar, Haverhill, MA, USA, A12775
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1,2-Dichloroethane, 99+%) were examined in this study. Cabot VXC72R (Cabot, Boston,
MA, USA, VXC72R) was used as conductive filler. A85 dissolves in DMF while SBS and SIS-
17 dissolve in DCE with negligible mutual solubility. The viscosity profile for SBS is shown
in Table 1 as measured by a spindle-type viscometer (Cole-Parmer, Vernon Hills, IL, USA,
98965). A custom electrospinning setup for spinning multilayer fibers was constructed and
is shown in Figure 2. The setup consists of 1–3 syringe pumps (Southpointe Surgical, Coral
Springs, FL, USA, NE-300), a custom-built rotational drum, a high voltage power supply
(Acopian, Easton, PA, USA, P030HP2), and coaxial syringe (rame-hart, Succasunna, NJ,
USA, 100-10-TRIAXIAL). The reason this material combination was selected was because it
has sufficient conductivity and a high strain to failure which is important for the application
considered. Other material combinations examined had extremely high resistances. Stable
parameters for electrospinning conductively filled polymers are a distance between needle
and collector of 2.5 cm, pump flow rate vs. cross-section of 2–4 mL/h, spinning voltage of
5–10 kV, and linear collector feed rate of 400–600 mm/s. As seen in Figure 3, the spun fiber
is very fine (around 2 µm) and often meshed/tangled together. A summary of utilized
parameters is shown in Table 2.

Table 1. Viscosity measurements for unfilled SBS solution and filled multiwalled carbon nanotubes
(MWCNT) loaded A85 solution, showing shear-thinning behavior for unfilled and shear-thickening
behavior for filled solutions.

Shear Rate (mm/s) SBS Viscosity (cps) A85 + 30% MWCNT
Viscosity (cps)

0.196 14080 4330

0.392 14080 5320

0.982 13620 5990

1.96 10740 7300

3.92 9960 9560

7.85 8960 16220

19.6 8680 16890

Table 2. Parameters used to electrospun of A85 + 10 wt.% Carbon black fiber (needle diameter: 2 mm).

Concentration of
Solid in Solvent

Distance between
Needle and Collector

(cm)

Pump Flow
Rate (mL/h) Spinning Voltage (kV) Diameter Range (µm)

30 wt.% 2.5 2 5 1.5–2.6

30 wt.% 2.5 2 10 1.3–2.9

30 wt.% 2.5 4 5 1.5–2.8

30 wt.% 2.5 8 10 1.3–2.9

As discussed in the above electrospinning simulation section, there are few key param-
eters that need to be adjusted to produce the desired fiber; these include the variable speed
collector drum assembly, triaxial needle, and three syringe pumps. Figure 3 shows the
single layer of A85 + 10 wt.% Carbon black fiber that is electrospun by the parameters as in
Table 2. For this set of experiments, concentration of solid in solvent and distance between
needle and collector were fixed; the pump flow rate and spinning voltage varied to check
the produced fiber diameter. Figure 4a shows the electrospun A85 fiber within 1–3 µm
and as seen in Figure 3, we showed that the fiber can be tangled together and difficult to
extract individual free-standing fibers following electrospinning, thus the fiber is difficult
to handle with our current capabilities. For extruded A85 fibers, as shown in Figure 4b,c,
the diameter is quite uniform (±2.5%) and easy to handle. As shown in Figure 4e–g of



Materials 2021, 14, 6288 4 of 18

a few cross-section SEM images of two-layer fibers that have large deformation on each
layer, this deformation makes the analysis of the layers more difficult. The DE fibers were
tested mechanically, and we achieved 5.2 to 7.8 MPa in tension strength with a stretch ratio
between 1.8 and 2.2.
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Figure 3. Micro image of electrospun single layer of fiber: A85 elastomer +10% carbon black
illuminated by UV light, with different magnification, fiber diameter ranges from 1.3–2.9 µm at the
following processing parameters (a) 2 mL/h at 5 kV, (b) 2 mL/h at 10 kV, (c) 4 mL/h at 5 kV, and
(d) 4 mL/h at 10 kV.



