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Abstract: This paper discusses the capabilities of artificial neural networks (ANNs) when integrated
with the finite element method (FEM) and utilized as prediction tools to predict the failure pressure
of corroded pipelines. The use of conventional residual strength assessment methods has proven to
produce predictions that are conservative, and this, in turn, costs companies by leading to premature
maintenance and replacement. ANNs and FEM have proven to be strong failure pressure prediction
tools, and they are being utilized to replace the time-consuming methods and conventional codes.
FEM is widely used to evaluate the structural integrity of corroded pipelines, and the integration of
ANNs into this process greatly reduces the time taken to obtain accurate results.

Keywords: artificial neural network; finite element analysis; failure pressure prediction

1. Introduction

The oil and gas industry encompasses multiple highly complex services and facilities
that involve exploration, production, and refinement of petroleum products. These services
often have multiple facilities that span large distances. Transportation of hydrocarbons,
often in fluid form, relies heavily on pipelines due to the large distances. Pipelines are
preferred as they are the most cost-efficient and safe mode of transport for oil and natural
gas [1,2]. It is crucial that a pipeline is always capable of withstanding the operating
pressures of the transport system. Otherwise, major problems that result in the disruption of
operations may arise, especially when necessary precautions are not taken [3]. The integrity
of a pipeline is compromised when pipeline degradation occurs on the walls of the pipeline.
One of the leading causes of pipeline degradation is corrosion. Corrosion defects lead to
the premature failure of pipelines, which is the failure of a pipeline at pressures lower than
the initial operating pressure.

Among various types of corrosion, uniform corrosion, pitting corrosion, and erosion
corrosion are some of the most common types that occur in pipelines [4]. Uniform corrosion
is identified as an even corrosive attack over the pipeline wall. On the other hand, pitting
corrosion occurs in a localized area, and it has been proven to be more destructive [1,5].
In the presence of fluid flow, pitting corrosion may lead to erosion corrosion, which causes
the defect to increase in size due to the turbulence. A corrosion defect is classified as
pitting corrosion if its length and width are less than or equal to 3 times the uncorroded
wall thickness [3,6–8].

Based on the DNV-RP-F101 (DNV) assessment guideline for corroded pipelines,
corrosion defects can be categorized into three categories: are single defect, interacting de-
fect, and complex-shaped defect. A single defect is a defect that is sufficiently isolated from
neighboring defects such that there is no interaction between them. Its failure pressure is
independent of the other defects that are present in the pipeline. Interacting defects are
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defined as two or more defects aligned in the longitudinal or circumferential direction
that interact with one another. The resulting failure pressure is lower than that of the indi-
vidual single defects. A complex-shaped defect results from the combination of different
colonies of interacting defects or a single defect [9]. Since it is challenging to completely
prevent the occurrence of corrosion, it is critical to monitor the condition of the pipeline.
Continuous assessment of the residual strength of the pipeline is necessary to ensure that
the transport system is being operated at safe levels of pressure so that the corrosion defects
do not lead to catastrophic failures.

Conventional residual strength assessment methods generally result in conservative
pipeline failure pressure prediction due to the assumptions and safety factors. This results
in unnecessary pipeline maintenance and repairs. However, with the use of computer-
aided failure analysis methods such as the finite element method (FEM), the accuracy of
pipeline failure pressure prediction could be enhanced [10]. However, carrying out finite
element analysis (FEA) can be computationally expensive. To overcome this, an artificial
neural network (ANN) can be utilized. Hence, this paper reviews the capabilities of
ANNs being integrated into FEM as tools for fast yet accurate corroded pipeline failure
pressure prediction.

2. Conventional Residual Strength Assessment Methods

Over the years, various methods have been developed to assess the failure pressure
of corrosion-affected pipelines. This effort was driven by the need for an accurate failure
pressure prediction method in the industry. Fitness-for-purpose analysis of pipelines used
in the oil and gas industry requires detailed technical assessment of a defect to ensure that
the structure can serve its purpose as long as the failure conditions are not reached [6].
In the industry, several methods are widely used to predict the failure pressure of corroded
pipelines. Some of the commonly employed methods are summarized in Table 1. In these
models, the corrosion defect parameters that are considered are the corrosion depth and
longitudinal length. The equations in these methods are independent of the width of
the corrosion.

