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Abstract: In the last decade, one of the most widely examined compounds of motal-organic frame-
works was undoubtedly ((CH3)2NH2)(Zn(HCOO)3), but the problem of the importance of framework
dynamics in the order–disorder phase change of the mechanism has not been fully clarified. In this
study, a combination of temperature-dependent dielectric, calorimetric, IR, and Raman measure-
ments was used to study the impact of ((CH3)2NH2)(Zn(DCOO)3) formate deuteration on the phase
transition mechanism in this compound. This deuteration led to the stiffening of the metal-formate
framework, which in turn caused an increase in the phase transition temperature by about 5 K.
Interestingly, the energetic ordering of DMA+ cations remained unchanged compared to the non-
deuterated compound.

Keywords: organic-inorganic hybrids; metal-formate frameworks; dielectric spectroscopy

1. Introduction

Recently, much research has focused on the exploration of metal-formate compounds,
one of the families of metal-organic frameworks (MOF). MOFs have received a great
deal of attention due to their potential applications as catalysts, biomedical sensors, and
luminescent materials [1–5]. Most efforts have been devoted to dimethylammonium MOFs
with the general formula ((CH3)2NH2)(M(HCOO)3) (DMAM, where M denotes divalent
metal ions) [6–20]. These compounds consist of metal centers M2+ related by HCOO−

anionic ligands within the frameworks with pseudo-cubic nanocavities [15,21]. Each of
these cavities contains a (CH3)2NH2 (DMA) cation, which organizes the H-bonds within
the metal-formate framework [22,23].

The most studied compound in this family is dimethylamonium zinc formate [24,25]. It
undergoes an order–disorder phase transition at Tc~156 K [26–29]. In the high-temperature
phase (HT), the H-bonding connection between the DMA+ cation and the framework is
weak, so the thermal energy is strong enough to break off the H-bonds. This behavior
indicates that DMA+ is dynamically disordered, i.e., it flips (rotates 120 degrees) between
three equivalent positions, consistent with the space group R-3c [30]. At temperatures
below the phase transition temperature, cations freeze in one of the favorable positions;
this is indicated by the transition to the Cc phase [7,22,31]. It has previously been reported
that the phase transition is driven by ordering the DMA+ cations. It is worth mentioning,
however, that other studies, such as the neutron diffraction [32] or Raman spectroscopy [13],
suggest that the phase transition in this material is related to framework deformation and
intermolecular forces, especially the strength of H-bonds between the organic cation and
the framework [33].

As the temperature decreases from the HT phase, near the phase transition tempera-
ture, the intermolecular forces are changed and the N . . . O bonds shorten. As a result, the
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metal-formate framework contracts (deforms). This slight deformation of the framework is
highly likely to be the reason for the ordering of the DMA+ cations. The results of inverse
Monte Carlo modelling performed for the ((CD3)2ND2)(Mn(DCO2)3) compound confirmed
that near the phase transition temperature, the metal-formate framework becomes con-
tracted, thereby inducing DMA+ cation ordering [32].

There have been some studies of the replacement of hydrogen with deuterium in
metal-formate frameworks, as well as by those with the DMA+ cation [13,34], just to men-
tion compounds with deuterated cations, such as ((CH3)2ND2)(M(HCOO)3) (M = Ni, Mn),
or fully deuterated formates, such as ((CD3)2ND2)(Co(DCOO)3). The results obtained for
((CD3)2ND2)(Co(DCOO)3) and ((CH3)2ND2)(M(HCOO)3) (M = Ni, Mn) showed that in
these compounds, the phase transition is driven by the ordering of the DMA+ cations.
For these materials, it has been suggested that the observed phase transition may also
be accompanied by the metal-formate framework deformation [13,34]. Similarly, it was
suggested for the ((CH3)2NH2)(Zn(HCOO)3) (DMAZnF) compound that the phase transi-
tion in this material was not only related to the ordering of the DMA+ cations but also to
the framework deformation [21]. Nevertheless, there are currently no results that clearly
show the influence of the framework deuteration on the mechanism of phase transition for
dimethylamonium zinc formate (DMAZnF).

The aim of this study was to verify whether the framework’s stiffening (as a con-
sequence of its deuteration) affects the dynamics of the built-in cation movements in
((CH3)2NH2)(Zn(DCOO)3) (DMAZnD), and thus the phase stability. For this purpose, a
combination of temperature-dependent dielectric, calorimetric, IR, and Raman experiments
was applied. The deuteration led to the stiffening of the metal-formate framework.