Materials 2021, 14, 6288 6 of 18

Materials 2021, 14, x FOR PEER REVIEW 5 of 19 
 

 

As discussed in the above electrospinning simulation section, there are few key pa-
rameters that need to be adjusted to produce the desired fiber; these include the variable 
speed collector drum assembly, triaxial needle, and three syringe pumps. Figure 3 shows 
the single layer of A85 + 10 wt.% Carbon black fiber that is electrospun by the parameters 
as in Table 2. For this set of experiments, concentration of solid in solvent and distance 
between needle and collector were fixed; the pump flow rate and spinning voltage varied 
to check the produced fiber diameter. Figure 4a shows the electrospun A85 fiber within 
1–3 μm and as seen in Figure 3, we showed that the fiber can be tangled together and 
difficult to extract individual free-standing fibers following electrospinning, thus the fiber 
is difficult to handle with our current capabilities. For extruded A85 fibers, as shown in 
Figure 4b,c, the diameter is quite uniform (±2.5%) and easy to handle. As shown in Figure 
4e–g of a few cross-section SEM images of two-layer fibers that have large deformation on 
each layer, this deformation makes the analysis of the layers more difficult. The DE fibers 
were tested mechanically, and we achieved 5.2 to 7.8 MPa in tension strength with a 
stretch ratio between 1.8 and 2.2. 

 
Figure 4. SEM images of (a) solution electrospun neat A85 fiber; extruded neat A85 fiber, (b) low magnification, and (c) 
high magnification, (d) 2-layer fiber with A85 core with carbon-black (e–g) examples of cross section that shows large 
deformation due to compression from the razor blade. 

Figure 4. SEM images of (a) solution electrospun neat A85 fiber; extruded neat A85 fiber, (b) low magnification, and
(c) high magnification, (d) 2-layer fiber with A85 core with carbon-black (e–g) examples of cross section that shows large
deformation due to compression from the razor blade.

3. Modeling of Electrospinning Process

In this study, we use an open-source simulation package JETSPIN [30] to understand
the angular aperture, fiber radius, and their dependency on parameters, such as applied
electric voltage, viscosity, and distance at the collector. The model implemented in JETSPIN
is a discrete Lagrangian model and provides a compromise of efficiency and accuracy.
Here the jet is modeled as a body constituted by a viscoelastic Maxwell fluid, and it is
represented as a series of discrete elements (beads). Each ith bead has a mass mi and charge
qi Stress σi on the ith, dumbbell which connects the ith bead with the bead i + 1 is given by
the equation [30]:

dσi
dt

=
G
li

dli
t
− G

µ
σi (1)

where G is the elastic modulus, µ the viscosity of the fluid jet, and t is the time. The length
li has computed as the mutual distance between ith bead and its previous bead. Various

forces are exerted at the ith bead, including the viscoelastic force
→
f ve,i, the surface tension

force
→
f st,i, the electric force

→
f el,i, the net Coulomb force

→
f c,i, gravity force

→
f g,i, while the
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air drag is modeled as a dissipative force
→
f diss,i and a random force

→
f rand,i. The viscoelastic

force is the force pulling bead i back to bead i − 1, and towards bead i + 1 is given by

→
f ve,i = −πa2

i σi
→
t i + πa2

i+1σi+1
→
t i+1 . (2)

where ai is the cross-sectional radius of the filament at the i-th bead and
→
t i is the unit

vector pointing bead i from bead i − 1. The force acting to restore the rectilinear shape of
the bending part of the jet is:

→
f st,i = κiπ

(
ai + ai+1

2

)2
α
→
c i (3)

where α is the surface tension, κi is the local curvature, and
→
c i is the unit vector pointing

toward the center of the local curvature from the bead i. The force due to the electric
potential between the spinneret and a conducting collector located at a distance h is
→
f el,i =

eiV0
h
→
z and

→
z is the unit vector pointing toward the collector from the spinneret.

The net Coulomb force acting on the i-th bead from all the other beads is given by

→
f c,i =

n

∑
j=1, j 6=i

qiqj

R2
ij

→
u ij (4)

Rij =
∣∣∣→x i −

→
x j

∣∣∣2 and
→
u ij is the unit vector point to the i-th bead from j-th bead. The

force due to gravitational acceleration is
→
f g,i = mig

→
x i. The dissipative force is the sum of

the longitudinal force
→
f air,i and the lateral force

→
f li f t,i

→
f diss,i =

→
f air,i +

→
f li f t,i (5)

where
→
f air,i = −miγil0.905

i v1.19
t,i

→
t i−1, with γi = 0.65π

ρa
mi

(
2
νa

)−0.81
l0.095
i a0.19

i , ρa the air

density, νa the kinematic viscosity, vt =
(→

v −→v f

)
·
→
t representing the tangent component

of the total velocity with respect to the air flow velocity
→
v f for a jet traveling with velocity