The ASME B31G method is based on the NG-18 equation and is one of the methods
that is commonly used in the industry. This method assumes the defect idealization based
on the length of the corrosion. Short corrosion defects where L ≤

√
20Dt are assumed to

consist of corrosion regions that are of a parabolic shape with a curved bottom. As for long
corrosion defects where L >

√
20Dt, it is assumed that the corroded region is rectangular in

shape with a flat bottom [11].
By redefining the Folias factor and flow stress equations of the ASME B31G method,

the modified ASME B31G method was developed. In this method, an arbitrary shape
correction factor is applied instead of the parabolic area assumption. The factor 2/3 was
replaced with 0.85 in the failure pressure prediction equation as presented in Table 2.
This enables the method to be applied to corrosion defects that are longer than the limits
given in the ASME B31G method. The SHELL 92 method also utilizes the same Folias
factor as the ASME B31G method. However, this method produces predictions that are
relatively conservative due to the flow stress assumption of the method [12].

Besides, the RSTRENG method, also known as the effective area method, is used in
assessing defects up to 0.8 t. This method represents the corrosion defect region with a
river bottom profile that enables a failure pressure prediction with greater accuracy using
the discrete method [11,12]. These methods are based on the fundamental NG-18 equation
and the calculation of the flow stress and Folias factor differs based on the assumptions
for each method. The respective Folias factor and flow stress equations are summarized in
Table 3. On the contrary, the pipe corrosion criterion (PCORRC) method is based on a finite
element study that was validated using burst test results, and the corroded pipe strength
(CPS) method is based on the weighted depth difference method [13].
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Table 1. Common pipe failure pressure assessment methods [6,9,13].

Method Fundamental
Equation

Governing
Assumption Material Restriction Defect Idealization

ASME B31G NG-18 Flow stress-dependent
mechanism causes the
pipe failure. Therefore,
it can be described by

the tensile properties of
the pipe.

Low toughness Parabolic or
rectangular

Modified B31G NG-18 Low toughness Mixed shape

SHELL 92 NG-18 - Rectangular

RSTRENG NG-18 Effective area

DNV RP-F101 NG-18 Plastic collapse (plastic
flow) controls pipe
failure where the
ultimate tensile

strength is the flow
stress.

Moderate toughness Rectangular

Corroded Pipe Strength
(CPS)

Extensive numerical
studies (validated
against test data)

Moderate toughness Step shape

PCORRC criteria Moderate to high
toughness Elliptical

Table 2. Common pipe failure pressure assessment method equations [8–10].

Method Failure Pressure, Pf

ASME B31G

 σf
2t
D

[
1−(2/3)(d/t)

1−(2/3)(d/t)/M

]
, for L ≤

√
20Dt

σf
2t
D

[
1− d

t

]
, for L >

√
20Dt

Modified B31G σf
2t
D

[
1−0.85(d/t)

1−0.85(d/t)/M

]
RSTRENG σf

2t
D

[
1−Ad/A0

1−Ad/A0 M

]
SHELL 92 σf

2t
D−t

[
1−d/t

1−d/tM

]

Table 3. Flow stress and Folias factor determination for NG-18-based assessment methods [12,13].

Method Flow Stress, σf Folias Factor, M

ASME B31G 1.1SMYS
√

1 + 0.8
(

L2

Dt

)

Modified B31G SMYS + 68.95 MPa


√

1 + 0.6275
(

L2

Dt

)
− 0.003375

(
L2

Dt

)2
, for L ≤

√
50Dt

3.3 + 0.032
(

L2

Dt

)
, for L >

√
50Dt

RSTRENG SMYS + 68.95 MPa
√

1 + 0.6275
(

L2

Dt

)
− 0.003375

(
L2

Dt

)2

SHELL 92 0.9σUTS

√
1 + 0.8

(
L2

Dt

)
DNV RP-F101 σUTS

√
1 + 0.31

(
L2

Dt

)

However, the conventional corrosion defect assessment procedures result in pre-
dictions that are conservative due to the incorporation of safety factors in the calcula-
tions [14,15]. When compared with all other assessment methods, the DNV RP-F101
assessment method is found to be the most comprehensive method [16]. The failure pres-
sure of a pipe with a single corrosion defect subjected to internal pressure only is calculated
using Equation (1). To consider external stress, the correction factor, H1, is determined
using Equation (2). Combining Equations (1) and (2), Equation (3) is formed, which allows
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for the failure pressure prediction of a pipe with a single corrosion defect subjected to
internal pressure and external stress.