2. Materials and Methods

Sample preparation. All the reagents, i.e., ZnCl2 (99.999%, Sigma-Aldrich, Saint Louis,
MO, USA), a 2.0 M solution of dimethylamine in methanol, methanol (99.8%, Sigma-
Aldrich, Saint Louis, MO, USA), formic acid (98–100%, POCH, Gliwice, Poland), formic-d
acid (DCOOH, 95 wt.% in H2O, 98 atom.% D, Sigma-Aldrich, Saint Louis, MO, USA), and
N,N-dimethylformamide (99.8%, Sigma-Aldrich, Saint Louis, MO, USA), were purchased
and used without further purification.

In order to obtain ((CH3)2NH2)Zn(DCOO)3 (DMAZnD) and ((CH3)2NH2)Zn(HCOO)3
(DMAZnF), 2 mL of a 2.0 M solution of dimethylamine in methanol, 1 mL of formic-d
acid for DMAZnD or formic acid for DMAZnF, and 10 mL of N,N-dimethylformamide
were added to 10 mL of methanol and mixed. In the next step, 10 mL of methanol solution
containing 1 mmol of ZnCl2 were added, mixed, and left at room temperature (RT) in a
sealed polypropylene container. After 48 h, the crystals were harvested, washed three
times with methanol, and dried at RT.

X-ray diffraction. The powder XRD (X-ray diffraction) patterns were obtained on an
X’Pert PRO XRD (Malvern Panalytical Ltd., Malvern, UK) system equipped with a PIXcel
ultrafast line detector, a focusing mirror, and Soller slits for Cu Kα radiation (λ = 1.54056 Å).

Thermal properties. Differential scanning calorimetry (DSC) measurements were per-
formed using a Mettler Toledo DSC-1 calorimeter (Mettel Toledo, Zurich, Switzerland) with
a scanning rate of 5 K/min on cooling/heating. The excess heat capacity associated with
the phase transition was evaluated by subtraction from the data the baseline representing
variation in the absence of the phase transitions.

Raman and IR spectroscopies. An RT Raman spectrum of polycrystalline DMAZnD
was measured in the 3500–50 cm−1 range using a Bruker FT 100/S spectrometer (Bruker,
Billerica, MA, USA) with a YAG:Nd laser and a excitation of 1064 nm. The temperature-
dependent (80–300 K) Raman spectra of a randomly oriented single crystal of DMAZnD
in the 3500–50 cm−1 range were measured using a Renishaw inVia Raman spectrometer
(Renishaw, Wotton-under-Edge, UK), equipped with a confocal DM2500 Leica optical
microscope, a thermoelectrically cooled CCD as a detector, and an Ar+ ion laser operating
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at 488 nm. The temperature was controlled using a Linkam THMS600 stage (Linkam
Scientific Instruments Ltd., Epsom, Tadworth, UK) equipped with quartz windows.

A RT polycrystalline infrared (IR) spectrum of DMAZnD in the range of 4000–650 cm−1

was measured using a Nicolet iS50 IR spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA) in a KBr pellet. The temperature-dependent (80–300 K) IR spectra of the DMAZnD
in the 2900–650 cm−1 range were measured using a Nicolet iN10 IR microscope(Thermo
Fisher Scientific, Waltham, MA, USA). The temperature was controlled using a Linkam
THMS600 stage (Linkam Scientific Instruments Ltd., Epsom, Tadworth, UK) equipped with
ZnSe windows.

Dielectric properties. The dielectric measurements at ambient pressure were per-
formed using a Novocontrol Alpha impedance analyzer (Novocontrol Technologies GmbH
&Co. KG, Montabaur, Germany). Silver paste was used to ensure good electrical contact.
An AC voltage with an amplitude of 1V and a frequency in the range of 1–106 Hz was
applied across the sample. The temperature was controlled by the Novocontrol Quattro
system, by using a nitrogen gas cryostat (Novocontrol Technologies GmbH &Co. KG,
Montabaur, Germany). All the dielectric measurements were taken on the pellet and
measured every 2 K over a temperature range from 130 K to 370 K.

3. Results and Discussion
3.1. X-ray Diffraction

To confirm the phase purity of the DMAZnD and DMAZnF powder, XRD pattern
measurements were taken. The measurement was confirmed by the good agreement
between the experimental powder XRD patterns compared to the simulated pattern taken
from [22] (Figure 1).
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Figure 1. Experimental powder XRD patterns for DMAZnD (blue line) and DMAZnF (red line)
compared to simulation, based on structural data presented for DMAZnF taken from [22].