→
v and

→
f li f t,i = −liκiρav2

t,iπ
(

ai+ai−1
2

)2→
c i. The random force,

→
f rand,i =

(
2m2

i Dv
)1/2 →

η i(t),

where Dv is a generic diffusion coefficient in velocity space,
→
η i(t) is a 3D vector obtained

from the temporal derivative of ς(t) a stochastic process with stationary independents
increments. The combined action of these forces governs the elongation of the jet according
to Newton’s equation providing a non-linear Langevin-like stochastic differential equation:

mi
d
→
v i

dt
=
→
f ve,i +

→
f st,i +

→
f el,i +

→
f c,i +

→
f g,i +

→
f diss,i +

→
f rand,i (6)

where
→
v i is the velocity of the i-th bead and it satisfies the kinematic relation, d

→
r i

dt =
→
v i

and
→
r i is the position vector of the i-th bead. This set of motion equations governs the time

evolution of the system. The model also includes the fast-mechanical oscillations of the
spinneret adding small perturbations to xn, yn coordinates of the nozzle. Given the initial
position of the nozzle with the initial phase ϕ and the amplitude of the perturbation A

xn = A cos ϕ, yn = A sin ϕ (7)
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The equations of motion for the nozzle bead are

dxn

dt
= −ωxn,

dyn

dt
= ωyn (8)

where ω is the angular frequency. In this model, the simulation starts with only two bodies,
a single mass-less point fixed at z = 0, representing the spinneret nozzle, and a single bead
modeling as a jet segment of mass mi and charge ei of length li = lstep. The initial bead
is assumed to have a cross-section radius a0, defined as the filament radius at the nozzle
before the stretching starts. In his simulation, a0 is an input parameter, and it is directly
related to the nozzle-radius. To integrate the homogeneous differential equations of motion,
the time is discretized as ti = t0 + i∆t. The software has three different schemes for the
integration: Euler, Heun, and fourth-order Runge–Kutta. They note a general agreement
between simulations and experimental results as reported in [31]. In [27],the dynamics
of electrified polymer jets under different conditions of air drag. Here, the controlled gas
counter-flow might decrease the mean value of the fiber cross-sectional radius.

4. Results and Discussion

The electrospinning has two stages: the uniaxial elongation of the extruder polymer jet
and the second one characterized by a bending instability related to the angular aperture θ.
θ increases the path traveled (see Figure 1), and with this, the fiber radius becomes smaller.
We show the effect of the distance at the collector, viscosity, the applied voltage on the
fiber radius, and angular aperture in the Figures 4–10. We performed simulations with
properties of the elastomer and modeling parameters listed in Table 3. In the simulation we
are assuming that the elastomer has a controlled viscosity between 2 Pa and 20 Pa. Applied
voltage, distance at the collector and nozzle radius have no such restriction and the values
used were based on our test setup.

Table 3. Baseline simulation parameters used in the electrospinning process.

Young’s modulus (G) 1.32 MPa Applied voltage V0 6 kV

Distance at the collector (h) 10 cm Viscosity µ 2.0 Pa·s

Density mass ρ 1030 kg/m3 Fiber radius at the nozzle, a0 40 microns

Nozzle radius, R 200 microns Frequency perturbation f 104 s−1

Air density ρa 1.21 kg/m3 Amplitude perturbation A 10−3

Kinematic viscosity νa 0.151 cm2/s Surface perturbation α 21.1 mN/m

4.1. Effect of Collector Distance

We analyzed first the effect of distance at the collector in Figure 5. The angular aperture
in Figure 5a shows three stages: at the first stage, the angle is small and increases slowly,
the second stage occurs when the jet touches the collector, then the angle has a significant
increase, and the third stage, the angle converges to a unique value. As the distance at
the collector increases, variations in the angular aperture are present. Angular aperture
increases as a function of the distance at the collector, and fiber radius decreases as a
function of the distance at the collector (see Figure 5b) as it is expected. For a distance
larger than 20 cm the changes in the fiber radius are small, i.e., after 20 cm, there is no
significant dependence on the placement of the collector. The time to reach the collector
increases as the distance increases.