Pf s,DNV = γm

(
2 t σUTS

D− t

)1− γd[(d/t)measured + εdStD(d/t)]

1− γd [(d/t)measured+εdStD(d/t)]√
1+0.31(l/

√
Dt)

2

 (1)

H1 =
1 +

(
σL

ξ σUTS

)(
1

1−(d/t)θ

)
1−

(
γm

2 ξ [1−(d/t)θ]

) 1−γd [(d/t)measured+εdStD(d/t)]

1− γd [(d/t)measured+εdStD(d/t)]√
1+0.31(l/

√
Dt)2


(2)

Pf s,DNV = γm

(
2 t σUTS

D− t

)1− γd[(d/t)measured + εdStD(d/t)]

1− γd [(d/t)measured+εdStD(d/t)]√
1+0.31(l/

√
Dt)

2

H1 (3)

Traditional approaches such as the Monte Carlo simulation (MCS) method with the
help of a nondestructive examination system are used to predict the probability of failure of
the pipelines. The MCS is based on the concept of numeric sampling assisting in developing
probabilistic models [17]. In essence, the MCS generates a great number of cases and criteria
value conversions for each case [18]. Besides its flexibility and unlimited analyses, it enables
the modeling of interdependent relationships between input and output variables [19,20].
However, this method takes up a great amount of time to produce results. In the presence
of numerous variables bounded by various constraints, a lot of time is required for the
computation of the solution [21–25]. Besides, this method results in solutions that are not
exact but depend on the number of repeated runs [20].

In recent years, machine learning and finite element method (FEM) have been re-
searched to replace the time-consuming methods and conventional codes. The failure
pressure predictions obtained by utilizing these tools are more accurate and less conserva-
tive compared to the conventional approaches [26]. In this effort, artificial neural networks
(ANNs) are being widely used together with FEM as corroded pipe failure pressure predic-
tion methods [1,27,28]. In comparison to the MCS method, which can take more than three
hours to produce results, an ANN can produce accurate results in a matter of seconds [1,27].

3. Artificial Neural Network as a Corroded Pipeline Failure Pressure Prediction Tool

Gurney [29] defined an ANN as an interconnected assembly of simple processing
elements called nodes, and the processing ability of the network is stored in the interunit
connection strengths called weights which are obtained by learning a set of training pat-
terns. Highly complex nonlinear systems that produce accurate results can be efficiently
modeled [30]. Various learning algorithms can be utilized in machine learning depending
on the nature of the training data and the expected output results, as summarized in
Table 4 [31]. ANNs are becoming increasingly popular as prediction tools to predict the
failure pressure of corroded pipelines due to their ability to recognize and infer from pat-
terns without requiring explicit instruction [32,33]. However, to predict accurate outcomes,
an ANN has to be trained sufficiently using reliable training data [34].

The architecture of an ANN also depends on the type of data and desired output.
Some of the commonly used ANN architectures are summarized in Table 5. Among them,
FFNN is mostly applied in predicting the failure pressure of corroded pipelines. This type
of ANN architecture is modeled to learn from paired datasets where the model learns from
one or more inputs and the corresponding output of the training dataset. An FFNN is
straightforward and suitable to be used for producing one output. The architecture of an
FFNN contains an input layer, hidden layer, and output layer, as illustrated in Figure 1.
Generally, an FFNN is used with the Levenberg–Marquardt back-propagation algorithm
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to train the model as it not only performs efficiently but also requires less time and fewer
epochs for convergence [40].

Every ANN uses activation functions that determine the output of a neural network.
Generally, they can be classified into two categories, namely linear and nonlinear activation
functions. Some of the commonly used activation functions are summarized in Table 6.
The sigmoid or logistic function and rectified linear unit are usually used as the activation
function for the prediction of pipeline failure pressure due to corrosion as they cater for
outputs with positive values only.