3.2. Thermal Properties

To understand the origin of the phase transition in DMA+ formate frameworks, the
results of the thermal measurement obtained from the DMAZnD sample were analyzed.
The results obtained are shown in Figure S1. Changes in the heat capacity related to the
structural phase transition in the DMAZnD and DMAZnF compounds are presented in
Figure 2 Compared to the DMAZnF [26], the phase transition temperature of the DMAZnD
increased to 160.5 K (156 K) upon cooling and 172 K (167.5 K) upon heating. The sym-
metrical shape of the heat anomaly in the DMAZnD was very similar to that observed for
DMAZnF and indicated a first-order phase transition. The change in entropy ∆S associated
to the phase transitions was ~4 J mol−1 K−1, suggesting the invariant mechanisms of the
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phase transitions in DMAZnF and DMAZnD. The estimated value of ∆S remained in
good agreement with the previously reported results for DMAZnF [26]. The above results
allow to conclude that the framework deuteration has an impact on the phase transition
temperature DMAZnF.
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Taking into account that deuteration results in the framework stiffening by increasing
the strength of the interaction between hydrogen and carbon in the ligand, it can be
concluded that the increase in the phase transition temperature is related to the fact that
more thermal energy must be supplied to deform the framework (deformation denotes the
shortening of N...O bonds at switching from the high- to the low-temperature phase).

3.3. Raman and IR Spectroscopies

To understand the vibrational properties of the DMAZnD and the DMAZnF, the labels
of normal vibrations must be briefly explained. The formate ion has six fundamental
vibrations: the CH stretching (ν1), the symmetric OCO stretching (ν2), the OCO bending
(scissoring) (ν3), the antisymmetric OCO stretching (ν4), the in-plane CH bending (ν5),
and the out-of-plane CH bending (ν6) mode. The internal vibrations of the DMA+ cation
can be subdivided into the symmetric and antisymmetric stretching (νs, νas), bending
(δs, δas), rocking (ρ), wagging (ω), and twisting (τ) vibrations of the methyl groups, the
bending, wagging and twisting vibrations of the protonated amino group, as well as the
stretching and bending vibrations of the CNC skeleton (see Table S1). The factor group
analysis, discussed previously in detail for the DMAZnF, showed that in both the LT and
HT phases the expected number of internal and lattice vibrations remained the same for
both compounds [35].

The IR and Raman spectra of the DMAZnD compared to the DMAZnF are presented
in Figure S2. Table S1 lists the positions of the observed IR and Raman bands and the
proposed assignments based on previous vibrational studies of DMAZnF [35]. The selective
deuteration of the formate ligand resulted in strong downshifts of the ν1–ν6 IR and Raman
bands compared to the DMAZnF. The most pronounced downshifts (by 683–721 cm−1)
were observed for the ν1 modes. The remaining characteristic vibrations of the ligand were
less sensitive: the ν2, ν3, ν4, ν5, and ν6 modes were shifted towards lower wavenumbers
by 7–67 cm−1. The noticeable changes in the mutual intensity of the bands accompanying
deuteration were due to slight changes in the polarities of the CH and CD bonds. Small
differences in the electronegativity of hydrogen isotopes affected bond lengths and charge
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distribution. As a result, the values of the dipole moments and the components of the
polarizability tensor, which were proportional to the intensities of the IR and Raman bands,
respectively, were different.

As expected, the deuteration of formate ion had a weaker effect on the positions of the
bands corresponding to the DMA+ cations. The bands originating from the vibrations of
the methyl groups and the CNC skeleton experienced shifts not exceeding 2 cm−1. The
bands relating to H-bonds (HBs) were slightly more shifted. The IR spectra showed that
the bands originating from the νNH2 and δNH2 were observed at about 5 cm−1 lower
wavenumbers for the DMAZnD. This indicates that HBs, in which deuterium is involved,
are slightly stronger compared to protium.

The deuteration effect was also evident for the Raman bands originating from the
lattice vibrations, especially for those observed below 250 cm−1, as they received a strong
contribution from the translations and vibrations of the formate ions.