4.2. Effect of Viscosity and Applied Voltage

Figure 6a,b show the fiber radius against time for different viscosity values and
applied voltage, respectively. Fiber radius increases as a function of the viscosity and
voltage applied. The baseline value for viscosity in the modeling was 2 Pa, but when we
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increased this to 4, 6, and 8 Pa, we show that the rate of change in fiber diameter is reduced
as the viscosity is increased. Viscosity also has a more significant influence at lower levels
since the change can be reaching a value greater than 30 µm in fiber radius while changing
the collector distance and applied voltage enables the radius to reach almost 10 µm under
fixed viscosity of 2 Pa. Since the fiber radius size varies smoothly with the applied voltage,
the applied voltage could be a key parameter for the fine control of the fiber radius size.

Materials 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

on the fiber radius, and angular aperture in the Figures 4–10. We performed simulations 
with properties of the elastomer and modeling parameters listed in Table 3. In the simu-
lation we are assuming that the elastomer has a controlled viscosity between 2 Pa and 20 
Pa. Applied voltage, distance at the collector and nozzle radius have no such restriction 
and the values used were based on our test setup. 

 
Figure 5. (a) Angular aperture versus time and (b) fiber radius versus time for different values of 
the collector’s distance under parameters given in Table 3. The first hitting time occurs when the jet 
touches the collector. 

Figure 5. (a) Angular aperture versus time and (b) fiber radius versus time for different values of
the collector’s distance under parameters given in Table 3. The first hitting time occurs when the jet
touches the collector.



Materials 2021, 14, 6288 10 of 18Materials 2021, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. (a) Fiber radius versus time for different values of viscosity and (b) fiber radius versus 
time for different values of applied voltage under parameters given in Table 3. 

Figure 6. (a) Fiber radius versus time for different values of viscosity and (b) fiber radius versus time
for different values of applied voltage under parameters given in Table 3.

4.3. Effect of Air Drag on Polymer Jet

In the next simulations (Figure 7), we added the drag effects of a gas flow with the air
density and viscosity in Table 3 and three airflow velocities, v f = −20, 0, 20 m/s. We need
to point out that negative velocity indicates that the gas flow is in the opposite direction
of the jet and positive velocity that it is the same direction of the jet. The random force
added is modeled with an amplitude of one. Fiber radius is thicker if the airflow has a
velocity that is different from zero. If it is in the same direction as the jet, the reduction of
the fiber radius is smaller; moreover, the fiber radius variations are also smaller. With a
velocity equal to zero, the fiber radius is between 8 and 9 microns which is larger than those
without the air drag effects. This difference is caused by the addition of the air density and
viscosity in the current simulations.
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Variations of angular aperture and fiber radius over time under aerodynamic drag
effects are investigated in the next set of simulations. These changes are more significant
when the velocity is negative. The variations affect the fibers’ deposition. In Figure 8, we
show the coordinates x and y where the jet bead hits the collector. In the case of negative
velocity flow, v f = −20 m/s, the deposition is quite irregular, and the area where the
fibers are deposited is more extensive than in the other two cases. In the case without flow
velocity (v f = 0 m/s), the irregular deposition is concentrated in a smaller area.
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electrospinning process with a small nozzle radius. We need to point out that this modeling
approach is more appropriate for qualitative description than an exact reproduction of the
experiments, and it does not include Taylor cone effects (i.e., the distortion of the droplet
into a conical shape due to accumulation of charge). It means that in JETSPIN software, the
initial jet cross-section at the nozzle (a0) is an input parameter instead of following other
models in equating it to the nozzle radius, R. Since R is usually larger than a0, the JETSPIN
software developers recommend setting a0 = R/5, and we have adopted this empirical
reduction value for a0.
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4.5. Effect of AC Electrospinning

In this study, we also considered the effect of AC electrospinning under four types of
external electric fields: a static electric potential, a rectangular wave (Figure 10) oscillating
with frequency fs oriented along the z-axis as expressed in Equation (9) in terms of x(t) =

∏
(

t
τ −

1
2

)
that denotes a unit rectangular pulse starting at the origin with a width of

τ = 1
2 fs

where ∏(T) =

{
1 |T| < 1

2

0 otherwise
. The rectangular waveform is smoothed with

rising and falling edges in Equation (10) to account for the resistance–capacitance (RC)
relaxation of a cable in response to x(t) which is replaced by the relaxed response y(t) =[
1− e−

t
RC

]
x(t) + e−

t
RC

[
e

τ
RC − 1

]
x(t− τ) (see Figure 9). Equation (11) includes a rotating

electric field with the frequency fs on the transverse plane

E =

(
0, 0, Ez

∞

∑
n=0

x
(

t− n
fs

) )
(9)