Table 4. Machine learning paradigms [33,35–39].

Learning Paradigms Algorithms Remarks

Supervised learning

- Linear regression
- Logistic regression
- Linear discriminant analysis
- K-nearest neighbors
- Trees
- Artificial neural network
- Support Vector Machines
- Back-propagation

- Expected output is pre-
sented to the network

- All data points are used
to train the network

- Applicable to sequential
data such as pattern or
speech recognition

Unsupervised learning
- K-means clustering
- Hierarchical clustering

- Expected output is not
presented to the network

- The system discovers
and adapts to the struc-
tural features in the in-
put pattern

- Applicable to estimation
problems and statistical
distributions

Semisupervised learning

- Baum–Welsh hidden Markov
Model

- Graph-based kernels

- Combination of super-
vised and unsupervised
learning

- Expected output is not
presented to the network

- Only indicates if the out-
put is correct or incorrect

- Unlabeled dataset size
should be substantially
larger than the labeled
data

- Applicable in fields such
as speech analysis and
protein sequence classifi-
cation

Reinforcement learning
- Propagating 1-nearest-neighbor
- Markov decision process

- Involves interaction with
the surrounding environ-
ment

- Applicable in speech
recognition and gaming
(games that involve
human interaction such
as chess)
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Table 5. Common ANN Architectures [30–50].

Architecture Function

Feedforward neural network (FFNN) Theoretically models the relationship between the input and output
based on the training dataset [30].

Radial basis function (RBF) Similar to an FFNN but uses radial basis activation function [31].

Recurrent neural networks (RNNs) Uses data with no timeline and is a suitable option for advancing or
completing information [32].

Long/short-term memory (LSTM)
Contains memory cell that overcomes the exploding gradient
problem and learns complex sequences in the form of music

or art [33].

Gated recurrent units (GRU) Similar to LSTM but is faster and easier to run [34].

Autoencoders (AEs) Used to encode data by compressing them [35].

Variational autoencoders (VAEs) Relies on Bayesian mathematics pertaining to probabilistic inference
to rule out improbable relations among inputs and outputs [36].

Denoising autoencoders (DAEs) Used for noisy data where the model can be trained to learn details
rather than the broader features of a data [37].

Sparse autoencoders (SAEs) Used to extract details and small features from a given dataset [38].

Deep belief networks (DBNs) Used to represent data as a probabilistic model, classify data, and
generate new data [39].

Convolutional neural networks (CNNs) Used for image or audio processing [40].

Deconvolutional networks (DNs) Reversed convolutional networks, also called inverse graphics
networks [41].

Deep convolutional inverse graphics networks (DCIGNs) Used to model complex transformations on images [42].

Generative adversarial networks (GANs) Two networks working together with one generating content and the
other judging the contents [43].

Liquid state machines (LSMs) Used to create a spiking-like pattern where there is a change in the
output only when a certain threshold is reached [44,45].

Echo state networks (ESNs) Similar to FFNN but utilizes random connections within the
nodes [46].

Deep residual networks (DRNs) Used in learning patterns that are up to 150 layers deep [47].

Capsule network (CapsNet)
Used in transferring information about an input using Hebbian

learning, the values of which correct predictions of output in the next
layer [48].

Kohonen networks (KNs) Used to classify data without supervision by utilizing competitive
learning [49].

Attention networks (ANs) Used to visualize insight into which input features correspond with
what output features [50].

Some researchers have utilized ANNs to develop a model for the failure prediction of
pipelines by taking into account the physical, mechanical, operational, and environmental
factors. This approach has shown promising results proving the robustness of ANN models
when it comes to predicting the residual life of pipelines. Zangenehmadar et al. [51] used
this approach in their research to determine the useful life of pipelines using the Levenberg-
Marquart back-propagation algorithm. Their ANN model was able to predict the useful
life of a pipeline with an error percentage of less than 5%. However, Shirzad et al. [52]
emphasized in their paper that when such factors are considered, an ANN model cannot
be easily generalized due to the lack of real-life data. Based on El-Abbasy et al. [22] in
such models, a comprehensive input is needed to ensure that the model is accurate. Hence,
large datasets of real-life cases need to be gathered and used as training datasets.
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Table 6. Activation functions used in ANN [35].