To shed more light on the mechanism of the phase transition and to elucidate the
exact cause of the phase transition temperature increase for the DMAZnD, temperature-
dependent Raman and IR spectra were measured. They are presented in Figures 3 and S3,
respectively. The evolution of the Raman and IR spectra on decreasing temperature
measured for the DMAZnD was very similar to that observed previously for DMAZnF [35].
In particular, sudden changes resulting from the phase transition taking place at Tc (see the
spectra below 160 K in Figures 3 and S4), such as shifts, splitting, narrowing, and increase
of intensity of the bands, were clearly seen. All these effects were stronger for the bands
originating from the organic cation, confirming the order–disorder nature of the phase
transition. The appearance of additional bands in the low-temperature (LT) phase was
consistent with a reduction in symmetry from trigonal (space group R-3c) to monoclinic
(space group Cc), as shown previously in the correlation diagram for DMAZnF [35].
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Figure 4 presents a comparison of the temperature dependencies of the band posi-
tions obtained for the DMAZnD and the DMAZnF [35], assigned to the formate ligand.
Figure 4a demonstrates that the magnitude of the ν1 mode shifts at Tc did not change after
deuteration. In contrast to the ν1 mode, the ν3, ν4 and ν6 modes showed some sensitivity
to the deuteration (Figure 4b–d); that is, the jumps at Tc were almost twice as small for
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DMAZnD. This behaviour suggested that distortion of the framework in the LT phase
decreased after deuteration. Considering slightly more robust HBs in DMAZnD, it can be
inferred that the zinc-formate framework of DMAZnD is slightly stiffer compared to that
of DMAZnF.
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The less flexible framework of DMAZnD was expected to affect the geometry of the
DMA+ cation and its fit to the size of the available crystal lattice voids. Figure S4 shows
the temperature changes in the positions of selected IR and Raman bands assigned to the
vibrations of the CNC skeleton and the methyl groups. It is clear that, as in the case of
the formate ions, the νCNC stretching vibrations were less sensitive to the deuteration
than the δCNC bending vibrations (Figure S4a,b). However, unlike the formate ions, the
jump in wavenumber for δCNC at Tc was stronger for the DMAZnD compared to the
DMAZnF. This is an indication that the phase transition led to larger change in the CNC
angle in the DMAZnD compared to the DMAZnF. The δasCH3 vibrations were insensitive
to the deuteration, in line with the fact that they did not form HBs with the framework
(see Figure S4c,d).

Since the phase transition was of the order–disorder type, i.e., it was related to freezing
of the thermally-induced reorientational motions of the confined DMA+ cation in the LT
phase, the microscopic mechanism of the phase transition was likewise expected to be
manifested in the evolution of the bands originating from the protonated amine group.
Figure 5 confirms this assumption, since it shows large shifts and narrowing of the bands. In
particular, Figure 5a shows that the νNH2 and δNH2 modes shifted to lower wavenumbers
at Tc, indicating an increase in the HBs’ strength in the LT phase. In is worth noting that all
the bands corresponding to the amino group showed very similar levels of temperature
dependence. This behaviour indicates that the deuteration has a very weak effect on the
ordering/disordering process of DMA+.

3.4. Dielectric Studies

In order to obtain an insight into the phase transition mechanism in the studied
DMAZnD, dielectric spectroscopy measurements were taken. It is clear from the data pre-
sented in Figure 6 (both the real ε’ and imaginary ε” part of complex dielectric permittivity
ε* = ε’ − iε”) that for the studied sample, a strong dispersion was observed in the HT
phase. This result indicates the presence of a thermally activated relaxation process. The
bell shape of ε” suggests the dipolar relaxation response of the material. The observed
discontinuity of both ε’ and ε” datasets at T0~170 K indicates the first-order structural
phase transition, which is in good agreement with the results of the other studies performed
on DMAZnF [24,30,34].
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Figure 6. Temperature dependence of dielectric permittivity and dielectric loss measured for selected
frequencies for DMAZnD.

In Figure 7, normalized data representing the imaginary term of the complex permit-
tivity are depicted. It can be observed that for both the studied samples, normalization
resulted in a master curve exhibiting a single maxima peak. Moreover, it is clear from
the graph that the dielectric response of both the investigated DMAZnF and DMAZnD
followed the anomalous relaxation mechanism represented by the low- (m) and high-
frequency (n − 1) power-law dependence of the imaginary part of dielectric permittivity
on frequency, i.e.,:

ε′′ (ω) ∝
(
ω/ωp

)m for ω < ωp (1)