E =

(
0, 0, Ez

∞

∑
n=0

y
(

t− n
fs

))
(10)

E =
(
Ex sin(2π fst) , Ey cos(2π fst) , Ez

)
(11)

The effect of the rotating electric field has been demonstrated previously [32]. In
Figure 11a, we show the fiber radius of the jet versus time for these four different electric fields
with fs = 0.5× 103 Hz, relaxation time constant RC = 0.2 ms, and Vx = 6 kV, Vy = 8 kV,
Vz = 9 kV and h = 10 cm. For rectangular wave fields, the fiber radius presents significant
variations, but these variations are not present in the case of a rotating electric field. Moreover,
the fiber radius is smallest when a rotating electric field is used, and the biggest radius is for
the static case. Figure 11b shows the fiber radius against time for different values of frequency.
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There is no monotonic tendency for the variation of the fiber radius with the frequency fs.
For example, at fs = 0.2× 103, 10× 103 and 20× 103 Hz the fiber radius exhibits significant
variations over the observation window that contrasts with the other three frequencies at
which almost constant fiber radii can be obtained within a short period. The smallest fiber
radius can be reached for the case fs = 0.5× 103 Hz while the largest fiber radius can be
attained for the case fs = 10× 103 Hz.
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4.6. Correlation to Experimental Observations

The key parameters (such as distance at the collector, viscosity, the applied voltage, and
needle diameter) identified by the simulation were adjusted to produce significant quanti-
ties of fiber using the 3 polymers examined, A85 (Huntsman Irogran A85–4350, Thermo-
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plastic polyurethane), SBS (Sigma-Aldrich Polystyrene/polybutadiene, 30% polystyrene),
SIS-17 (Sigma-Aldrich Polystyrene/polyisoprene, 17% polystyrene) and the two solvents,
DMF (N,N-Dimethylformamide) and DCE (1,2-Dichloroethane). The simulations allowed
us to optimize the jet spinning process to produce more desirable fiber features and reduced
the experimentation required. Experimental observations confirmed the results obtained
from the simulation on the impact of the voltage applied, needle diameter, and flow rate.
The simulations from air drag also show how the air velocity can significantly impact the
radius of the fiber and the location the fiber hits the collector plate. Stable parameters for
electrospinning conductively filled polymers are a distance between needle and collector
of 2.5 cm, pump flow rate vs. cross-section of 2–4 mL/h, spinning voltage of 5–10 kV, and
linear collector feed rate of 400–600 mm/s. As seen in Figure 3, the spun fiber is very fine
(around 2 µm) and often meshed/tangled together.

5. Conclusions

In this work, we have analyzed the electrospinning process in a variety of conditions
and used the numerical analysis to guide the process for producing stable electrospun
dielectric elastomer fibers. Experimental results were shown to illustrate the fibers pro-
duced. The main objective of this study was to investigate how the processing parameters
may be modeled and how that may impact the electrospinning process. Subsequent work
on the DE fiber characterization will require enough specimens to produce statistically
significant results and will need to include not only the geometrical features of the fibers
along different lengths, but also the mechanical and electrical properties which are critical
to the success of the DE fibers. The simulations from a versatile open-source platform
show that the jet’s fiber radius is highly dependent on the voltage, the distance at the
collector, viscosity, and nozzle radius if the nozzle radius is larger than 300 µm. Moreover,
when airflow velocity is added to the process, the fiber radius presents variations on time,
and its size can be reduced. The oscillating electric field has a significant influence on
the fiber radius. The electric fields generated by a rectangular wave result in fibers with
notable variations in their radius but without a considerable change in their size when
the electric field is static. In the case of a rotating electric field, the fiber radius might
present variations on time for specific frequencies. For others, this might be almost constant
and smaller compared with the static electric field and rectangular wave. These types of
models are suitable for a qualitative description than an exact quantitative reproduction of
the experiments. Stable parameters based on the simulations allowed for electrospinning
conductively filled polymers with a consistent fiber diameter of approximately 2 µm. In
simulations, we used an empirical reduction factor of 1/5 of the nozzle radius to set up
the initial jet cross-section. In future studies, we should consider other reduction factors
for the different polymer fluids, and this will require a systematic study using high speed
imaging to capture the real effects at the nozzle. Such experiments can then be used to
better understand the behavior of the fluids near the nozzle. The future studies should also
focus on investigating the impact of solvent evaporation, molecular chain movement, and
account for their effect in the simulation.
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