Activation Function Equation Range

Linear Linear function f(x) = x −infinity to infinity

Nonlinear

Sigmoid or logistic
function a(x) = 1

1+e−x 0 to 1

Tanh or hyperbolic
Tangent function f(x) = tanh(x) −1 to 1

Rectified linear unit
(ReLU) f(x) = max(0, x) 0 to infinity

When following this approach to predict the failure pressure of pipelines, the issue of
having a limited amount of real-life data can be overcome using the finite element method
(FEM) to generate training data for the ANN model. In a study conducted by Xu et al. [10],
the authors utilized FEA to obtain the failure pressure of a pipeline with interacting defects.
Their study proved that FEA can be used to predict the failure pressure of pipelines with a
relative error percentage of less than 1% when compared to actual burst test results. Hence,
FEA can be used to generate as many reliable ANN training data as needed depending on
the availability of time and facilities.

4. Finite Element Method (FEM) as a Corrosion Defect Assessment Method

FEM is one of the numerical methods for solving differential equations of engineering
problems. The method was originally developed to solve structural mechanics problems,
and it has since been extended to other branches of engineering and science, such as heat
transfer, fluid dynamics, and electromagnetism. FEM is the numerical method of choice to
evaluate the integrity of a pipeline as this method can be employed in widely available com-
mercial FEM software such as ANSYS, ABAQUS, and ALTAIR HyperWorks [1,2,27,53,54].

FEM is a Level 3 evaluation method for corroded pipelines according to the American
Society of Mechanical Engineers [55]. There are different levels of evaluation for corroded
pipelines, and hence the levels of evaluation are chosen based on the type and number of
data available. Level 0 evaluation method is carried out using reference tables of calculated
failure pressure from equations developed by established standards and codes from Level 1
evaluation. Level 1 evaluation method requires the pipe parameters and defect geometries
to be measured and calculated in accordance with standards and codes such as ASME
B31G, Modified ASME B31G, and DNV to evaluate the failure pressure. Level 2 evaluation
method or effective area method uses a more detailed measurement of corrosion defect
to predict the failure pressure, commonly through standards such as “API 579 Level 2”
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assessment and software package such as RSTRENG. Level 3 evaluation uses numerical
methods such as FEM to predict accurate failure pressure. Level 3 evaluation method
considers greater detail of information in comparison to the previous levels.

In FEM, physical systems of interest in physical reality are conceptualized into mathe-
matical models to predict responses of interest. To assess corrosion defects, FEM idealizes
the pipe body and geometries of corrosion defect with internal and external load exerted on
the pipe to be represented in mathematical models such as nodes. The nodes are inputted
with data of physical properties, such as modulus of elasticity, and boundary conditions,
such as loads and constraints. These inputs are then computed through selected numerical
solutions suited for the type of FEM analysis [56]. It is known that FEA can provide accu-
rate solutions depending on the error associated with its mathematical models, known as
the error of idealization, and the error associated with a numerical solution, known as the
error of discretization. The development flow of FEM is illustrated in Figure 2.
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Figure 2. Development of FEM [56].

Errors of idealization or modeling error can be reduced when input data for the finite
element mathematical model represent the real conditions of the corroded pipeline accu-
rately. As such, accurate assessment of corroded pipe through FEM will require information
such as type of analysis, material properties, defect geometry, loadings, boundary condi-
tions, and failure criterion to enable a comprehensive and accurate prediction of failure
pressure using FEM.

The strength of corroded pipelines is commonly assessed through structural analysis,
specifically nonlinear structural analysis as opposed to linear structural analysis. In struc-
tural mechanics, the relationship between input and output is linear for a linear system
as opposed to a nonlinear system [57]. To determine the failure pressure of corroded
steel pipelines accurately, the nonlinear material property of steel needs to be considered.
The nonlinear stress–strain curve is inputted into the elements when meshing the finite
element model [3,58]. A material is considered to have failed when its stress reaches its
ultimate tensile strength (σUTS).