ε′′ (ω) ∝
(
ω/ωp

)n−1 for ω > ωp, (2)

where ωp = 1/τ denotes the loss peak frequency, τ is a characteristic relaxation time of
the process, and 0 < m, n < 1. Furthermore, we found that within the entire investigated
temperature range, in the case of the DMAZnF sample, the low- and high-frequency power-
law exponents satisfied the relation m < n− 1, whereas for the DMAZnD sample, the
opposite relation, m ≥ n− 1, was observed. It is known that relaxation data, for which
m ≥ n − 1, can be interpreted within a relaxation scenario, leading to the well-known
Havriliak–Negami (HN) relaxation function [36,37]:

ϕ∗HN(ω) =
1

[1 + (iω/ωp)
α]

β
, 0 < α, β < 1 (3)
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The HN function cannot be used to interpret the ‘less typical’ relaxation data, yielding
the opposite inequality m < n − 1. In this case, a relaxation scenario resulting in the
Generalized Mittag–Leffler function (GML) should be applied [38]:

ϕ∗GML(ω) =
1

[1 + (iω/ωp)
−α]

γ , 0 < α, γ < 1 (4)

According to a theoretical model of the non-exponential two-power law relaxation
response, a system responding either in the Havriliak–Negami or generalized Mittag-Leffler
manner consists of a certain number of single dipolar relaxation contributions, which form
a cluster with their local surroundings. In the case of the studied DMAZnF and DMAZnD,
it is reasonable to assume that the DMA+ cation possessing dipolar moment may be treated
as a single dipole-like object and that clusters were formed by the DMA+ cation and the
neighboring framework atoms. The observed change in the measured relaxation response
of the studied compounds after the framework deuteration may have been related to the
fact that the framework stiffening may have ha d an impact on the DMA+ fitting into
the crystal voids. This issue, however, requires further study and will be the subject of a
separate analysis in the near future.

To determine the parameters of the relaxation dynamics of the observed dipolar
process, the inverse temperature dependence of the mean dielectric relaxation time τmax
was analyzed as a function of the inverse of temperature (see Figure 8c). Both these
dependencies exhibited linear behaviour, in accordance with the classical Arrhenius law, for

which τ = Ae−
Ea
kT (where Ea denotes the activation energy, A denotes the pre-exponential

factor and k is the Boltzmann constant). The linear fit to the results produced an estimated
activation energy equal to 0.27 eV for the DMAZnD (see Figure 8c).
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It should be pointed out that the studied compound activation energy values did not
change after the framework deuteration. A convergence of the activation energy values
may have indicated that the mechanism of DMA+ cation movement in the HT phase was
the same in the undeuterated sample and the sample with the deuterated framework.
Some differences, however, may be observed between the relaxation times The shorter
relaxation times coincided with the sample including a deuterated framework, i.e., the
cation rotation was faster when the framework was stiffer. The above results may indicate a
direct relationship between the stiffening of the framework and the DMA+ cation dynamics.

4. Conclusions

As a result of the investigations performed, it was found that the ((CH3)2NH2)
(Zn(DCOO)3) (DMAZnD) framework deuteration had an impact on the physical proper-
ties and phase stability of the studied compound. It was shown that the replacement of
hydrogen by deuterium atoms in the formate framework resulted in a phase transition
temperature change. Namely, the DMAZnF underwent a reversible order–disorder phase
transition at 156 K, while in the DMAZnD, the phase transition temperature rose to approx-
imately 161 K. This observation indicates the contribution of the formate framework to the
phase transition mechanism in the family of ammonium metal formates.

The powder diffractograms, Raman, and IR spectra of the compounds DMAZnD
and DMAZnF proved that both the compounds are isomorphic. The analysis of the
vibrational spectra suggests, however, that deuteration led to a slight increase in the HBs’
strength and the stiffening of the zinc-formate framework. As a result, the framework
distortion at Tc was weaker for the DMAZnD compared to the DMAZnF. This in turn
seems to affect the geometry and fit of the DMA+ cations in the crystal voids. As a result,
the change in the CNC angle at Tc was larger for the DMAZnD than for the DMAZnF.
However, the deuteration did not change the phase transition mechanism, as evidenced
by the very similar temperature evolution of the bands related to the NH2 group. It is
therefore concluded that the formate ion deuteration-induced increase in Tc was most likely
caused by a disturbance in the delicate balance between the flexibility of the zinc-formate
framework, the adaptability of the DMA+ cations to the voids, and the HBs’ strength.