There are two types of elements commonly used to model a steel pipeline in FEM,
namely shell elements and solid elements. When analyzing hollowed cylindrical structures,
shell elements reduce the dimension of the problem to 2D, whereas solid elements are
employed in 3D analyses. In 2013, Sadowski and Rotter explored the viability of the
elements in analyzing the failure of cylindrical tubes under global bending and concluded
that solid elements are more suitable for tubes as thick as r/t = 10 (ratio of radius of
curvature, r, to thickness, t) while shell elements are more economical when r/t ≥ 25
in terms of computational time without noticeable loss in accuracy [59]. Shell elements
are commonly used to generate models of thin pipes and plates. When modeling thick
subsea pipelines, solid elements would allow for more accurate meshing in comparison to
shell elements.

Aging pipelines are often plagued by corrosion with irregular shapes and complex ge-
ometry. The complex geometries of corrosion defects are often idealized into simple shapes
in FEM for ease of assessment. The most common idealized defect shapes are rectangular,
elliptical, parabolic, and in some cases conical shapes [14,60–64]. Wang et al. [65] inves-
tigated the failure pressure difference between finite element models with a rectangular
defect and a spherical defect. The study found that there is an insignificant difference in fail-
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ure pressure prediction between the two idealized defects. Amaya-Gómez et al. [13] stated
that conventional standards commonly propose rectangular defect shapes to assess pipeline
for an additional level of conservatism; however, elliptical defect shapes are preferred in
studies using FEM to assess corroded pipelines. Mokhtari and Melchers’ [66] work proved
that failure pressure prediction in FEM using an idealized semielliptical defect produced
a lower average error and coefficient of variance than an idealized rectangular defect,
which is supported by experimental and numerical investigation done by Netto et al. [64].

Internal corrosion is more prevalent than external corrosion in pipelines that transport
hydrocarbons in pipeline corrosion failure incidents [67]. Despite the statistical difference,
both internal corrosion and external corrosion ultimately reduce the thickness of the pipe
wall. The behaviors of internal and external corrosion defects are similar, as observed in
full-scale burst tests and FEA [68]. Therefore, the location of modeled defect (interior or
exterior) has little effect on the results of FEA.

FEM requires a material failure criterion to be defined to properly predict the failure
pressure of a corroded pipeline [69–71]. The ultimate tensile stress (UTS)-based von
Mises failure criterion is commonly adopted in the FEM framework of current research
using commercial finite element software such as ANSYS and ABAQUS. A common failure
criterion for plastic collapse of a corroded pipeline defines failure when the von Mises stress
reaches UTS throughout the ligament (wall thickness) of the corrosion defect [72]. However,
it was found that the UTS-based failure criterion overestimates the failure pressure of
high-toughness pipelines [73]. This could be attributed to UTS-based approaches’ lack of
consideration for the strain hardening exponent of a steel pipeline [70].

The error of discretization is largely dependent on the model’s element discretization.
There are different types of elements of various geometrical shapes for different dimensional
problems and basic functions such as displacement, stress, and strain, which are necessary
to compute the data of interest within acceptable error bounds. Thus, appropriate meshing
at areas of interest, such as at corrosion defect regions and pipe segments, is needed to
balance between evaluation accuracy and computational time consumption.

FEA predictions of failure pressure are more accurate when compared to existing
standards and codes [62,64,74]. Conventional assessment standards such as ASME B31G,
Modified ASME B31G, DNV, RSTRENG, and PCORRC are found to be conservative with
their failure pressure estimation as these analytical and empirical models are based on
simplifications and assumptions [74,75]. FEM is not only accurate, but the method can
manipulate geometrical data of corrosion defects and introduce complex loads onto the
pipe model with ease, allowing improved evaluation of failure pressure in addition to faster
development of assessment methods for corroded pipelines in comparison to experimental
full-scale burst tests.

5. Integration of Finite Element Method and Artificial Neural Network as Residual
Strength Prediction Tool

FEM is more accurate for the assessment of failure pressure in a corroded pipeline
when compared to the conventional assessment standards [1–3,27,53]. However, FEM is
time-consuming to carry out, and a comprehensive parametric study is computationally
intensive [1,27]. Carrying out extensive parametric studies using FEM is not practical,
and this is where machine learning has proven to be useful [29]. ANNs can be used to
overcome this issue by following three approaches identified in this study. There are a few
approaches to how the integration between these two tools can be achieved, as summarized
in Table 7.

The first approach is by incorporating the ANN directly into the framework of the
FEM. ANN and FEM are powerful prediction tools that have proven to produce highly
accurate results while consuming less calculation or computation time compared to just
FEA [1,27,76]. Researchers have taken advantage of these tools and explored the possi-
bilities of integrating both tools to produce better and more efficient prediction models
in various fields. Javadi and Tan [77] integrated ANN in their FEA to predict the rela-
tionship between the stress and strain of a material. Their resulting predictions proved
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the adaptability and efficiency of the integrated tools. They concluded that an ANN is
capable of substituting complex mathematical models in FEM. Their research is supported
by Hashash et al. [78], who addressed numerical implementation problems pertaining to
the incorporation of ANN directly into the FEM framework. Their study proved that the
approach results in good convergence characteristics and robustness of the tools.

In addition, the direct incorporation of ANN into the FEM process was further re-
searched by Gulikers in 2018. He developed a framework that allows substructure ho-
mogenization of complex material properties through a constitutive model captured by
ANN [76]. Data generated through a series of FEM simulations of a chosen substructure
were used to train the ANN. The neural network predicts the mechanical behavior of the
substructure as a function of the parameters it was trained with. The trained ANN was then
integrated into FEM as a user material subroutine, where the homogenized substructure
is represented as an element. The computational time of FEM with integrated ANN is
instantaneous, where any loading combinations were evaluated in about 3 s. The FEM
with integrated ANN constitutive model was accurate in its estimation as the maximum
observed verification error was below 5%. His work provided the groundwork for the
possibility of an ANN integrated framework in the application of FEA to estimate the
failure of steel pipelines.

The second approach is by using FEM to generate training data for the development
of an ANN model. As mentioned in various studies, an ANN requires sufficient training
to ensure the accuracy of the model. Often in reality, many data are inaccessible, and it
costs a great deal to run experiments. In such cases, parametric studies can be carried out
using FEM to generate a sufficient number of data that is required for the performance of
the ANN model [79–82]. The resulting ANN can be used to produce results by directly
receiving a set of inputs that represent the real-life scenario.

The third approach is by developing an empirical equation that represents the de-
veloped ANN based on its weights and biases. This way there is no need for advanced
software to be utilized. Tohidi and Sharifi in 2016 utilized this approach and furthered their
research by developing an empirical solution to predict the residual ultimate strength of
steel based on the ANN model that was trained. The equation that was formulated proved
to be a simple yet accurate assessment method [83].

Similarly, the failure pressure of corroded pipelines can be estimated using this ap-
proach. Most research has been done on single corrosion defects; however, only a few
studies on interacting corrosion defects have been conducted. The DNV code caters for
single defects subjected to internal pressure and compressive stress and interacting defects
subjected to internal pressure only. In reality, interacting defects are subjected to both inter-
nal pressure and compressive stress due to the harsh surrounding environments. Besides,
DNV is recommended for medium-toughness pipes and may result in an inaccurate failure
pressure prediction if used for high-toughness steel pipes [9]. This is where FEA can be
utilized to provide reliable burst pressure predictions that can be used as training data for
an ANN model. The finite element model can be validated against full-scale burst test
results from past research and be used to generate new training data to be fed into the
ANN model.

In 2007, Silva et al. utilized this approach to study the relationship between interacting
corrosion defects and the pipe burst pressure using FEA and ANN where FEA was used to
generate training data for the ANN. In their study, they concluded that the combination of
both FEA and ANN to assess the structural integrity of corroded pipelines is a promising
and efficient method [84]. In 2015, an assessment procedure was proposed for predicting
the failure pressure of X80 pipelines with interacting corrosion defects by integrating FEA
and ANN [85]. This approach was followed by Xu et al. in 2017 to study the effect of
corrosion defect geometry on the failure pressure of a corroded pipe using the integration
of FEA and ANN. In their research, they applied appropriate meshing and boundary
conditions to their finite element model to ensure its accuracy. The resulting FEA predicted
the failure pressures with a relative error of less than 1%, and their ANN model predicted
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the failure pressures of pipelines with interacting defects with a relative error of less than
2% [10]. However, in their research, they did not consider the compressive stresses acting
on the pipe.