The results of the dielectric spectroscopy measurements revealed the presence of a
single-dipolar relaxation process in both the undeuterated and the deuterated sample. The
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relaxation times analysis, which allowed the estimation of the activation energy value,
showed that the framework deuteration did not change the activation energy value of
the DMA+ cations rotation. However, for both the studied samples, a non-exponential
two-power law relaxation response was detected; the mutual relationship between the
power law exponents suggested the Havrilak–Negami and Generalized Mittag–Lefler
relaxation response of the DMAZnF and DMAZnD, respectively. It is reasonable to assume
that the framework stiffening had an impact on the DMA+ cation’s ability to fit into the
framework cavities and, in consequence, a change in the type of the dielectric response of
the compound was observed. This issue, however, requires further study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14206150/s1. Figure S1: DSC data for DMAZnF and DMAZnD between 130 K and 280 K for
cooling and heating run. Figure S2: The RT Raman and IR spectra of DMAZnD compared to DMAZnF.
Figure S3: Thermal evolution of IR spectra measured for DMAZnD. Figure S4: A comparison of
temperature dependencies of Raman and IR bands for DMAZnD and DMAZnF. Table S1: The
wavenumbers along with intensity and proposed assignment of the observed IR and Raman bands
at RT and at 80 K for DMAZnD.
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1. Ptak, M.; Sieradzki, A.; Šimėnas, M.; Maczka, M. Molecular spectroscopy of hybrid organic–inorganic perovskites and related

compounds. Coord. Chem. Rev. 2021, 448, 214180. [CrossRef]
2. Keskin, S.; Kizilel, S. Biomedical Applications of Metal Organic Frameworks. Ind. Eng. Chem. Res. 2011, 50, 1799–1812. [CrossRef]
3. Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38,

1330–1352. [CrossRef]
4. Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical

sensors. Chem. Rev. 2012, 112, 1105–1125. [CrossRef]
5. Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc.

Rev. 2009, 38, 1450–1459. [CrossRef] [PubMed]
6. Asaji, T.; Yoshitake, S.; Ito, Y.; Fujimori, H. Phase transition and cationic motion in the perovskite formate framework

[(CH3)2NH2][Mg(HCOO)3]. J. Mol. Struct. 2014, 1076, 719–723. [CrossRef]
7. Besara, T.; Jain, P.; Dalal, N.S.; Kuhns, P.L.; Reyes, A.P.; Kroto, H.W.; Cheetham, A.K. Mechanism of the order–disorder phase

transition, and glassy behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3. Proc. Natl. Acad. Sci. USA 2011, 108,
6828–6832. [CrossRef]

8. Clune, A.; Harms, N.; O’Neal, K.R.; Hughey, K.; Smith, K.A.; Obeysekera, D.; Haddock, J.; Dalal, N.S.; Yang, J.; Liu, Z.; et al.
Developing the Pressure-Temperature-Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3. Inorg. Chem.
2020, 59, 10083–10090. [CrossRef] [PubMed]

9. Hughey, K.D.; Clune, A.J.; Yokosuk, M.O.; Li, J.; Abhyankar, N.; Ding, X.; Dalal, N.S.; Xiang, H.; Smirnov, D.; Singleton, J.; et al.
Structure-Property Relations in Multiferroic [(CH3)2NH2] M(HCOO)3 (M = Mn, Co, Ni). Inorg. Chem. 2018, 57, 11569–11577.
[CrossRef] [PubMed]

10. Jain, P.; Ramachandran, V.; Clark, R.J.; Hai, D.Z.; Toby, B.H.; Dalal, N.S.; Kroto, H.W.; Cheetham, A.K. Multiferroic behavior
associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX 3
architecture. J. Am. Chem. Soc. 2009, 131, 13625–13627. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ma14206150/s1
https://www.mdpi.com/article/10.3390/ma14206150/s1
http://doi.org/10.1016/j.ccr.2021.214180
http://doi.org/10.1021/ie101312k
http://doi.org/10.1039/b802352m
http://doi.org/10.1021/cr200324t
http://doi.org/10.1039/b807080f
http://www.ncbi.nlm.nih.gov/pubmed/19384447
http://doi.org/10.1016/j.molstruc.2014.08.037
http://doi.org/10.1073/pnas.1102079108
http://doi.org/10.1021/acs.inorgchem.0c01225
http://www.ncbi.nlm.nih.gov/pubmed/32635719
http://doi.org/10.1021/acs.inorgchem.8b01609
http://www.ncbi.nlm.nih.gov/pubmed/30141625
http://doi.org/10.1021/ja904156s
http://www.ncbi.nlm.nih.gov/pubmed/19725496


Materials 2021, 14, 6150 11 of 12
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