Table 7. Types of approaches for the integration of FEA and ANN.

Author Field Summary Methodology

Javadi and Tan (2003) [77] Computer Science
ANN is incorporated in FEM to

substitute conventional
constitutive material model.

ANN as part of the FEA
framework.

Hashash et al., (2004) [78] Civil Engineering

Models constituting ANN are
incorporated in the FEM to
address issues related to its
numerical implementation.

Gulikers (2018) [76] Aerospace

Data generated through a series
of FEA of a chosen substructure
were used to train the ANN. The
trained ANN was then integrated

into the FEM as user material
subroutine.

Low and Chao (1992) [79] Electrical Engineering

ANN models for solving
problems related to inverse
electromagnetic fields are

developed using FEM to generate
training data.

The ANN is developed based
on training data

generated using FEA.

Gudur and Dixit (2008) [80] Mechanical Engineering

ANN to produce optimum
parameters for process modeling

is developed using FEM to
generate training data.

Umbrello et al., (2008) [81] MechanicalEngineering

An ANN was developed to
predict residual stresses and

optimal conditions during steel
processing using data generated

using FEM for training and
validation of the model.

Shahani et al., (2008) [82] Mechanical Engineering

An ANN model is developed to
substitute time-consuming

simulation process using data
generated from FEM to train the

model.

Tohidi and Sharifi (2016) [83] Civil Engineering

An empirical model is developed
to predict the residual ultimate

strength based on the ANN
model.

An empirical solution is
derived based on the ANN
model trained using data

generated from FEA.

Vijaya Kumar et al., (2021) [1] Mechanical Engineering

An empirical model is developed
to predict the failure pressure of
an API 5L X80 pipe based on an

ANN model.

Lo et al., (2021) [27] Mechanical Engineering

An empirical model is developed
to predict the residual strength of
an API 5L X65 pipe based on an

ANN model.

Lo et al. [27] and Vijaya Kumar et al. [1] furthered their research in this area by
incorporating axial compressive stress acting on a pipe. In their study, the developed ANN
was used to derive an empirical equation that was represented in matrix form. The equation
was developed as a function of normalized axial compressive stress, normalized defect
depth, length, and spacing. Both studies proved that the developed equations could predict
the failure pressure of a corroded pipe accurately with an error percentage of less than 5%
when compared to full-scale burst tests.
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Based on the findings, it can be said that the integration of ANN in FEA greatly
improves computing time compared to using FEA alone. A conventional FEA simulation
takes up to 43,000 s, while it took only 3 s using the ANN incorporated FEA in the
research of Gulikers in 2018 [76]. The generation of FEA results as training data for the
development of ANN greatly increases the accuracy of the model as predictions obtained
using FEA are less conservative compared to the conventional assessment methods [79–82].
Empirical solutions can then be derived from the weights and biases of the trained ANN
model [1,27,83]. By doing so, a Level 3 corrosion assessment method can be reduced to a
Level 1 complexity without compromising on the accuracy of the results.

In time-critical situations, ANN can provide results in a matter of seconds, unlike
FEM which is time-consuming. Besides, by representing the ANN as an empirical equation,
no advanced software or area of expertise is needed to carry out the assessment as the
calculations can be carried out simply using just a spreadsheet [27].

6. Conclusions

The summary of the literature review and its findings are given as follows:
Conventional residual strength assessment methods are generally conservative in their

predictions due to various simplifications and assumptions made during their development.
FEM is used extensively to evaluate the structural integrity of corroded pipelines

due to its ability to accurately model corrosion defects and make predictions with high
accuracy. However, FEM is computationally expensive and time-consuming to carry
out comprehensively.

ANNs have been widely adopted in various fields for their predictive capabilities,
development, and deployment speed. Their applications in assessing corroded pipelines
are unlimited, especially in predicting the structural integrity of corroded pipelines.

An ANN can overcome the shortcomings of FEM through the integration of both methods.
The findings showed promising outcomes in terms of predicting the failure pressure

of corroded pipelines in a short amount of time without compromising on the accuracy of
the results by implementing an ANN as part of the assessment framework.
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